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Abstract: Rising concerns over climate change have increased investors’ and policymakers’ interests
in environmentally friendly investments, which have led to the rapid expansion of the green equity
market recently. Previous studies have focused on analyzing the green equity market at the aggregate
level, thereby overlooking the heterogeneity across green equity sub-sectors. This paper contributes
to the literature by investigating how interdependence between green equity markets and other
financial assets varies across regions, market conditions, and investment horizons. To this end, the
paper employs the recently developed cross-quantilogram framework, which measures the cross-
quantile dependence across time series without any moment condition requirement. The results
show that within the green equity market, movements in the U.S. market can predict movements in
the Asian and European markets during all market conditions. In contrast, the Asian and European
green equity markets only predict movements in the U.S. market during bearish periods. The paper
also finds that regional green equity markets respond differently to movements in other financial
assets, such as energy commodity and general stock returns. In addition, the interdependence among
regional green equity and other assets varies across market conditions and investment horizons.
These results have important implications for environmentally friendly investors and policymakers.

Keywords: green equity market; internal and external spillovers; cross-quantile dependence

1. Introduction

The transition towards a low-carbon economy requires a substantial level of financial
flows to environmentally friendly sectors. Climate Finance Leadership Initiative (2019)
estimates that clean energy investments need to increase by a factor of six by 2050 compared
to the 2015 level in order to keep global warming within the 1.5 ◦C limit. To close this
financing gap, a potential channel is to increase investors’ interests in environmentally
friendly financial markets. Since 2004, this market has experienced substantial growth.
According to Bloomberg New Energy Finance (2019), annual new investments in renewable
energy have grown from 45.28 billion USD in 2004 to 288.48 billion USD in 2018. However,
these investments have not been equally divided across regions. Between 2004 and 2014,
Europe was the leading destination of new clean energy investments. However, since 2014,
Asia has accounted for the largest share of new clean energy investments (Figure 1).

The rapid expansion of the green equity market highlights the relevance of under-
standing how each sub-sector of this market responds to movements in other financial
markets. This would allow investors to identify the appropriate diversification strategies
for different types of green equity. From a policy perspective, studying the heterogeneous
behavior of green equity sub-sectors is also relevant to design private incentives to increase
the financial flows towards low-carbon activity. This, in turn, will help achieve the goals
established by the Paris Climate Agreement. Therefore, the objective of this paper is to
investigate the heterogeneous interdependence of regional green equity markets among
themselves and with other financial markets. Specifically, this paper seeks to answer
the following questions. First, how integrated are regional green equity markets under
normal and extreme market conditions? Second, how do the relationships between green
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equity and other asset classes vary across regions, market conditions and investment
horizons? Third, what are the implications of these regional variations for investors and
policymakers?

The paper proceeds as follows. Section 2 provides a review of the related literature. Section
3 and 4 describe the data set and empirical methodology. Sections 5 presents the empirical
results. Finally, section 6 discusses the implications of the results and concludes.

Figure 1: New clean energy investments (Billion USD), 2004-2018

This figure presents the annual new clean energy investment across regions between 2004 and 2018. Source:
Bloomberg.

2 Related literature

An extensive literature has focused on documenting the relationship between renewable
energy stock and other asset classes, such as fossil fuel prices and general stock prices.2 This
literature employs a diverse set of empirical approaches. Using VAR-based models, Henriques
& Sadorsky (2008); Kumar et al. (2012); Managi & Okimoto (2013) find a negative impact
of oil price on clean energy stock returns. Bohl et al. (2015); Bondia et al. (2016) employ
asset pricing models to analyze the impact of oil prices, technology stock prices, and interest
rates on clean energy stock. Other studies employ dynamic conditional correlation models to
study the time-varying relationship between clean energy stock and other financial markets.
For example, Sadorsky (2012) examines the time-varying relationship between clean energy
stock, technology stock and oil prices and finds that clean energy stock is under larger
influences from technology stock than oil prices. Ahmad et al. (2018) document a negative
dependence between clean energy stock, bond prices and market uncertainties. This paper
also documents a positive dependence between clean energy stock, oil prices and carbon

2This literature belongs to the broader literature on financial market integration (see, for example, Arouri
et al. (2013); Boubaker & Jouini (2014); Slimane et al. (2020)).
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Figure 1. New clean energy investments (Billion USD), 2004–2018. This figure presents the annual
new clean energy investment across regions between 2004 and 2018. Source: Bloomberg.

This paper contributes to the literature in several ways. First, this paper is the first
empirical study to examine the relationship between green equity and other assets at
the regional levels. Previous studies on green financial markets have been conducted
at an aggregate level. Specifically, most research has employed one composite index to
measure the performance of the global green financial market.1 Such an approach could
mask the heterogeneity within the green equity market, which is important for portfolio
diversification and risk management. Second, to the author’s knowledge, no study to
date has explored the internal dependence between sub-sectors of the green equity market
and the external dependence between these sub-sectors and other financial assets. As the
green equity market has expanded in both scope and size in recent years, it is essential to
explore each green equity sub-sector’s heterogeneous behavior. This will be helpful for
environmentally friendly investors to identify sector-specific diversification strategies.

Methodologically, this study separates the green equity market into three regions,
specifically the U.S., Europe and Asia. Next, the NASDAQ OMX Green Economy U.S.,
Europe and Asia stock indexes are used as proxies for the financial performance of regional
green equity markets. Next, the cross-quantilogram (CQ) framework of Han et al. (2016)
is employed to identify the dependence between green equity markets and other assets.
Compared to other approaches, this technique measures the directional predictability from
one time series to another across quantiles of each variable’s distribution. Thus, it allows
the quantification of directional spillovers among financial assets across a wide range
of market conditions (bearish, normal, bullish). Second, this approach accommodates
very long lags, therefore, it is able to quantify the strength of directional spillovers across
investment horizons. Finally, the CQs are based on quantile hits and thus do not depend
on any moment condition. Therefore, it can accommodate time series with heavy tails, a
characteristic commonly found in financial data. In summary, the CQ approach allows the
simultaneous quantification of the strength, direction, and duration of spillovers across time
series. This is in line with the objective of the paper, which is to study the heterogeneous
interdependence between green equity markets and other assets across regions, market
conditions and investment horizons.

