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Abstract: Recently it was shown that the estimated American call prices obtained with regression and
simulation based methods can be significantly improved on by using put-call symmetry. This paper
extends these results and demonstrates that it is also possible to significantly reduce the variance of
the estimated call price by applying variance reduction techniques to corresponding symmetric put
options. First, by comparing performance for pairs of call and (symmetric) put options for which
the solution coincides, our results show that efficiency gains from variance reduction methods are
different for calls and symmetric puts. Second, control variates should always be used and is the most
efficient method. Furthermore, since control variates is more effective for puts than calls, and since
symmetric pricing already offers some variance reduction, we demonstrate that drastic reductions
in the standard deviation of the estimated call price is obtained by combining all three variance
reduction techniques in a symmetric pricing approach. This reduces the standard deviation by a
factor of over 20 for long maturity call options on highly volatile assets. Finally, we show that our
findings are not particular to using in-sample pricing but also hold when using an out-of-sample
pricing approach.

Keywords: antithetic sampling; control variates; importance sampling; Monte Carlo simulation;
put-call symmetry

JEL Classification: C15; G12; G13

1. Introduction

Key to valuing American options with a dynamic programming approach is esti-
mating a continuation value that determines the optimal exercise strategy. For this task,
simulation and regression-based methods are nowadays often preferred to other deter-
ministic algorithms, like finite differences and multinomial trees, because they are easy to
implement and because of their flexibility. The Least-Squares Monte Carlo (LSM) method
of Longstaff and Schwartz (2001) is particularly popular, and several arguments have
been made in favor of this methodology for valuing American options (Stentoft 2014).
However, like other Monte Carlo pricing methods the LSM method is numerically costly
and reducing its variance is therefore important.

This paper examines the relationship between the efficiency of variance reduction
techniques and option features like moneyness, maturity, and asset volatility when pricing
American-style options with the LSM method. Whereas most of the American option
pricing literature has focused on either put or call options individually, we employ the sym-
metry relation of McDonald and Schroder (1998) such that we can readily compare results
for pairs of call and put options whose solutions coincide. Three classical variance reduction
techniques are studied in the context of LSM pricing: antithetic sampling, control variates,
and importance sampling. We also consider implementations where two or more variance
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reduction techniques are combined. We restrict our attention to these three techniques
because of their popularity, and because they do not require simulating additional paths.
These estimators retain the flexibility of a crude LSM implementation and can easily be com-
bined with moment-matching simulation (MMS) of Barraquand and Martineau (1995),
or empirical martingale simulation (Duan and Simonato 1998). Other notable variance
reduction techniques include low-discrepancy sequences (Lemieux and La 2005), latin hy-
percube (Glasserman 2003), and stratified sampling (Glasserman et al. 1999). If several
estimators are readily available, optimal linear combinations of these estimators can also
be explored.

Our results first show that efficiency gains from variance reduction may be quite
different for calls and symmetric puts. However, control variates is by far the most efficient
of the three methods. We observe that efficiencies, defined as the ratio of the standard
deviations of the crude LSM and the LSM with variance reduction, increase (or never
worsen) with time to maturity and asset volatility for symmetric put options. Conversely,
efficiencies decrease (or never improve) with time to maturity and asset volatility for call
options. Next, since control variates is always more effective for puts than calls, and
since symmetric pricing already offers some variance reduction, we demonstrate that a
drastic reduction of the standard deviation of the call option price is obtained by combining
variance reduction techniques with a symmetric pricing approach. This is particularly so for
long maturity call options on volatile assets for which the standard deviation can be reduced
by a factor of over 20 when combining all three variance reduction techniques. Finally, we
show that these results continue to hold when using an out-of-sample pricing approach.

There are other contributions to the literature on variance reduction techniques for the
LSM method. For example, antithetic sampling was used by Longstaff and Schwartz (2001).
Control variates was used with the LSM method as early as in Tian and Burrage (2002),
and an optimal implementation was suggested in Rasmussen (2005). Importance sampling
techniques were discussed in the context of the LSM method in Moreni (2003), and the
selection of an optimal importance density was analyzed further in Bolia et al. (2004),
Juneja and Kalra (2009), and Morales (2006).1 However, to our knowledge, the present
paper is the first to thoroughly study the simultaneous combination of variance reduction
techniques for the Monte Carlo valuation of American-style options with the LSM method
and to compare the results for pairs of call and symmetric put options whose solutions
coincide such that relative efficiencies can be readily compared.

Our findings have important implications for the potentially complicated problem of
efficiently pricing American-style call options. For the 40 American call options considered
herein, the implementation of standard variance reduction techniques together with the
symmetric pricing approach results in a drastic reduction of the variance over the crude
LSM estimator. In particular, combining the symmetric pricing approach with combinations
of variance reduction techniques with the control variates method largely facilitates the
valuation of long term American call options written on volatile assets.

Our suggested approach is therefore of particular relevance for the valuation of real
options, which often take the form of costly investment opportunities for projects whose
life may span several decades, and underlying assets are difficult to model at long horizons.
Chapter 22 of Brealey et al. (2018), for example, presents several examples of such real
call options. In all these cases, the adequate valuation of real options is of paramount
importance to give full financial flexibility to a firm’s operations. Indeed, the value of
the early-exercise feature of such investment opportunities can be seen as the “American
premium” of the option, which is most prominent when the option is deep out-of-the-
money (OTM), has long maturity, and when the underlying asset processes are volatile or
difficult to predict reliably over the life of the option. Moreover, it is worth noting that when
the symmetry property holds, a bijective relationship between the exercise boundaries
of call and symmetric put options (Detemple 2001) informs practitioners not only about
option prices, but also about optimal stochastic control, which is key to the management of
real options.



J. Risk Financial Manag. 2021, 14, 504 3 of 21

The paper is organized as follows: Section 2 outlines the American option pricing prob-
lem, provides details on the implementation of the LSM method, and presents the put-call
symmetry relation. Section 3 presents the results of our numerical experiments, compares
variance reduction for comparable call and put options and discusses the efficiency gains
made possible by the put-call symmetry. Finally, Section 4 concludes. Appendix A de-
scribes the variance reduction techniques and discusses some numerical issues that may
arise when implementing them. Some additional figures are presented in Appendix B.

2. Pricing Derivatives with Early-Exercise Features

In this section we first state the valuation problem associated with pricing American
options. Next, we demonstrate how the price can be approximated using the Least Squares
Monte Carlo method of Longstaff and Schwartz (2001). Finally, we review the put-call
symmetry property and present some initial numerical results.

2.1. The Valuation Problem

Consider an American option written on an underlying asset S(t) : t ∈ [0, T] defined
on a continuous filtered probability space (Ω,F ,P) equipped with a filtration F = {Ft}T

t=0,
where P is a risk-neutral or pricing probability measure. Consistent with the notation of
Glasserman (2003), the objective of this problem is to maximize the discounted payoff
U(t) : t ∈ [0, T] with respect to an F-adapted class of stopping times T : T ⊆ [0, T].
With underlying asset value S(t), necessarily adapted to F and constant continuously-
compounded interest rate r, we pose the optimal stopping time problem as

U(0) = sup
τ∈T

E[U(τ) | F0]

= sup
τ∈T

E[e−rτh(S(τ)) | F0]

= E[U(τ∗) | F0],

(1)

where h(·) ≥ 0 is an F-adapted payoff function, and τ∗ is the optimal F-adapted stopping
time. Note that for notational simplicity, we have expressed the payoff function as depend-
ing only on S(τ). For instance, the value of an American put option with strike K and
payoff h(S(t)) = (K− S(t))+ is given by

P(0) = sup
τ∈T

E
[
e−rτ(K− S(τ))+ | F0

]
. (2)

In general, the payoff need only be adapted to the filtration.
For a put option, the problem of maximizing the expected discounted payoff with

respect to a stopping time τ can be seen as the dual problem to the minimization (primal)
problem given by

τ∗ = inf{τ ∈ T : S(τ) ≤ b∗(τ)}, (3)

where b∗(t) represents the optimal exercise boundary at time t. That is, whenever the
underlying asset price goes below the threshold, immediate exercise is optimal. Otherwise,
the option should be held. Similarly, a call option should be exercised when the underlying
asset price is above its optimal exercise boundary. Thus, each exercise strategy corresponds
to a stopping time and determines the American option price via Equation (1).

Let us consider a discrete-time formulation of the problem. For an option with a
maturity of T years, we consider an evenly spaced partition with J time steps of length
∆t = T/J. The discretized price process of the underlying asset {Sj : j = 0, . . . , J} is
defined on a complete risk-neutral probability space (Ω,G,P) and adapted to the discrete
filtration G = {Gj}J

j=0. For simplicity, we use time j to refer to time τj = j∆t. Option
exercise is allowed only at the points defining the time discretization, hence the set of
admissible exercise opportunities is {τj = j∆t : j = 0, . . . , J}, where 0 = τ0 < τ1 < · · · <
τJ = T. Let Vj(x) denote the time-j value of an unexercised option with underlying asset
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value Sj = x. The option price can then be written as V0(S0), which solves the dynamic
programming recursionVJ(SJ) = h(SJ)

Vj(Sj) = max
(

h(Sj),E
[
e−r∆tVj+1(Sj+1) | Gj

])
, j = J − 1, . . . , 0.

(4)

Options with a discrete early exercise feature of this sort are termed Bermudan options.
The continuously exercisable American option price is approximated by letting N tend to
infinity (Glasserman 2003). In this paper we work with the time-discretized problem, and
describe the options as American rather than Bermudan.

2.2. Least-Squares Monte Carlo

Most American option valuation methods rely on the dynamic programming represen-
tation in Equation (4) to obtain price estimates. The problem remains to estimate the time-j
continuation value of the option, i.e., the quantity E

[
e−r∆tVj+1(Sj+1) | Gj

]
, j = 0, . . . , (J− 1).

Since the conditional expectation of a square-integrable function relative to a sigma algebra
G can be represented as a countable linear combination of G-measurable basis functions
{ψl(·)}∞

l=0 (see Royden 1988), the time-j continuation value can be written as

E
[
e−r∆tVj+1(Sj+1) | Gj

]
=

∞

∑
l=0

ψl(Sj)γj,l , (5)

with associated real coefficients {γj,l}∞
l=0.

However, in practise this quantity cannot be computed and a finite number of basis
functions is used. Given a set of N simulated paths {Sn,j : n = 1, . . . , N; j = 0, . . . , J},
the LSM method resorts to a parametric approximation of the continuation value with a
regression model of the form

e−r∆tVj+1(Sn,j+1) =
L

∑
l=0

ψl(Sn,j)β j,l + εn,j+1. (6)

The (L + 1) × 1 vector of coefficient estimates β̂ j = {β̂ j,0, . . . , β̂ j,L}′ are obtained by re-
gressing disounted cashflows e−r∆tVj+1(Sn,j+1) against the cross-section of basis functions
that relate to time-j in-the-money (ITM) asset paths, denoted by the 1× (L + 1) vector
ψ(Si,j) = {ψ0(Sn,j), . . . , ψL(Sn,j)}, with ψ0 as a constant. The time-j path-n fitted continua-
tion value then takes the form

Ĉn,j = ψ(Sn,j)β̂ j, (7)

and determines an exercise strategy in which the option is exercised if the payoff is positive
and greater than the fitted continuation value. The continuation value approximation of
order L provides an estimate of the exercise strategy bL(t) : t ∈ T with a corresponding
stopping time τL determined by the choice of L < ∞. To simplify notation, we hereafter
refer to τ(n) as the path-n LSM stopping time estimate.

The LSM estimator of Longstaff and Schwartz (2001) computes discounted cashflows
along each path with the regression approach outlined above. To reduce the notation, we
write V̂j(Sn,j) as V̂n,j to obtain the approximate dynamic program

V̂n,J = h(Sn,J)

V̂n,j =

{
h(Sn,j) if (h(Sn,j) ≥ Ĉn,j) ∩ (h(Sn,j) > 0)
e−r∆tV̂n,j+1 if (h(Sn,j) < Ĉn,j) ∪ (h(Sn,j) = 0)

j = J − 1, . . . , 0.
(8)

In this dynamic programming representation, the terminal option value is again set to
the option payoff at maturity, specifying a continuation value for the next iteration of the
backwards-in-time recursion. At the penultimate time step, the criterion for the path-n
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exercise decision is that the payoff h(Sn,J−1) is positive and greater than the continuation
value Ĉn,J−1. If the option is exercised, the option value is the immediate payoff. Otherwise,
the pathwise option cashflow is discounted back one time step. The algorithm then moves
backwards in time, computing option values along all paths at each time, and updating
the exercise decisions. If the exercise value never exceeds the continuation value along a
simulated path, the option is unexercised, its payoff null, and hence the option value for
that path is zero. If the payoff is positive and exceeds the continuation value at least once,
the G-adapted stopping time determined by the LSM is the first exercise time.

2.3. Put-Call Symmetry

Throughout this paper, results are presented for pairs of American call and put options
linked by a put-call symmetry result. Consider an American option with strike price K and
maturity T, written on an underlying asset governed by a Geometric Brownian Motion
and with initial price S0, volatility of returns σ, and continuous interest rate r and dividend
yield q. Denoting put and call option prices by P(S0, K, r, q, σ, T) and C(S0, K, r, q, σ, T),
respectively, put-call symmetry states that the following equality holds

C(S0, K, r, q, σ, T) = P(K, S0, q, r, σ, T). (9)

This result was first presented by McDonald and Schroder (1998). By systematically
comparing symmetric put and call prices over a wide range of time to maturity, moneyness,
and asset volatility, we can readily interpret and compare the efficiencies of variance
reduction tools for pairs of problems whose solutions coincide.

Recent literature demonstrates that the symmetry relation is useful because the valua-
tion of American call options poses a number of numerical problems which are otherwise
not encountered for put options. In particular, because the payoff of a call option is un-
bounded, the presence of highly volatile paths will result in a higher frequency of deep
moneyness in the cross-section of asset paths. This can impede the approximation of a
decision rule enough to exacerbate variance and create biased price estimates. Symmetric
pricing stands as a costless and effective way to value call options and the technique proves
particularly effective in cases of long maturity options written on volatile assets.

As an illustration, consider call and (symmetric) put options with 50 exercise opportu-
nities per annum, an initial underlying price S0 = 40, risk-free rate r = 0.06, dividend yield
q = 0.06, and maturities of 1 and 2 years. Figure 1 shows the standard deviation calculated
from M = 1000 replications of an LSM configuration with N = 100,000 paths and a cubic
approximation (L = 3) of the decision rule. The figure shows that the standard deviation
is indeed reduced when using symmetric pricing and this is particularly so for longer
maturity options. For shorter maturities and less volatile assets, the symmetric pricing
approach has subdued efficiencies in terms of standard deviations, but never produces
significantly worse price estimates.
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(a) Call, T = 1 (b) Put, T = 1

(c) Call, T = 2 (d) Put, T = 2

Figure 1. Standard deviation for symmetric options. Standard deviation results are calculated
from M = 1000 replications of a standard LSM configuration with N = 100,000 paths and a cubic
approximation (L = 3) of the decision rule. The left column illustrates price estimates for call options,
and the right column for symmetric put options. The top and bottom rows present results for one-
and two-year options, respectively.