The empirical evidence suggests heterogeneous integration among the green equity
markets and other assets across regions, market conditions and time horizons. Within

1 For example, Dawar et al. (2020); Nasreen et al. (2020); Uddin et al. (2019).
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the green equity market, the U.S. is the dominant shock transmitter while Asia is the
dominant shock receiver. This suggests the significant role of the U.S. green equity market
in determining the overall green equity market performance. Regarding the dependence
between green equity and other asset classes, this paper finds that the energy commodity
market and the overall stock market exhibit more significant influences on the Asian
green equity market than on other regional green equity markets. These results confirm
the relevance of studying the green equity market at a disaggregate level. Specifically,
investors will need to adjust their risk management and diversification strategies for
their green equity investments in different regions. Finally, the empirical results provide
useful insights for policymakers who are interested in increasing financial investments in
low-carbon economic activities.

The paper proceeds as follows. Section 2 provides a review of the related literature.
Sections 3 and 4 describe the data set and empirical methodology. Section 5 presents the
empirical results. Finally, Section 6 discusses the implications of the results and concludes.

2. Related Literature

Extensive literature has focused on documenting the relationship between renewable
energy stock and other asset classes, such as fossil fuel prices and general stock prices.2

This literature employs a diverse set of empirical approaches. Using VAR-based models,
Henriques and Sadorsky (2008); Kumar et al. (2012); Managi and Okimoto (2013) find a
negative impact of oil price on clean energy stock returns. Bohl et al. (2015); Bondia et al.
(2016) employ asset pricing models to analyze the impact of oil prices, technology stock
prices, and interest rates on clean energy stock. Other studies employ dynamic conditional
correlation models to study the time-varying relationship between clean energy stock
and other financial markets. For example, Sadorsky (2012) examines the time-varying
relationship between clean energy stock, technology stock and oil prices and finds that
clean energy stock is under larger influences from technology stock than oil prices. Ahmad
et al. (2018) document a negative dependence between clean energy stock, bond prices and
market uncertainties. This paper also documents a positive dependence between clean
energy stock, oil prices and carbon prices. Elie et al. (2019) assess the role of gold and crude
oil as safe havens for clean energy stock indexes and find that gold and crude oil are at
most weak safe havens for clean energy stock. Xia et al. (2019) and Pham (2019) apply
variance decomposition to a VAR model of renewable energy stock and fossil fuel prices
and find a varying impact of fossil fuel prices on renewable energy stock. Song et al. (2019)
analyze the linkage between renewable energy stock prices, fossil fuel prices, and investor
sentiment. Kocaarslan and Soytas (2019) assess the role of U.S. dollar reserve currency on
the crude oil–clean energy relationship. Kyritsis and Serletis (2019) find an insignificant and
asymmetric relationship between crude oil prices and renewable energy stock. Dutta et al.
(2020) study the hedging effectiveness of commodity volatility indexes and clean energy
stocks and find a negative correlation between commodity volatilities and clean energy
stock. Several other studies use time-frequency-based approaches to study how the oil
price–clean energy stock relationship changes across frequencies. Using wavelet analyses,
Reboredo et al. (2017) find evidence of causality from renewable energy stock to oil prices
across all time horizons and mixed evidence of causality in the opposite direction. Ferrer
et al. (2018) applies spectral decomposition to a VAR model and find that the dependence
between clean energy stock and other financial assets is stronger in the short run than in
the long run. Nasreen et al. (2020) use wavelets to study the spillovers between oil prices
and clean energy and technology stocks.

The studies discussed above mostly rely on empirical methods that capture the average
dependence between environmentally friendly stock and other assets in the middle of
the return distributions, i.e., when these markets are in normal conditions. Few studies

2 This literature belongs to the broader literature on financial market integration (see, for example, Arouri et al. (2013); Boubaker and Jouini (2014);
Slimane et al. (2020)).
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have attempted to document the tail dependence between clean energy stock and asset
prices. For example, Reboredo (2015) uses copulas to analyze the systemic risk and tail
dependence between oil and renewable energy stock prices. Uddin et al. (2019) study
the cross-quantile dependence between clean energy stock and oil price, aggregate stock
price, exchange rate, and gold price. Dawar et al. (2020) employ quantile regressions and
find decreasing dependence between clean energy stock returns and crude oil returns.
Yahya et al. (2020) study the cross-quantile dependence between clean energy stock and
non-ferrous metal prices and find a time-varying and asymmetric dependence between
these variables.

In this rich literature, no consensus has been reached on the relationship between the
renewable energy stock market and other financial markets. One possible explanation is
that most previous studies have focused on analyzing this nexus at the aggregate level
by using stock indexes that represent the global green equity market. By doing this, the
literature has overlooked the heterogeneous behavior of each green equity sub-sector. This
paper contributes to the literature by analyzing how the interdependence between green
equity markets and other financial assets varies across regions, market conditions, and
investment horizons.

3. Data and Preliminary Analyses
3.1. Data Sources

To investigate the heterogeneous interdependence between regional green equity
and other assets, the data set in this study includes regional green equity indexes, energy
commodity indexes, general and technology stock indexes, and uncertainty indexes. The
sample period is from 10 November 2010 to 08 July 2019 and all the data are collected from
Bloomberg Terminal. The sample period is chosen based on the availability of data.

First, stock indexes from the NASDAQ OMX Green Economy Index Family are used
to measure regional green equity markets’ financial performance. Specifically, this paper
considers the NASDAQ OMX Green Economy U.S. Index (GEUS), the NASDAQ OMX
Green Economy Europe Index (GEEU) and the NASDAQ OMX Green Economy Asia
Index (GEASIA) as proxies for the performance of the U.S., European and Asian green
equity markets. These indexes include companies domiciled in the U.S., Europe and
Asia across the spectrum of industries closely related to the economic model around
sustainable development.