3. Empirical Results

The Least-Squares Monte Carlo approach for pricing American derivatives has been
shown to converge to the true price when the number of simulated paths, N, and the order
of the polynomial expansion for the basis functions, L, tend to infinity (Stentoft 2004). In
any actual implementation though, a finite number for both is used. In our numerical imple-
mentation of the LSM we use L = 3 basis functions and N = 100,000 sample paths in total
to estimate the decision boundary.2 We price options with J = 50T (i.e., 50 exercise oppor-
tunities per annum), r = q = 0.06, and S0 = 40. The numerical experiment carried out here
consists in pricing 40 call options with varying levels of volatility, σ = {0.1, 0.2, 0.3, 0.4},
different strike prices, K = {36, 38, 40, 42, 44}, and maturities T = {1, 2}, as well as their
40 symmetric put counterparts. Results are based on M = 1000 independent replications.

We first compare the variance reduction that can be achieved for call and (symmetric)
put options, respectively, and demonstrate that (1) efficiency gains are different for calls
and symmetric puts, and (2) control variates should always be used. Second, we note
that when using control variates, either alone or in combination with other techniques,
efficiencies are always larger for put options than for the corresponding call options and
we demonstrate that the joint or total effect of using (combinations of) variance reduction
techniques together with symmetric pricing for call options can lead to price estimates with
substantially lower variance. We demonstrate that these results are qualitatively identical
when using an out-of-sample LSM approach in which the approximated decision rule is
applied to a second independent sample of simulated paths. Finally, we provide some
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intuition for why variance reduction techniques work better than others when it comes to
pricing American call and put options.

3.1. Variance Reduction for Call and Put Options

We start by examining the variance reduction that can be achieved by implementing
three stand-alone techniques and combinations thereof for call and (symmetric) put options.
Using the symmetric put options allows a direct comparison of the variance reduction
for call and put options with similar characteristics and prices. The methods considered
are antithetic sampling, denoted with an “A”, control variates, denoted with a “C”, and
importance sampling, denoted with an “I”. To compare performance, we consider the
standard deviation efficiencies defined as

EffVR =

√√√√Var
[
V̄(N)

]
Var
[
V̄(N)

VR

] − 1, (10)

where V̄(N) is the crude LSM estimator of an American option using a sample of N paths.
Similarly V̄(N)

VR is the estimator supplemented with a (combination of) variance reduction

technique(s).3 For example, V̄(N)
ACI is the price estimator that combines all three variance

reduction techniques, and EffACI denotes its efficiency. The variances are estimated using
the M = 1000 replications. Efficiencies greater than zero indicate improvement over crude
Monte Carlo.

Table 1 reports the results for each of the variance reduction methods with efficiencies
for call options in columns 4–10, and symmetric put options in columns 11–17. Option
characteristics are shown in the first three columns of Table 1. The last row in the table
reports the average efficiency for a given variance reduction technique across the call and
put options, respectively. The table first demonstrates that efficiency gains from variance
reduction techniques are different for call and put options across option characteristics.
For example, and we highlight this in Figure 2, when using only antithetic sampling the
efficiency increases with moneyness and is insensitive to variations in volatility for call
options, whereas the efficiency is highest for at-the-money (ATM) options and increases
with the volatility of the underlying asset for put options. Across the methods we observe
that efficiencies increase (or never worsen) with time to maturity and asset volatility for
symmetric put options whereas efficiencies decrease (or never improve) with time to
maturity and asset volatility for call options. For all the individual options as well as on
average, some efficiency gain is achieved as all efficiencies are positive.

Secondly, the table shows that the best performing variance reduction method, i.e.,
the method with the highest efficiency, always involves the use of control variates. As a
result the average efficiencies obtained with control variates are much larger than those
obtained with antithetic or importance sampling, and in the case of put options this is
so by an order of magnitude. The ACI-LSM approach, which combines all three stand-
alone variance techniques, is the most efficient approach for most of the options and
for 36 out of the 40 put options. ACI-LSM is also the most efficient method for 17 out
of the 20 long maturity call options (i.e., options with a maturity of 2 years) and when
it is not the best perfoming method it has efficiencies that are very close to the best
estimators. In fact, the methods that involve control variates all perform very similarly for
call options with very small relative differences and close to optimal variance reductions
can be achieved with the computationally simple stand-alone control variate method. For
put options however, adding antithetic and importance sampling does further reduce the
variance by (14.1− 12.4)/12.4 = 13.7% demonstrating that combining all three variance
reduction techniques does improve on the efficiency for these options. Figures A3 and A4
in Appendix B provide a visual representation of this.
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Table 1. Efficiency results for various (combinations of) variance reduction techniques.

Call Symmetric Put

T K σ A C I AC AI CI ACI A C I AC AI CI ACI

1 36 0.1 0.5 8.5 1.1 9.0 1.3 7.9 8.9 0.4 10.0 0.9 10.5 1.1 9.5 10.6
1 36 0.2 1.2 7.6 1.4 7.2 1.6 7.4 7.4 1.2 11.2 1.1 11.6 1.3 11.1 12.8
1 36 0.3 0.9 6.8 1.6 6.6 1.9 6.8 6.7 1.5 11.4 1.1 12.8 1.3 11.4 14.4
1 36 0.4 0.6 6.1 1.8 5.7 2.2 6.2 5.8 1.5 12.5 1.1 13.4 1.2 12.6 15.1
1 38 0.1 1.3 8.7 1.3 8.7 1.6 8.5 9.1 1.3 10.5 1.2 11.1 1.4 10.3 12.1
1 38 0.2 0.8 8.1 1.5 7.9 1.8 8.1 7.9 1.5 11.1 1.3 12.3 1.4 11.1 13.2
1 38 0.3 0.6 7.2 1.7 7.2 2.1 7.3 7.3 1.5 11.9 1.2 13.2 1.3 12.0 14.1
1 38 0.4 0.5 6.0 1.8 5.9 2.2 6.1 6.0 1.7 12.2 1.2 13.6 1.3 12.4 14.8
1 40 0.1 0.5 9.2 1.6 9.4 1.9 9.2 9.4 0.7 10.8 1.5 11.8 1.7 10.8 11.8
1 40 0.2 0.4 8.1 1.7 8.5 2.1 8.1 8.6 0.9 11.8 1.4 13.0 1.6 11.9 13.1
1 40 0.3 0.4 7.2 1.8 7.3 2.3 7.3 7.3 1.1 12.2 1.3 13.4 1.5 12.4 13.7
1 40 0.4 0.3 6.0 1.9 5.6 2.3 6.0 5.6 1.3 12.7 1.3 14.0 1.4 12.9 14.5
1 42 0.1 0.1 8.8 2.0 8.8 2.3 8.9 8.8 0.2 11.8 2.1 11.3 2.2 11.9 11.3
1 42 0.2 0.2 7.8 1.8 7.9 2.3 7.9 8.0 0.5 12.5 1.7 12.6 1.8 12.5 12.6
1 42 0.3 0.2 7.0 1.9 6.8 2.4 7.1 6.8 0.7 12.8 1.5 13.2 1.7 12.9 13.3
1 42 0.4 0.2 5.9 1.9 5.5 2.4 6.0 5.5 0.9 13.3 1.4 14.0 1.5 13.6 14.2
1 44 0.1 0.1 10.3 2.9 10.0 2.8 10.4 10.2 0.1 11.4 2.8 12.2 2.6 11.6 12.3
1 44 0.2 0.1 8.2 2.2 7.8 2.4 8.3 7.9 0.3 13.0 1.9 12.3 2.1 13.0 12.3
1 44 0.3 0.1 6.9 2.0 6.7 2.5 7.0 6.7 0.5 13.8 1.6 13.4 1.8 13.8 13.5
1 44 0.4 0.2 5.9 2.0 5.6 2.5 6.0 5.7 0.6 13.7 1.5 13.9 1.6 13.9 14.1
2 36 0.1 0.7 9.6 1.8 9.6 1.8 9.8 11.3 0.6 10.0 1.4 9.8 1.4 10.2 11.6
2 36 0.2 0.9 8.1 2.0 7.7 1.9 8.5 8.7 1.1 11.3 1.4 11.2 1.4 12.5 16.1
2 36 0.3 0.5 6.4 2.2 6.4 2.2 6.5 6.8 1.3 11.9 1.3 11.6 1.3 13.5 16.5
2 36 0.4 0.4 4.0 2.1 4.0 2.1 4.1 4.1 1.3 12.6 1.2 11.8 1.2 14.3 16.3
2 38 0.1 1.1 9.4 1.9 8.8 1.8 9.9 10.6 1.2 11.4 1.5 10.6 1.5 12.4 14.8
2 38 0.2 0.6 7.9 2.1 8.1 2.1 8.3 8.7 1.3 12.9 1.5 11.5 1.5 14.1 14.6
2 38 0.3 0.4 6.2 2.2 6.4 2.3 6.3 6.6 1.4 13.3 1.3 11.8 1.3 14.5 15.2
2 38 0.4 0.3 3.9 2.1 4.1 2.2 4.0 4.2 1.5 13.7 1.2 11.9 1.2 15.0 15.6
2 40 0.1 0.5 9.3 2.1 9.9 2.2 9.7 10.4 0.8 11.9 1.7 12.7 1.8 12.3 13.8
2 40 0.2 0.4 7.9 2.3 8.7 2.4 8.1 9.0 1.0 12.9 1.5 12.8 1.5 13.5 14.4
2 40 0.3 0.3 5.9 2.3 6.4 2.5 6.1 6.6 1.3 13.4 1.3 12.4 1.4 14.3 14.6
2 40 0.4 0.3 4.0 2.2 4.1 2.3 4.1 4.2 1.5 13.9 1.2 12.8 1.2 15.1 15.9
2 42 0.1 0.3 10.2 2.4 10.3 2.8 10.4 10.4 0.3 12.4 1.9 13.2 2.1 13.0 13.6
2 42 0.2 0.3 7.9 2.4 8.8 2.8 8.1 9.1 0.6 13.4 1.6 14.0 1.7 14.3 15.3
2 42 0.3 0.3 6.0 2.5 6.7 2.8 6.2 6.8 1.0 13.4 1.4 14.2 1.4 14.2 15.9
2 42 0.4 0.3 4.2 2.3 4.2 2.5 4.2 4.3 1.4 14.0 1.3 13.4 1.3 14.8 15.7
2 44 0.1 0.1 9.8 2.6 9.4 3.2 10.1 9.6 0.1 11.9 2.2 11.8 2.5 12.4 12.1
2 44 0.2 0.2 8.3 2.6 8.5 3.0 8.4 8.6 0.4 13.5 1.7 14.6 1.8 14.5 15.3
2 44 0.3 0.2 6.3 2.6 6.1 2.9 6.4 6.2 0.6 13.7 1.5 14.3 1.5 14.8 15.6
2 44 0.4 0.2 4.3 2.4 4.1 2.6 4.3 4.2 1.1 14.0 1.3 14.6 1.3 14.9 16.8

Average 0.4 7.2 2.0 7.3 2.3 7.3 7.5 1.0 12.4 1.5 12.6 1.5 12.9 14.1
This table shows the efficiencies for each (combination of) variance reduction technique, with “A” denoting
antithetic sampling, “C” denoting control variates and “I” denoting importance sampling, respectively. For each
option, the highest efficiencies for call and symmetric put option are indicated in boldface.
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(a) Call, T = 1 (b) Put, T = 1

(c) Call, T = 2 (d) Put, T = 2

Figure 2. Efficiency of pricing with antithetic variates. Results are calculated from M = 1000 replications
of LSM and A-LSM configurations with N = 100,000 paths and a cubic approximation (L = 3) of the
decision rule. The left column illustrates efficiencies for call options, and the right column for symmetric
put options. The top and bottom rows present results for one- and two-year options, respectively.

3.2. Variance Reduction and Symmetric Pricing

While the efficiency gains from variance reduction techniques are different for call and
(symmetric) put options, once a method that involves control variates is considered Table 1
shows that a given technique (or combination of techniques) works better for put options
than for the corresponding call options. For example, when using control variates the
efficiency factor is between 5 and 10 for call options, while for the corresponding puts, the
efficiency is larger, and nearly always between 10 and 15. This performance is highlighted in
Figure 3. The relative improvement is largest when combining all three variance reduction
techniques which leads to a (14.1− 7.5)/7.5 = 88.0% larger variance reduction for the put
than for the call options. Since the variance is always lower for the symmetric put than
for the corresponding call option in Figure 1 it follows that the variance reduction that can
be achieved for call options could be improved upon by considering variance reduction
techniques together with symmetrical pricing.
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(a) Call, T = 1 (b) Put, T = 1

(c) Call,T = 2 (d) Put, T = 2

Figure 3. Efficiency of pricing with control variates. Results are calculated from M = 1000 repli-
cations of LSM and C-LSM configurations with N = 100,000 paths and a cubic approximation
(L = 3) of the decision rule. The left column illustrates efficiencies for call options, and the right
column for symmetric put options. The top and bottom rows present results for one- and two-year
options, respectively.

To analyse the joint effect of variance reduction and symmetric pricing, we now
consider the total efficiency for call options of a joint implementation of symmetric pricing
and various (combinations of) variance reduction techniques. We define the total efficiency
as a slight modification of the efficiency measure in Equation (10) given by

Tot EffVR =

√√√√√ Var
[
V̄(N)

call

]
Var
[
V̄(N)

put,VR

] − 1, (11)

where V̄(N)
call is a crude Monte Carlo estimator for a call option using a sample of N paths,

and V̄(N)
put,VR is the symmetric put estimator using the same sample supplemented with

a (combination of) variance reduction technique(s). Again, the variances are calculated
across the M = 1000 replications. Figure 4 depicts the total efficiency for all the possible
combinations of variance reduction techniques considered that involve control variates for
the 1-year and 2-year call options in the top row and bottom row, respectively. This figure
can be compared to Figures A3 and A4 in Appendix B which shows the efficiency values
for call and (symmetric) puts, respectively.
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(a) C-SLSM, T = 1 (b) AC-SLSM, T = 1 (c) CI-SLSM, T = 1 (d) ACI-SLSM, T = 1

(e) C-SLSM, T = 2 (f) AC-SLSM, T = 2 (g) CI-SLSM, T = 2 (h) ACI-SLSM, T = 2

Figure 4. Total efficiency of symmetric pricing with (combinations of) control variates. Results are calculated from
M = 1000 replications of LSM configurations with N = 100,000 paths and a cubic approximation (L = 3) of the decision
rule. The first column illustrates total efficiencies of C-SLSM prices, the second column for AC-SLSM, the third column
for CI-SLSM, and the fourth column for ACI-SLSM. The top and bottom rows present results for one- and two-year
options, respectively.