In addition to the regional green equity indexes, the data set includes indexes to
track other financial assets’ performance. Specifically, this paper focuses on the energy
commodity market, the general stock market, and the technology stock market. While
the relationship between these markets and the global green equity market has been
documented in the literature, previous studies have not explored how this relationship
varies across regional green equity markets. In this paper, the energy commodity market is
proxied by the S&P GSCI Energy, Crude Oil and Natural Gas Indexes. These indexes track
the performance of the global energy commodity market, thereby providing a common
benchmark to compare the dependence structure between the regional green equity and
energy commodity markets. The general stock market is proxied by the S&P Global BMI
Index, which includes more than 11,000 stocks from developed and developing countries.
The technology stock market is proxied by the NYSE Arca Tech 100 (PSE) Index.

3.2. Preliminary Analyses

Figure 2 plots the daily values of the variables described above. All three regional
green equity indexes experience a decline during the oil price collapse of 2014–2016,
however, the GEUS and GEEU indexes seem to recover more quickly than the GEASIA
index. The S&P GSCI Energy index co-moves with the S&P GSCI Oil index, where both
indexes exhibit a sharp decline during the oil price collapse of 2014–2016. The S&P GSCI
Natural Gas index reaches its minimums in 2012 and 2016, while peaking in 2015. Higher
production output and lower demand due to warmer temperatures are the main reasons
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for low natural gas prices in 2012 and 2016, while extreme cold weather explains the spike
in natural gas prices in 2015 U.S. Energy Information Administration (2013, 2017). The
PSE and S&P Global BMI indexes co-move, and both indexes experience a decline between
June 2015 and June 2016. This period corresponds to the 2015–2016 stock market selloff,
where stock prices decline globally.

In subsequent analyses, the author employs daily returns, which are obtained by
log-differencing the index values. Table 1 provides the summary statistics of the index
returns. Among the three regional green equity indexes, the GEUS index experiences
the highest average returns, while the GEASIA market experiences the lowest average
returns during the sample period. All three energy commodity indexes experience negative
average returns during the sampling period, potentially because of the 2014–2016 oil price
collapse and the lower natural gas prices in response to lower demand, as explained above.
Compared to the green equity and stock market indexes, the energy commodity indexes
have higher standard deviations, which is expected because of the large movements in
the oil and natural gas markets during our sample period (Figure 2). All series have
negative skewness, except for the uncertainty measures (i.e., the VIX, OVX, and EPU
indexes). All variables have kurtosis greater than 4, which implies fatter tails than a normal
distribution. The Ljung–Box statistics on the returns and squared returns suggest that
all series experience serial correlation and volatility clustering and the Jarque–Bera tests
indicate that the series do not follow a normal distribution. Finally, the ADF unit root tests
indicate that all return series are stationary.

Table 1. Summary statistics.

Mean Median Max Min Std.Dev. Skewness Kurtosis Jarque-
Bera ADF Q(30) Q(30)2 Obs.

Green equity:
GEUS 0.035 0.088 6.553 −7.396 1.047 −0.369 * 7.605 * 1975.0 * −14.477 * 60.0 * 2025.0 * 2179
GEEU 0.013 0.059 5.647 −8.884 1.175 −0.470 * 7.783 * 2157.4 * −15.107 * 68.3 * 1513.9 * 2179

GEASIA −0.001 0.036 4.728 −10.058 0.988 −0.811 * 10.331 * 5117.6 * −12.672 * 41.84 78.5 * 2179
Energy commodity:
Energy −0.017 0.060 8.850 −9.347 1.717 −0.122 * 5.966 * 804.1 * −13.557 * 42.96 814.1 * 2179

OIL −0.019 0.067 10.150 −10.796 2.034 −0.0745 5.775 * 701.1 * −13.545 * 50.6 * 955.1 * 2179
GAS −0.026 −0.025 16.643 −19.183 2.574 −0.07454 6.447 * 1080.7 * −14.501 * 61.3 * 798.6 * 2179

Stock market:
PSE 0.054 0.091 7.415 −6.686 1.087 −0.389 * 7.353 * 1775.6 * −14.723 * 46.2 * 978.1 * 2179
BMI 0.023 0.058 4.041 −5.433 0.795 −0.644 * 7.823 * 2262.4 * −14.781 * 117.3 * 1536.9 * 2179

Uncertainty variables:
VIX −0.013 −0.490 76.825 −31.414 7.744 1.140 * 10.331 * 5351.5 * −16.736 * 53.8 * 131.5 * 2179
OVX 0.005 −0.356 42.497 −43.991 4.914 0.951 * 13.236 * 9840.8 * −14.829 * 50.5 * 222.1 * 2179
EPU −0.014 −1.292 321.562 −314.833 50.983 0.08598 5.580 * 606.9 * −20.740 * 424.8 * 254.1 * 2179

This table provides summary statistics of the variables. GEUS, GEEU and GEASIA stand for the NASDAQ OMX Green Economy U.S.,
Europe and Asia indexes. Energy, OIL and GAS stand for the S&P GSCI Energy Commodity, Crude Oil and Natural Gas indexes. PSE and
BMI stand for the NYSE Arca Tech 100 and the S&P Global BMI indexes. * indicates a 5% significance level.
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Figure 2: Time series plot of daily index values

The figure plots the daily closing prices of the indexes under study. GEUS, GEEU and GEASIA stand for
the NASDAQ OMX Green Economy U.S., Europe and Asia indexes. Energy, OIL and GAS stand for the
S&P GSCI Energy Commodity, Crude Oil and Natural Gas indexes. PSE and BMI stand for the NYSE
Arca Tech 100 and the S&P Global BMI indexes.