Figure 4 clearly suggests that symmetric pricing is very effective when implemented
with control variates. Indeed, for high volatility options, symmetric pricing reduces the
variance of the LSM estimator of the call option price by a factor of more than 20 when
combining all three variance reduction techniques. These numbers are much higher than
when implementing variance reduction without symmetry shown in Table 1 and plotted
in Figure A3 in Appendix B. Although symmetric pricing implemented with antithetic
and importance sampling alone is also more effective than in a vanilla LSM configuration,
the total gain in efficiency is much lower. In fact, our results show that when pricing call
options, combining variance reduction techniques with symmetric pricing always leads
to more precise estimates. Thus, when considering variance reduction techniques one
should also consider using symmetric pricing, and conversely when considering pricing
call options using symmetry one should also consider implementing variance reduction
techniques for the put option.

In Table 2 we report the results when using an out-of-sample pricing approach instead.
Here the optimal stopping time is estimated from the standard LSM method, i.e., without
variance reduction, and the same strategy is used for all the out-of-sample pricing with
(combinations of) variance reduction techniques. The first thing to notice is that the
results are very similar to those reported in Table 1 demonstrating that our findings are
not particular to using in-sample pricing. Specifically, the effect of variance reduction
techniques differ between call and put options, but control variates should always be used.

Second, Table 2 also shows that when a control variate is used, either by itself or
in combination with other techniques, variance reduction is much more efficient for put
options than for call options. One minor difference is that for out-of-sample pricing, ACI-
LSM improves somewhat less on the other strategies on average, compared to when using
in-sample pricing. However, on average, combining all three variance reduction techniques
still offers the highest efficiency, particularly when applied to put options. As a result,
combining variance reduction using control variates with symmetric pricing offers huge
benefits also when doing out-of-sample call option pricing.4
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Table 2. Efficiency results for out-of-sample pricing.

Call Symmetric Put

T K σ A C I AC AI CI ACI A C I AC AI CI ACI

1 36 0.1 0.5 7.6 1.1 7.6 1.1 7.6 7.7 0.4 9.2 0.9 9.3 1.0 9.2 9.4
1 36 0.2 1.1 7.1 1.4 7.1 1.4 7.1 7.1 1.1 10.3 1.0 10.3 1.1 10.4 10.6
1 36 0.3 0.9 6.2 1.5 6.2 1.6 6.2 6.2 1.4 11.7 1.0 11.7 1.1 11.8 12.0
1 36 0.4 0.6 5.6 1.7 5.6 1.8 5.6 5.6 1.6 12.3 1.0 12.2 1.1 12.4 12.6
1 38 0.1 1.2 8.1 1.3 8.1 1.4 8.1 8.1 1.2 9.8 1.1 9.8 1.2 9.8 10.0
1 38 0.2 0.9 7.5 1.5 7.5 1.6 7.6 7.6 1.4 11.4 1.2 11.5 1.2 11.4 11.6
1 38 0.3 0.6 6.6 1.6 6.6 1.7 6.7 6.7 1.5 12.0 1.1 12.2 1.2 12.1 12.3
1 38 0.4 0.4 5.6 1.8 5.6 1.8 5.6 5.6 1.6 12.7 1.0 12.8 1.1 12.7 12.9
1 40 0.1 0.5 8.6 1.6 8.6 1.6 8.6 8.7 0.8 10.7 1.4 10.8 1.4 10.8 10.8
1 40 0.2 0.5 7.8 1.7 7.8 1.7 7.9 7.8 0.9 11.9 1.3 11.9 1.3 11.9 11.9
1 40 0.3 0.4 7.0 1.8 7.0 1.8 7.0 7.0 1.1 12.7 1.2 12.8 1.2 12.7 12.8
1 40 0.4 0.3 5.8 1.9 5.8 1.9 5.8 5.8 1.3 13.1 1.1 13.2 1.2 13.2 13.3
1 42 0.1 0.2 9.3 2.2 9.3 2.1 9.3 9.3 0.2 11.3 1.8 11.3 1.8 11.4 11.4
1 42 0.2 0.3 8.1 2.0 8.0 2.0 8.1 8.1 0.4 11.8 1.4 11.7 1.5 11.9 11.9
1 42 0.3 0.3 7.0 2.0 7.0 2.0 7.0 7.0 0.7 12.9 1.3 12.8 1.4 12.9 13.0
1 42 0.4 0.3 5.9 2.0 5.9 2.0 5.9 5.9 0.9 13.4 1.2 13.4 1.2 13.4 13.5
1 44 0.1 0.1 10.4 2.9 10.4 2.8 10.5 10.5 0.0 10.8 2.4 10.8 2.3 10.8 10.8
1 44 0.2 0.2 8.4 2.2 8.4 2.2 8.4 8.4 0.2 12.1 1.7 12.1 1.7 12.3 12.3
1 44 0.3 0.2 7.3 2.2 7.3 2.1 7.3 7.3 0.4 12.7 1.4 12.7 1.5 12.8 12.8
1 44 0.4 0.2 6.1 2.1 6.1 2.1 6.1 6.1 0.6 13.3 1.3 13.2 1.3 13.3 13.4
2 36 0.1 0.7 9.7 1.8 9.8 1.8 9.6 10.1 0.7 10.5 1.6 11.0 1.5 10.4 11.2
2 36 0.2 1.1 8.4 2.3 8.5 2.2 8.6 8.7 1.2 12.2 1.5 12.1 1.5 12.4 13.3
2 36 0.3 0.7 6.5 2.3 6.6 2.3 6.6 6.6 1.4 12.8 1.4 12.7 1.4 13.1 14.0
2 36 0.4 0.5 4.5 2.2 4.5 2.3 4.5 4.5 1.4 13.0 1.3 12.8 1.2 13.4 14.4
2 38 0.1 1.3 10.1 2.2 10.2 2.1 10.5 10.7 1.3 12.2 1.7 12.2 1.6 12.4 13.0
2 38 0.2 0.7 8.2 2.2 8.4 2.2 8.4 8.5 1.4 12.4 1.5 12.7 1.5 13.1 13.7
2 38 0.3 0.6 6.5 2.4 6.6 2.4 6.6 6.6 1.5 12.7 1.4 12.9 1.4 13.3 14.0
2 38 0.4 0.4 4.2 2.1 4.2 2.1 4.2 4.2 1.5 13.4 1.3 13.6 1.3 14.0 14.9
2 40 0.1 0.6 10.1 2.2 10.2 2.1 10.3 10.5 0.9 12.4 1.7 12.9 1.7 13.3 13.6
2 40 0.2 0.5 8.3 2.3 8.3 2.2 8.4 8.5 1.1 13.0 1.6 13.6 1.5 13.9 14.4
2 40 0.3 0.4 6.2 2.3 6.2 2.3 6.2 6.2 1.3 13.5 1.5 14.0 1.4 14.5 15.0
2 40 0.4 0.3 4.1 2.1 4.1 2.1 4.2 4.2 1.6 13.6 1.4 13.9 1.3 14.6 15.3
2 42 0.1 0.3 10.2 2.3 10.2 2.3 10.3 10.4 0.4 11.9 1.9 11.9 1.9 12.4 12.5
2 42 0.2 0.4 8.2 2.4 8.1 2.4 8.2 8.3 0.7 13.4 1.7 13.8 1.7 14.3 14.6
2 42 0.3 0.3 6.2 2.3 6.1 2.3 6.2 6.3 1.0 14.1 1.6 14.7 1.5 15.2 15.7
2 42 0.4 0.3 4.2 2.1 4.2 2.2 4.2 4.3 1.4 14.5 1.5 15.3 1.3 15.7 16.6
2 44 0.1 0.1 9.5 2.5 9.7 2.7 9.7 9.8 0.2 12.2 2.1 12.1 2.2 12.6 12.6
2 44 0.2 0.3 7.9 2.4 7.9 2.4 8.0 8.0 0.5 12.9 1.8 13.0 1.8 13.6 13.7
2 44 0.3 0.3 5.9 2.3 5.9 2.4 5.9 5.9 0.8 14.2 1.7 14.7 1.6 15.3 15.7
2 44 0.4 0.3 4.4 2.2 4.4 2.2 4.4 4.4 1.2 14.7 1.5 15.4 1.4 15.9 16.5