7

Figure 2. Time series plot of daily index values. The figure plots the daily closing prices of the indexes under study. GEUS,
GEEU and GEASIA stand for the NASDAQ OMX Green Economy U.S., Europe and Asia indexes. Energy, OIL and GAS
stand for the S&P GSCI Energy Commodity, Crude Oil and Natural Gas indexes. PSE and BMI stand for the NYSE Arca
Tech 100 and the S&P Global BMI indexes.

4. Empirical Methodology

To examine the interdependence between regional green equity markets and other
financial assets, this paper employs the cross-quantilogram (CQ) approach by Han et al. (2016).
Compared to other methods for directional spillovers, the CQ has several advantages. First,
this technique measures the directional predictability from one time series to another across
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quantiles of each variable’s distribution. Thus, it allows quantifying directional spillovers
among financial assets across a wide range of market conditions (bearish, normal, bullish).
Second, compared to traditional regression-type models, this approach accommodates
very long lags. Therefore, it can quantify the strength of directional spillovers across the
short-, medium- and long-term investment horizons. Finally, the CQs are based on quantile
hits and thus do not depend on any moment condition. Therefore, it can accommodate
time series with heavy tails, a characteristic commonly found in financial data. The key
requirement for the CQ method is that the variables are stationary. This section provides
an overview of the CQ method.

Let yit be stationary time series, where index i represents stock returns and t represents
time (i = 1, 2, t = 1, . . . , T). Let Fi(·) and fi(·) be the distribution and density functions
of yit, i = 1, 2. Let qit(τi) = inf{v : Fi(v) ≥ τi} be the corresponding quantile function for
τi ∈ (0, 1).

The cross-quantilogram between two events {y1t ≤ q1t(τ1)} and {y2t−k ≤ q2t−k(τ2)},
where k denotes the lag length (k = ±1,±2, . . . ), for a pair of τ1 and τ2 is defined as:

ρτ(k) =
E[ψτ1(y1t − q1t(τ1))ψτ2(y2t−k − q2t−k(τ2))]√

E[ψ2
τ1(y1t − q1t(τ1))]

√
E[ψ2

τ2(y2t−k − q2t−k(τ2))]
(1)

where ψa(u) = 1[u < 0]− a is the quantile-hit process. The cross-quantilogram captures
serial dependence between two series at different quantile levels and is invariant to any
strictly monotonic transformation applied to both series, such as the logarithmic trans-
formation. In the case of two events, {y1t ≤ q1t(τ1)} and {y2t−k ≤ q2t−k(τ2)}, ρτ(k) = 0
indicates no cross dependence or directional predictability from event {y2t−k ≤ q2t−k(τ2)}
to event {y1t ≤ q1t(τ1)}.

To test the null hypothesis H0 : ρτ(1) = · · · = ρτ(p) = 0 against the alternative
hypothesis that ρτ(k) 6= 0 for some k, Han et al. (2016) suggests the following Ljung–Box
type test statistic:

Q∗τ(p) = T(T + 2)
p

∑
k=1

ρ̂2
τ(k)/(T − k) (2)

where ρ̂τ(k) is the sample cross-quantilogram, which is given as:

ρ̂τ(k) =
∑T

t=k+1 ψτ1(y1t − q̂1t(τ1))ψτ2(y2t−k − q̂2t−k(τ2))√
∑T

t=k+1 ψ2
τ1(y1t − q̂1t(τ1))

√
∑T

t=k+1 ψ2
τ2(y2t−k − q̂2t−k(τ2))

(3)

where q̂it(τi) (i = 1, 2) denote the estimated quantile function for each time series.
Han et al. (2016) proposes using the stationary bootstrap procedure to approximate

the null distribution of the cross-quantilograms and the Q-statistic above, while avoiding
any dependence on the nuisance parameters of the asymptotic distribution. The stationary
bootstrap is a block bootstrap method with blocks of random lengths. Let {Kj}j∈N be a
sequence of iid random variables, which are drawn from a discrete uniform distribution
on {k + 1, . . . , T} and which are independent of the original data and {Lj}j∈N . {Lj}j∈N
is a sequence of iid random block lengths with a geometric distribution. Let BKj ,Lj =

{(yt,k)}
Kj+Lj−1
t=Kj

be the blocks of length Lj starting with the Kjth pair of observations, where

yt,k = [y1t, y2t−k]
T . The stationary bootstrap procedure generates the boostrap samples

{(y∗t,k)}
T
t=k+1, which are then used to estimate the conditional quantile function q̂∗tk(τ) =

[q̂∗1t(τ1), q̂∗2t−k(τ2)]. The cross-quantilogram based on the bootstrapped resample is:

ρ̂∗τ(k) =
∑T

t=k+1 ψτ1(y
∗
1t − q̂∗1t(τ1))ψτ2(y

∗
2t−k − q̂∗2t−k(τ2))√

∑T
t=k+1 ψ2

τ1(y
∗
1t − q̂∗1t(τ1))

√
∑T

t=k+1 ψ2
τ2(y

∗
2t−k − q̂∗2t−k(τ2))

(4)
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In this paper, we consider 1000 bootstrapped estimates of ρ̂∗τ(k) to construct the
confidence intervals for the test statistic in Equation (2).

To control for the effect of other variables on the cross-quantile relationship between
two time series, Han et al. (2016) proposes the partial cross-quantilogram (PCQ). Let
zt = [ψτ3(y3t − q3t(τ3)), . . . , ψτl (ylt − qlt(τl))] be an (l − 2)× 1 vector for l ≥ 3 of control
variables. The correlation matrix of the quantile hit process and its inverse matrix are
defined as:

Rτ̄ = E[ht(τ̄)ht(τ̄)
T ]; Pτ̄ = R−1

τ̄ (5)

where ht(τ̄) = [ψτ1(y1t − q1t(τ1)), . . . , ψτl (ylt − qlt(τl))] be an l × 1 vector of the quantile
hit process. For i, j ∈ [1, .., l], let rτ̄ij and pτ̄ij be the ij-th element of Rτ̄ and Pτ̄ . Note that
the cross-quantilogram is rτ̄12/

√
rτ̄11rτ̄22. The partial cross-quantilogram is defined as:

ρτ̄|z = −
pτ̄12√

pτ̄11 pτ̄22
(6)

ρτ̄|z can be regarded as the cross-quantilogram dependence between y1t and y2t conditional
on the control variables z.

To capture the entire dependence structure between the markets across a wide range of
market conditions and investment horizons, this paper estimates the cross-quantilograms
for 11 quantiles (τ1, τ2 ∈ (0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95))3 and 4 lag lengths:
daily (k = 1), weekly (k = 5), monthly (k = 22) and quarterly (k = 66).4 Thus, for each pair
of variables, this paper estimates 11× 11× 4 = 484 cross-quantilograms, and the statistical
significance of each cross-quantilogram is estimated using 1000 stationary bootstraps.

5. Empirical Results

This section presents the empirical results. Section 5.1 discusses the interdependence
among regional green equity markets. Sections 5.2 and 5.3 present the interdependence
between regional green equity markets and other assets, specifically energy commodity
and general stock markets. As indicated in Section 4, this paper estimates 484 cross-
quantilograms for each pair of variables to capture the entire dependence structure between
the markets. Therefore, the author presents the cross-quantilograms using heat maps. The x-
and y-axes of the heat maps correspond to a specific quantile in each variable’s distributions.
The color of each cell in the heat maps indicates the value of the cross-quantilogram for
a given lag length and pair of quantiles. Specifically, an orange cell indicates a positive
cross-quantilogram, while a blue cell indicates a negative cross-quantilogram. Bolder colors
mean that the cross-quantilograms are closer to 1 in absolute values, which indicates a
stronger spillover between the variables. Any statistically insignificant cross-quantilogram
is set to 0 and is indicated by the color green on the heat maps. The numerical values of the
cross-quantilograms for selected pairs of quantiles are presented in Appendix A.

5.1. Cross-Quantile Dependence Among Green Equity Markets
5.1.1. Main Results

This section discusses the cross-quantile dependence among the U.S., European and
Asian green equity markets. Figure 3 displays the heat maps among regional green
equity markets. Each column of the figure presents the cross-quantilogram directional
predictability for a pair of variables. For example, the column “GEUS→ GEEU” (column
(a)) captures the cross-quantilograms from the GEUS to GEEU index. The lag lengths
considered in the heat maps are indicated on the left-hand side of the figures. In addition
to the heat maps, the numerical cross-quantilogram values between the assets for selected

3 These quantiles capture various conditions in each market. Specifically, the lower quantiles capture an extreme downward movement, while the
upper quantiles indicate an extreme upward movement.

4 These lags capture the dependence between the markets across the short-run, medium-run and long-run investment horizons. The choice of these
lag lengths is consistent with the previous literature (e.g., Ferrer et al. (2018); Uddin et al. (2019)).
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pairs of quantiles are presented in Table A1 of Appendix A. Overall, Figure 3 indicates
heterogeneous integration among regional green equity markets across the time horizons.

Row 1 of Figure 3 summarizes the cross-quantilograms among regional green equity
markets at the short-run investment horizon (k = 1). The heat maps from the GEUS to the
GEEU and GEASIA indexes are mostly orange and tend to be darker across the secondary
diagonals.5 Thus, the U.S. green equity market’s movements can predict movements in
the European and Asian green equity markets the following day. Specifically, a bearish
(bullish) movement in the U.S. green equity market leads to a bearish (bullish) movement
in the European and Asian green equity markets the following day. This indicates the
significance of the U.S. market in the overall green equity market. Specifically, high returns
in the U.S. green equity market send a positive signal to investors, which encourages them
to expand their environmentally friendly investments to other regions.

Another finding from row 1 of Figure 3 is that the cross-quantilogram heat maps from
the GEEU and GEASIA indexes to the GEUS index are orange at the lower-left corners.
This indicates that low returns in the GEEU and GEASIA indexes significantly cause low
returns in the GEUS index the following day. No evidence of spillovers from the GEEU
and GEASIA indexes to the GEUS index is found at the median and higher quantiles, since
other segments of the heat maps are predominantly green. This suggests that within the
green equity market, busts are bi-directional. In other words, a downward movement in
one region tends to lead to a downward movement in all other regions the following day.
In contrast, booms are unidirectional. Specifically, a boom in the U.S. green equity market
leads to a boom in other regional green equity markets the following day. However, a
boom in other regional green equity markets does not necessarily lead to a boom in the
U.S. green equity market in the future.

Figure 3 indicates that the Asian green equity market is the main receiver of shocks
from other markets. Specifically, directional spillovers from both the GEUS and GEEU
indexes to the GEASIA index are positive and significant across all the quantiles, as
indicated by the orange colors in Figure 3c,e. Thus, a boom (bust) in the U.S. and European
green equity markets is likely associated with a boom (bust) in the Asian green equity
market the following day. However, the Asian green equity market exhibits a negligible
impact on its U.S. and European counterparts, as indicated by the heat map’s green colors
in Figure 3d,f. A possible explanation is that compared to other green equity markets, Asian
green equity is relatively new, therefore, they are likely to be under significant influences
from other markets.

Finally, the directional spillovers among the green equity indexes become smaller and
less statistically significant as the lag length increases. This is indicated by the green color’s
dominance in the heat maps for the weekly, monthly, and quarterly lags. In other words,
regional integration within the green equity universe dissipates over time. Thus, a portfolio
that combines green equity investments from various regions may provide diversification
benefits in the long run.

The Table A1 in Appendix A presents the numerical cross-quantilogram values of
selected cells in the heat maps of Figure 3. Specifically, this table presents the cross-
quantilogram values at lag 1 when the markets’ returns are in the same quantiles.6 Thus,
the information in Table A1 corresponds to the cells across the secondary diagonal of the
heat maps at lag 1. According to the table, the cross-quantilograms are the largest from the
GEUS and GEEU indexes to the GEASIA index, followed by the cross-quantilograms from
the GEUS to GEEU index. In contrast, most of the cross-quantilograms in the opposite
directions are close to 0 and statistically insignificant. The findings from Table A1 are
consistent with the conclusions from Figure 3.