Average 0.5 7.2 2.0 7.2 2.0 7.3 7.3 1.0 12.4 1.4 12.5 1.4 12.8 13.1
This table shows the efficiencies for each (combination of) variance reduction technique, with “A” denoting
antithetic sampling, “C” denoting control variates and “I” denoting importance sampling, respectively. For each
option, the highest efficiencies for call and symmetric put option are indicated in boldface.

3.3. Discussion

In the following, we provide some further intuition for why some variance reduction
techniques are more efficient than others. Before doing so, it is important to mention
that these comparisons only concern vanilla put and call options, and our conclusions
should therefore be interpreted in the specific context of pricing American options with
simple payoff functions. There is generally no best-performing variance reduction tech-
nique as efficiencies are largely context-specific. A good rule of thumb, as pointed out
by Glasserman (2003), is that the more information leveraged about the option properties,
the larger the reduction in variance. In practise, however, leveraging this information, and
optimizing the variance reduction tools for a specific problem can be so computationally
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taxing that it would be ill-advised to do so, even if the efficiency gains are large. The success
of variance reduction techniques therefore rests on striking a balance between efficiency,
and ease of implementation.

On one end of the spectrum, the simplest tool is antithetic sampling, as it requires
no knowledge of the option whatsoever, and, as the rule suggests, generally offers lower
efficiencies than the two others. Our results show that this intuition applies to our setting
in which antithetic sampling has the lowest efficiencies. More generally, we conjecture that
the efficiency of antithetic sampling in the context of LSM is subdued in comparison to an
European option estimator. Indeed, the efficiency gains permitted by antithetic sampling
are larger as the correlation between antithetically simulated option payoffs becomes
negative. Supposing that a particular pair of antithetic paths {Sn,j, S̃n,h, j = 0, . . . , J}
is obtained from the normal increments {Zn,−Zn}, respectively, the LSM will estimate
stopping times {kn, k̃n} corresponding to each path in the antithetic pair, and generate a pair
of discounted payoffs {e−rτkn h(Sn,kn), e−rτk̃n h(S̃n,k̃n

)}. The correlation between antithetic
payoffs is necessarily negative when stopping times coincide (i.e., kn = k̃n), as h(·) is a
monotone increasing function in the asset price, and antithetic pairs of asset prices are
negatively correlated at a given time. For European options, all exercise times occur at
maturity (i.e., kn = k̃n = J), and it immediately follows that antithetic sampling necessarily
provides an improvement over the standard Monte Carlo approach. This is not generally
the case for American options, though, because the antithetically estimated stopping times
rarely coincide. Furthermore, if both paths within an antithetic pair are exercised, this will
occur at different times and the discounted payoffs will be more positively correlated than
pairs of paths having exactly one positive payoff. The resulting effect is a weaker overall
correlation, and a subdued efficiency of antithetic sampling.

On the other end of the spectrum, control variates are the most efficient across all
option properties, and, as expected, require extensive knowledge about the characteristics
of the option. Our experiments consider an ideal case in which the option that serves as
a control variate can be valued easily, and replicates the American option payoff exactly
at maturity.5 These ideal control variates are nearly perfectly correlated with the option
values, yielding very large efficiencies across all levels of maturity, asset volatility, and
moneyness. In essence, the efficiency of control variates rests on the knowledge of the
price of “nearby” options. However, it is worth noting that the implementation of control
variates is more challenging and more computationally taxing than the other variance
reduction techniques we consider. In particular, at every time step, the optimal control
variates method proposed by Rasmussen (2005) requires one to compute a cross-section
of European option prices. Moreover, the large efficiency gains permitted by control
variates largely depend on the optimization of control parameters, which requires one
to perform three additional regressions at every step to estimate the correlation between
control variates and estimated payoffs.

In the middle of the spectrum, we can place our implementation of importance sam-
pling with a uniform change of drift. This simple parameterization of the importance
probability measure uses only limited knowledge of the option characteristics and leads
therefore to modest efficiency gains. This variance reduction technique depends on the
optimization of the drift parameter, and an ill-chosen drift may very well lead to the
estimator having larger variance. If we decided to optimize the importance measure over
a larger parametric space (e.g., if we decided to optimize for the drift and the volatility
jointly), further gains in efficiency may be obtained, and perhaps an optimal implementa-
tion of importance sampling would outperform control variates. However, as discussed
in Appendix A.3, the optimization of a drift term is already challenging task, and further-
more, as detailed in Appendix A.2, the optimization is a delicate process when importance
sampling is combined with other variance reduction techniques. That being said, the opti-
mization of importance probability measures with more general parameterizations is still
an interesting problem for American option pricing, but one we leave for future research.6
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4. Conclusions

Efficient pricing of American options remains an active area of research. Among the
many numerical methods that exist, regression based simulation methods have become
popular due to their flexibility. However, as is the case with other Monte Carlo based
methods they are numerically costly and reducing the variance of such methods is therefore
important. This paper conducts a thorough study of the effect of using various standard
variance reduction methods and combinations thereof for a sample of call and (symmetric)
put options whose solutions coincide.

Our results first show that the efficiency gains from variance reduction techniques are
different for call and put options, and methods that involve control variates work the best.
Moreover, any combination of variance reduction methods that include control variates
works better for the (symmetric) put option than for the corresponding call option. Finally,
since symmetric pricing already offers some variance reduction, our results show that one
may obtain reductions in the standard deviation by a factor of more than 20 of a call option
when combining control variates with symmetric pricing.

The improvement is largest for long maturity options on high volatility assets. Our
suggested approach is therefore of particular relevance to the problem of valuing real
options, as they typically take the form of deep OTM, long maturity call options on volatile
assets. In various sectors, the valuation of real options is of paramount importance for
the financial flexibility of the firm, because development projects can be extremely costly,
have very long maturities, and the resulting cashflows are difficult to predict. Indeed, in
the energy sector, for instance, the proper management of such options adds tremendous
value to the firms operations. Because our proposed method is limited to cases where the
symmetry property holds, the applicability of the symmetric pricing to real option pricing
is left for future research. Extensions to multiple exercise options and alternative stochastic
processes where symmetry applies is also left for future work.

Although our general recommendation is to use control variates and symmetric
pricing when pricing call options, there is some potential for improving efficiency further
for high volatility options by combining this with antithetic and importance sampling.
In this case there does not appear to be any offsetting effects of the variance reduction
techniques, though implementing the combined techniques is much more challenging.
We also leave the question of whether our recommended approach is “optimal” when
considering the trade off between computational costs and precision for future research.