5 The secondary diagonal refers to the diagonal that runs from the top-right corner to the bottom-left corner of the heat maps.
6 As seen in Figure 3, the cross-quantilograms are most likely to be significant for lag 1 when the markets’ returns are in the same quantiles. The

cross-quantilogram values for other combinations of quantiles and lags are available upon request.
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5.1.2. Robustness Analyses

This section discusses the robustness tests of the results in Section 5.1.1. The results of
these robustness tests are presented in Appendix D.

First, following Jeong et al. (2012), quantile Granger causality tests are conducted to
further explore the cross-quantile dependence between regional green equity markets.7

Figure A6 reports the test statistics of the quantile Granger causality tests among the U.S.,
European and Asian green equity markets. The red and blue lines in each figure represent
the critical values at the 5% and 10% significance levels. Across all the quantiles, the
U.S. green equity returns Granger-cause the European and Asian green equity returns.
In addition, the European green equity returns Granger-cause the Asian green equity
returns. In contrast, there is no evidence of Granger causality from the Asian green equity
market to the U.S. and European green equity markets. Finally, the European green equity
returns do not Granger cause the U.S. green equity returns. Overall, Granger causality
from the U.S. green equity market to other regional green equity markets is significant,
while Granger causality in the opposite directions is not statistically significant. These
results are consistent with the cross-quantilogram empirical evidence in Section 5.1.1.

Second, the author estimates the cross-quantilograms between the standardized re-
turns of the regional green equity markets. The first step of this robustness analysis is to
obtain the standardized residuals of a best-fit GARCH(1,1) model applied to each variable.8

The second step calculates the cross-quantilograms between the standardized residuals.
By estimating the cross-quantilogram between the GARCH-standardized residuals, this
robustness analysis allows for the discovery of interdependence across the markets, while
controlling for serial correlations within each variable. Figure A7 displays the results for
lag k = 1.9 Overall, the cross quantilograms in this figure are in line with the results in
Section 5.1.1.

Third, to account for the impact of general market conditions on the cross-quantilogram
estimations, several control variables are incorporated, specifically, the VIX index (a proxy
for stock market uncertainty), the OVX index (a proxy for energy market uncertainty) and
the EPU index (a proxy for economic policy uncertainty). This robustness analysis is based
on the partial cross-quantilogram technique explained in Section 4. Figures A8 and A9
display the results for lag k = 1. Overall, the inclusion of these control variables does not
qualitatively change the dependence structure among regional green equity markets. Note
that these results do not imply that the VIX, OVX and EPU indexes do not influence the
green equity market. They only indicate that these control variables carry little information
on the dependence structure among the regional green equity markets.

Fourth, the author employs alternative proxies for the regional green equity markets.
Specifically, Figure A11 presents the cross-quantilograms among the NASDAQ OMX Clean
Energy Focused U.S. (CLNUS), Europe (CLNEU) and Asia (CLNASIA) indexes. In contrast
to the Green Economy indexes used in the main analysis, the NASDAQ OMX Clean Energy
Focused indexes track the performance of environmentally friendly firms only in the
energy sector. Overall, the results from Figure A11 are consistent with the main findings in
Section 5.1.1.

7 Appendix C provides a summary of the Jeong et al. (2012)’s quantile Granger causality test.
8 A number of GARCH(1,1) models with various conditional distribution assumptions are employed to select the best GARCH model for each

variable. The best-fit GARCH(1,1) model for each variable is selected based on the Bayesian information criteria. Then, the standardized returns are
obtained from the standardized residuals of each GARCH model. Details on the results of these GARCH(1,1) processes are available upon request.

9 The author only presents the cross-quantilograms of the robustness analyses for lag 1 to conserve space. Moreover, as indicated in Section 5.1, the
cross-quantilograms are the most significant at lag 1. The cross-quantilograms for other lag lengths are similar to the main results in Figure 3 and are
available upon request.
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Figure 3: Cross-quantilogram heat maps among regional green equity markets
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Note: This figure reports the cross-quantilogram between the markets (Market 1→Market 2), where→ indicates the direction of predictability.
The heat maps are separated for four time horizons: daily (k = 1), weekly (k = 5), monthly (k = 22), quarterly (k = 66). In each heat map,
the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1. The color scale
at the bottom indicates the numerical values of the heat map colors.
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Figure 3. Cross-quantilogram heat maps among regional green equity markets. Note: This figure reports the cross-quantilogram between the markets (Market 1→Market 2), where→
indicates the direction of predictability. The heat maps are separated for four time horizons: daily (k = 1), weekly (k = 5), monthly (k = 22), quarterly (k = 66). In each heat map, the
vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1. The color scale at the bottom indicates the numerical values of the
heat map colors.
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Fifth, the author studies how the cross-quantilograms vary over time. To this end,
the author estimates the cross-quantilograms for three sub-periods: before, during and
after the 2014–2016 oil price collapse. Figures A12–A14 show that the cross-quantilograms
across these sub-periods are consistent with the main results in Figure 3. Finally, a recursive
estimation of the cross-quantilograms is conducted to examine how directional spillovers
change over time. Following Uddin et al. (2019), this study uses a recursive window of
252 days (roughly a trading year) to estimate the time-varying cross-quantilograms. As the
previous empirical evidence indicates that directional spillovers are the most significant at
lag 1 and weaken at longer time horizons, only the recursive cross-quantilograms for lag 1
are presented in Appendix D. Figure A15 presents the results, where the first, second and
third rows show the recursive CQs when both return distributions are at the 5%, 50% and
95% quantiles. The horizontal axis represents the starting year of the recursive window.
The blue lines are time-varying cross quantilograms in the recursive subsamples. The red
lines indicate the 95% confidence interval for the no-predictability null hypothesis, which is
derived from 1000 bootstrap iterations of the cross-quantilogram estimates. Overall, these
figures show time-varying directional spillovers across the regional green equity markets.
However, the sub-period and recursive estimates are consistent with the main findings in
Section 5.1.1. Specifically, directional spillovers are larger from the GEUS to the GEEU and
GEASIA indexes and from the GEEU to the GEASIA index than in the opposite directions.

Sections 5.2 and 5.3 discuss the cross-quantile dependence between regional green
equity markets and other asset classes, specifically the energy commodity and general stock
markets. These assets have been found in several previous studies to strongly influence
the green equity market. In contrast to the previous literature that treats the global green
equity market as one composite market, this paper investigates the regional variations in
the relationship between green equity markets and other asset classes across all parts of the
return distributions. Thus, this offers a more comprehensive picture of the interdependence
between green equity and other markets across market conditions and time horizons.

5.2. Cross-Quantile Dependence between Regional Green Equity Markets and Energy
Commodity Markets

This section discusses the cross-quantile dependence between regional green equity
markets and the energy commodity market. In this paper, the author considers three alter-
native indexes to measure the performance of the energy commodity market, specifically
the S&P GSCI Energy index (a proxy for the overall energy commodity market), the S&P
GSCI Crude Oil index (a proxy for the oil commodity market), the S&P GSCI Natural Gas
index (a proxy for the natural gas commodity market).10 Figure 4 displays the results. Note
that this figure only displays the cross-quantilograms for lag k = 1. The reason is that,
consistent with the findings in Section 5.1, the cross-quantile interdependence between
regional green equity markets and the energy commodity market becomes weaker at longer
lags. Therefore, the author will discuss the empirical results for lag k = 1 and leave the
results for other lags in Appendix B.

Row 1 of Figure 4 presents the cross-quantilograms between regional green equity
and energy commodity markets.11 First, the heat maps for the GEUS and GEEU indexes
(columns (a–d)) are mostly green. This indicates insignificant interdependence between
the energy commodity market and the U.S. and European green equity markets. On the
other hand, the energy commodity market exhibits a strong positive influence on the Asian
green equity market across all the quantiles for lag 1. This is indicated by the dominance of

10 An alternative proxy for the oil market is the WTI crude oil prices, the Brent crude oil prices, and the NYMEX continuos contract crude oil future
prices. An alternative proxy for the natural gas market includes the Henry Hub natural gas prices or the NYMEX continuous contract natural gas
future prices. The author finds that the correlations between these alternative measures of the oil and natural gas markets are more than 0.90. Thus,
this paper relies on the S&P GSCI Crude Oil and Natural Gas indexes, because the global scope of these indexes provides a common benchmark to
study the heterogeneous dependence structure between green equity and energy commodity across regions.

11 Table A2 presents the numerical values of the cross-quantilograms between regional green equity and energy commodity markets for selected pairs
of quantiles.
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orange cells in the heat map in column (f). Thus, a boom (bust) in the energy commodity
market leads to a boom (bust) in the Asian green equity market the following day. However,
the dependence between energy commodity and Asian green equity becomes insignificant
as the lag length increases. Overall, these results imply a strong dependence of the Asian
green equity market on the energy commodity market in the short run. One possible
explanation is that compared to the Asian market, the U.S. and European green equity
markets are more established. As a result, investors in the U.S. and European markets have
started to decouple the green equity market from the energy commodity market, therefore,
their green equity investment decisions are not significantly affected by changes in energy
commodity returns (Ferrer et al. 2018). In contrast, green investments in Asia have only
gained attention in recent years.12 Since the Asian green equity market’s behavior is not as
well understood as its U.S. and European counterparts, investors’ decisions to invest in
this market are more likely to be influenced by the performance of alternative investment
options. Since the data set in this paper contains more recent periods, the above results
provide evidence about the nexus between energy commodity and green equity across the
regions in recent years.

Rows 2 and 3 of Figure 4 present the cross-quantilograms between the regional green
equity markets and two subsectors of the energy commodity market: the crude oil com-
modity market (Row 2) and the natural gas commodity market (Row 3). First, in line with
the findings on the interdependence between regional green equity and energy commodity
markets, the empirical results show that the Asian green equity market co-moves with the
oil commodity market. At the same time, there is no significant interdependence between
the oil commodity market and the U.S. and European green equity markets. Second, there
is no evidence for a significant interdependence between the regional green equity markets
and the natural gas commodity market, as the heat maps for the natural gas market are
statistically insignificant across all lags. Overall, these results are consistent with the findings
of a weakening relationship between energy commodity markets and clean energy stock prices
in several previous studies (Ahmad 2017; Henriques and Sadorsky 2008; Sadorsky 2012).

To validate the above findings, the author employs similar empirical procedures as in
Section 5.1.2 and the results of these robustness analyses are in Appendix E. Specifically, the
following robustness tests are conducted: (i) quantile Granger causality tests (Figure A16);
(ii) cross-quantilograms with GARCH-standardized residuals (Figure A17); (iii) cross-
quantilograms with control variables for general market conditions (Figures A18–A20);
(iv) cross quantilograms using the NASDAQ Clean Energy Focused indexes as alternative
proxies for regional green equity markets (Figure A21); and (v) sub-period and recursive
cross-quantilograms (Figures A22–A27). Overall, these robustness analyses yield consistent
conclusions with the main findings. However, the recursive cross-quantilograms indicate
increasing dependence between the natural gas commodity and the U.S. green equity
markets, particularly at the 0.05 and 0.95 quantiles (Figure A27a,b). This reflects the
increasing importance of natural gas in the U.S. after the shale gas revolution in the
early 2000s.