Author Contributions: Conceptualization, F.-M.B., R.M.R. and L.S.; data curation, F.-M.B. and R.M.R.;
formal analysis, F.-M.B. and R.M.R.; funding acquisition, F.-M.B. and R.M.R.; project administration,
L.S.; supervision, L.S. All authors have read and agreed to the published version of the manuscript.

Funding: F.-M.B. thanks the University of Western Ontario and OGS for financial support. R.M.R.
thanks NSERC and Wilfrid Laurier University for financial support. L.S. thanks NSERC for financial
support. This work was supported by the Research Support Fund.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: The authors would like to thank three anonymous referees for valuable com-
ments and SHARCNET for providing computational resources.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Variance Reduction for American Option Prices

This appendix first introduces the three variance reduction methods we consider
in this paper. Then it provides a discussion of some numerical issues that arises when
implementing these techniques. Finally, it provides some evidence on the challenge that
arises when choosing the optimal importance sampling measure when combining this
variance reduction technique with other techniques, in particular.
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Appendix A.1. Variance Reduction Techniques

Let ĝ(Zn) be the path-n discounted payoff of an American option resulting from an
approximate solution to the dynamic program. The sample size-N crude estimator of the
American option is then

V̄(N) = N−1
N

∑
n=1

ĝ(Zn), (A1)

where the sample paths are generated with independent random normal increments

Zn = {zn,1, . . . , zn,J}, where zn,j
I ID∼ N (0, 1) : n = 1, . . . , N; j = 1, . . . , J. Antithetic sam-

pling, control variates, and importance sampling are widely used to improve on such
estimators. We restrict our focus to these three techniques because they require no ad-
ditional simulated paths. In this way, the estimated exercise strategies are derived from
similar samples, allowing for a fair comparison of the efficiency of each technique. Other
variance reduction techniques that are not examined here include latin hypercube sampling
(Broadie et al. 1997), local policy enhancement (Broadie and Cao 2008), and low discrep-
ancy sequences (Lemieux and La 2005). Initial state dispersion (Rasmussen 2005) may also
indirectly function as a variance reduction technique.

The idea behind antithetic sampling is that one can construct a new estimator by
combining ĝ(Zn) and ĝ(−Zn), the latter of which is based on the antithetic sample of
random variates. For a fair assessment of the efficiency of antithetic sampling, we say
that an antithetic estimator with N sample paths is the average of N/2 antithetic pairs of
regular estimators such that

V̄(N)
A = N−1

N
2

∑
n=1

(ĝ(Zn) + ĝ(−Zn)). (A2)

Antithetic sampling was used with the LSM method in the original paper by Longstaff and
Schwartz (2001).

The idea behind control variates is instead to correct (at least partially) for the sample
variance by using an available unbiased estimator f̂N = N−1 ∑N

n=1 f̂ (Zn) of a known
quantity f . Specifically, a controlled estimator is obtained from

V̄(N)
C = N−1

N

∑
n=1

(
ĝ(Zn) + θ

(
f̂ (Zn)− f

))
, (A3)

where θ is the control coefficient. A natural candidate for a control variate is the price of the
corresponding European price or the price of a derivative when using simpler dynamics.
Control variates was used with the LSM method as early as in Tian and Burrage (2002).

The idea behind importance sampling is to adjust the paths in such a way that more of
them have non-zero payoffs and therefore contain information about the value of the option.
In the simplest possible implementation a drift term is added to the normal increments
by posing Z̃n ≡ {zn,1 +

√
∆tλ, . . . , zn,J +

√
∆tλ}. Parameterizing the drifted probability

measure as Pλ, the importance sampling estimator is then given by

V̄(N)
I = N−1

N

∑
n=1

ĝ(Z̃n)
dP

dPλ
(Sn,τ(n)), (A4)

where the last term is the likelihood ratio. Thus, pathwise discounted cashflows are
first computed with paths simulated under Pλ and subsequently multiplied with the
corresponding likelihood ratio. Importance sampling was used with the LSM method as
early as in Moreni (2003).
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Appendix A.2. Implementation Issues

Having provided intuition for the different variance reduction techniques used in
this paper, we now highlight some numerical issues which may arise when implementing
(combinations of) variance reduction techniques in a dynamic programming context. We
call attention to three issues: (i) the estimation of an exercise rule, (ii) the selection of
optimal control variates and (iii) the (automated) choice of an importance measure used
for importance sampling.

First, when a variance reduction technique modifies the simulated sample paths,
as is the case with antithetic and importance sampling, it impacts the exercise rule ap-
proximation and possibly the bias of an LSM estimator, whereas in a simple Monte Carlo
integration problem (e.g., with a known exercise strategy), the bias remains unchanged. The
approximation of an exercise rule is a source of LSM estimator bias and variance, and since
OLS assumptions of regressor independence are clearly violated with antithetic sampling,
this impacts the estimated continuation values and hence exercise decisions. Antithetic
sampling does not significantly change the bias when the sample size is sufficiently large
(100,000 simulated paths), but for smaller sample sizes inadequate OLS estimates may lead
to a poor exercise strategy, resulting in inordinately large negative bias. The problem when
using importance sampling is that the optimal stopping time strategy determined under
the nominal measure is applied to paths simulated under the importance density which
may lead to negatively biased results. Note that in our simple setting a single simulation
procedure is sufficient to obtain sample paths under both measures, because cross-sections
of asset paths are co-linear, however importance sampling may lead to higher memory
requirements if two sets of simulated paths need to be stored.

Second, when implementing control variates a proper control has to be chosen. An
obvious control to use is the equivalent European price. However, as demonstrated by
Rasmussen (2005) a more effective choice of control variates is the European option price
sampled pathwise at the exercise time of the American option. Specifically, if the path-n
LSM-estimated stopping time is τ(n), the path-n control variate used is the discounted
value of a European option with maturity T− τ(n) and initial asset price Sτ(n). Thus, we set
f̂ (Zn) = e−rτ(n)E[e−r(T−τ(n))h(ST) | Gτ(n)] and f = E[e−rTh(ST) | G0], which is the value
of a European option with maturity T and initial asset price S0. This technique was first
discussed in the context of a stochastic mesh approach (Broadie and Glasserman 2004) and
allows remarkable improvements for Monte Carlo variance reduction. Note that control
variates do not affect the determination of an exercise rule, as they are only computed at
the end of the backward recursion, once the stopping times are estimated.

Third, with no prior knowledge of the true option price, choosing the optimal λ is
not feasible and instead we must rely on an approximation. A common approach is to
determine the optimal change of measure for a European option and apply it to the corre-
sponding American option, as discussed by Moreni (2003). The benefit is that optimization
procedures for European options can be carried out very quickly with Robbins-Monro algo-
rithms (see for instance Arouna 2004), with virtually no overhead. In our experiments, we
follow Lemieux and La (2005) and implement the saddle point approximation approach of
Glasserman et al. (1999). With this approach, the drift λ is easily computed numerically as

λ =


argmax

x:x>ξ

log
[

S0 exp
((

r− q− σ2

2

)
T + σ

√
Tx
)
− K

]
− x2

2
for calls

argmax
x:x<ξ

log
[

K− S0 exp
((

r− q− σ2

2

)
T + σ

√
Tx
)]
− x2

2
for puts,

(A5)

where ξ =
log
(

K
S0

)
−
(

r−q− σ2
2

)
T

σ
√

T
. Other methods proposed to optimize the drift include

Su and Fu (2000); Vázquez-Abad and Dufresne (1998), and Morales (2006) who employ
gradient-based minimization methods to directly optimize the drift. Because the variance
of importance sampling estimators is convex with respect to the drift parameter under
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suitable conditions, numerical convergence is achieved fairly quickly and reliable drift
estimates can be obtained. However, as we show in the following section this approach may
not be appropriate when importance sampling is combined with other variance reduction
techniques.

Appendix A.3. Selecting the Optimal Importance Density

The selection of an importance density is a delicate problem where a simple sub-
optimal approach is often preferred to an optimal one requiring a hefty implementation
effort. In our implementation, we simply optimize the importance density for the European
case with a uniform drift of the normal increments, keeping the variance unchanged. An
important question is then: how much efficiency are we giving up with this suboptimal
European solution in comparison to the optimal density for an American option? To
answer this question, we study the variance of I-LSM and AI-LSM estimators with respect
to the drift of the Brownian increments. As an example, we consider a deep OTM, long
maturity, high volatility American call option with S0 = 40, K = 44, σ = 0.4, r = q = 0.06,
T = 2, J = 50T. For a range of values of λ, M = 50 replications of the LSM are imple-
mented each with N = 100,000 paths and a cubic approximation of the continuation value
(i.e., L = 3). Figures A1 and A2 shows the relative variance as a function of the drift and
the estimated prices with 95% confidence intervals.

From Figure A1 the main takeaway is that for stand-alone importance sampling,
the Glasserman et al. (1999) (GHS) approximation of the optimal European drift is indeed
very close to the American optimum. Moreover, the GHS drift yields gains in efficiency
that are similar to what we would otherwise obtain with the true optimum. In such cases,
we confirm that it is not worthwhile to undertake computationally taxing gradient descent
schemes to reach the true optimum. From Figure A2, however, the main takeaway is
that the convexity of the variance function is not preserved when importance sampling is
coupled with antithetic sampling. This is very important for practitioners who intend to
compute a gradient-based type of solution, because a preliminary search of the optimization
surface is warranted, thereby adding to the optimizing burden. From Figure A2 we see that
the GHS drift performs slightly worse than the true optimum, but the variance reduction
is still substantial. Note that the optimal drift value will also change when importance
sampling is combined with control variates.

Finally, one should also note that gradient-based solutions are subject to a number
of numerical defects. First, the optimum is sensitive to the number of simulation paths,
particularly for small samples sizes. A large number of simulation paths is then required to
obtain stable solutions that match those in the literature. Second, numerical convergence
issues can arise if the gradient descent does not lead to solutions in a certain neighbor-
hood of the optimum. For instance, if the drift leads all paths to be OTM, the pathwise
cashflows will all be zero and the variance is zero. Similarly, if the drift leads all paths
to be deep ITM, the likelihood ratio will converge to zero, and the weighted pathwise
payoffs will be infinitesimally small. Of course, these issues are easily identifiable as they
lead to inordinately biased prices. Still, meticulous care is advised with such delicate algo-
rithms (Moreni 2003), and they might not be useful for valuating a large panel of options in
an automated procedure. All things considered, we use the approximate optimal European
drift of Glasserman et al. (1999) due to its ease of implementation and realized efficiency.



J. Risk Financial Manag. 2021, 14, 504 18 of 21

Figure A1. Variance and price estimates of the I-LSM estimator as a function of λ. Results for
the American call option appear in red, and the results for European call price estimators with
importance sampling appear in green. For each value of λ, M = 50 replications of the estimators are
implemented with N = 100,000 paths. LSM and I-LSM price estimates use a cubic approximation of
the continuation value (i.e., L = 3). The left panel shows the ratio of estimator variances compared to
an estimator under the nominal probability measure (i.e., λ = 0). The optimal values of λ selected by
gradient-descent, and that selected by the GHS approach appear as dotted, and full vertical lines,
respectively. The right panel shows price estimate with 95% confidence intervals.

Figure A2. Variance and price estimates of the AI-LSM estimator as a function of λ. Results for the
American call option appear in red, and the results for European call price estimators that combine
antithetic variates and importance sampling appear in green. For each value of λ, M = 50 replications
of the estimators are implemented with N = 100,000 paths. LSM and AI-LSM price estimates use a
cubic approximation of the continuation value (i.e., L = 3). The left panel shows the ratio of estimator
variances compared to an estimator under the nominal probability measure (i.e., λ = 0). The optimal
values of λ selected by gradient-descent for AI- and I-LSM estimators, and that selected by the GHS
approach appear as dashed, dotted, and full vertical lines, respectively. The right panel shows price
estimate with 95% confidence intervals.
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Appendix B. Additional Figures

This appendix contains additional figures complementing those presented in the body
of the paper.

(a) C-LSM, T = 1 (b) AC-LSM, T = 1 (c) CI-LSM, T = 1 (d) ACI-LSM, T = 1

(e) C-LSM, T = 2 (f) AC-LSM, T = 2 (g) CI-LSM, T = 2 (h) ACI-SLSM, T = 2

Figure A3. Efficiency for call option pricing with (combinations of) control variates. Results are calculated from
M = 1000 replications of LSM configurations with N = 100,000 paths and a cubic approximation (L = 3) of the decision rule.
The first column illustrates efficiencies of C-LSM call prices, the second column for AC-LSM, the third column for CI-LSM,
and the fourth column for ACI-LSM. The top and bottom rows present results for one- and two-year options, respectively.

(a) C-LSM, T = 1 (b) AC-LSM, T = 1 (c) CI-LSM, T = 1 (d) ACI-LSM, T = 1

(e) C-LSM, T = 2 (f) AC-LSM, T = 2 (g) CI-LSM, T = 2 (h) ACI-LSM, T = 2

Figure A4. Efficiency for put option pricing with (combinations of) control variates. Results are calculated from
M = 1000 replications of LSM configurations with N = 100,000 paths and a cubic approximation (L = 3) of the decision rule.
The first column illustrates efficiencies of C-LSM put prices, the second column for AC-LSM, the third column for CI-LSM,
and the fourth column for ACI-LSM. The top and bottom rows present results for one- and two-year options, respectively.
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Notes
1 For additional references and examples see Chapter 8 of Glasserman (2003).
2 In our implementation we simply set ψ`(Sn,j) = (Sn,j/K)` such that the continuation value is the fitted value of a polynomial

regression of order L < ∞. This approach has been shown to be reliable with the LSM, though other orthogonal bases like
Laguerre, Legendre, Hermite, or Chebyshev polynomials may be considered as well. For more details about orthogonal bases,
refer to Abramowitz and Stegun (1948).

3 Appendix A discusses the variance reduction techniques and their implementation for American options.
4 The out-of-sample plots corresponding to Figure 4 that shows this are available on request.
5 When the price of a European option replicating the payoff of the American option at maturity is not readily available, one has to

resort to using different European options with simpler characteristics. For instance, there is no closed-form formula for the
price of an arithmetic Asian option, so the price of a geometric Asian option may be used as a control variate. Another case is if
the computation of a European option prices is not feasible for a given underlying diffusion process, where the European price
assuming a different process can be used. Although in both cases the European option does not replicate the American option’s
payoff at maturity, their values are correlated enough to serve as adequate control variates.

6 Other interesting sampling strategies for European option pricing could potentially be extended to the LSM algorithm. Chapter 4
of Glasserman (2003) presents several cases of European-style derivatives with rare and path-dependent payoffs where the
application of importance sampling and stratification techniques prove extremely efficient. For instance, in the case of a deep
OTM knock-in option, the exponential change of measure of the option can be dynamically adjusted such that asset prices are first
directed toward the barrier, and once the barrier has been hit, a new change of measure directs asset prices toward the money.
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