12 According to Bloomberg New Energy Finance (2019), the U.S. and Europe are the dominant destinations of green investments before 2014, while
green investments in Asia only became more popular after 2014.
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Figure 4: Cross-quantilograms between regional green equity and energy commodity markets
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Note: This figure reports the cross-quantilogram between the markets (Market 1→Market 2), where→ indicates the direction of predictability.
In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market
1. The color scale at the bottom indicates the numerical values of the heat map colors. Row 1 presents the heat maps between regional green
equity and energy commodity markets. Row 2 presents the heat maps between regional green equity and crude oil commodity markets. Row
3 presents the heat maps between regional green equity and natural gas commodity markets. The lag length is k = 1 for all the heat maps in
this figure. The heat maps for other lag lengths are in Online Appendix B.
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Figure 4. Cross-quantilograms between regional green equity and energy commodity markets. Note: This figure reports the cross-quantilogram between the markets (Market 1→Market
2), where→ indicates the direction of predictability. In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of
Market 1. The color scale at the bottom indicates the numerical values of the heat map colors. Row 1 presents the heat maps between regional green equity and energy commodity markets.
Row 2 presents the heat maps between regional green equity and crude oil commodity markets. Row 3 presents the heat maps between regional green equity and natural gas commodity
markets. The lag length is k = 1 for all the heat maps in this figure. The heat maps for other lag lengths are in Appendix B.
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5.3. Cross-Quantile Dependence between Regional Green Equity Markets and the Stock Market

This section discusses the cross-quantile dependence between regional green equity
and other stock markets, specifically the general global stock market (proxied by the S&P
Global BMI index) and the technology stock market (proxied by the NYSE Arca 100 (PSE)
index).13 Figure 5 displays the results. Consistent with the findings in previous sections, the
interdependence between regional green equity and other stock markets dissipates at longer
lags, therefore, the author focuses on presenting the results for lag k = 1 and leaves the
heat maps for other lags in Appendix B. The numerical values of the cross-quantilograms
for selected quantiles are presented in Tables A5 and A6 in the Online Appendix. The
empirical findings suggest heterogeneous interdependence between regional green equity
and other stock markets.

Figure 5a,c,e in row 1 show the cross-quantilograms between regional green equity
and general stock markets. First, the heat maps from the GEUS to BMI index (column (a))
are mostly orange. Thus, in the short-run investment horizon (k = 1), movements in the
U.S. green equity market can predict movements in the general stock market. This is due to
the importance of the U.S. stock market in the global stock market. Since the GEUS index
consists of firms domiciled in the U.S., it has a significant impact on the global stock market.
Similar conclusions can be made for the cross-quantile dependence, from the European
green equity market to the general stock market (column (c)). However, compared to the
U.S. green equity market, the European green equity market exhibits a weaker impact on
the general stock market. In addition, the heat maps from the GEASIA to the BMI index
(column (e)) are mostly green, except at the lower-left corner. Thus, low returns in the
Asian green equity market can predict low returns in the general stock market, however,
high Asian green equity returns do not predict high general stock returns.

Figure 5b,d,f in row 1 present the cross-quantilograms from the general stock market
to green equity markets. The heat map from the BMI index to the GEUS index (column (b))
is mostly green, except at the extremely low quantiles. Thus, low returns in the general
stock market lead to low returns in the U.S. green equity market. However, no significant
spillover from the general stock market is found at the median and upper quantiles. Simi-
larly, the general stock market has the strongest predictive power over the European green
equity market at the lower quantiles, as orange cells are more concentrated at the lower-left
corner of the “Stock→ GEEU” heat map (column (d)). On the contrary, movements in the
general stock market can predict movements in the Asian green equity market across all
market conditions, as shown by the dominance of orange cells in column (f).

Row 2 of Figure 5 presents the CQ heat maps between regional green equity markets
and the technology stock market, a class of equity investment that is highly correlated with
green equity in the literature (for example, Sadorsky (2012), Managi and Okimoto (2013),
Reboredo (2015), Bondia et al. (2016)). The heat maps between the U.S. green equity
market and technology stock market are only statistically significant at the bottom-left
corners (columns (a,b)). Thus, low returns in the technology stock market can predict
low returns in U.S. green equity market and vice versa. However, this interdependence
does not hold during periods of high or normal returns. In contrast, technology stock
can predict European and Asian green equity across all market conditions, as the heat
maps in columns (d,f) are predominantly orange. A possible explanation for the varying
dependence of the regional green equity markets on the technology stock market relies on
the heterogeneity in green financing activity across the regions. According to Bloomberg
Energy Finance, in recent years, Asia has grown to be the leading region in renewable
energy finance, followed by Europe and the U.S. (Bloomberg New Energy Finance 2019).
Thus, together with the fact that Asian green equity is a relatively new segment of the global
green equity market, it is more vulnerable to the technology stock market’s movements.
In contrast, more developed regions such as Europe and the U.S. have lost their role as
the main destination of new energy finance, therefore, they are less integrated with the

13 Tables A5 and A6 present the quantitative values of the cross-quantilograms.
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technology stock market (Bloomberg New Energy Finance 2019). Since the data set in this
paper starts from November 2010, it is able to capture these recent trends in the nexus
between green equity and technology stock markets. The empirical evidence also suggests
that the dependence structure between the green equity and technology stock markets
persists for a more extended period than between the green equity and energy commodity
markets (Figures A1–A5). These results are consistent with the previous findings of a
stronger correlation between green equity and technology stock than between green equity
and energy commodities in the literature (Bondia et al. 2016; Managi and Okimoto 2013;
Reboredo 2015; Sadorsky 2012).

In summary, the above empirical evidence suggests the significant exposure of the
Asian green equity market to movements in the global stock market. In addition, there
exists a higher degree of connectedness between green equity and general stock markets
during periods of extremely low returns. Finally, the interdependence between regional
green equity and general stock markets becomes weaker in the long run. These conclusions
are still valid under the following robustness tests: (i) the quantile Granger causality tests
(Figure A28), (ii) the cross-quantilograms with GARCH-standardized returns (Figure A29),
(iii) the partial cross-quantilograms with the OVX, VIX and EPU indexes (Figures A30–A32),
(iv) cross quantilograms using the NASDAQ Clean Energy Focused indexes as alternative
proxies for regional green equity markets (Figure A33); and (v) sub-period and recursive
cross-quantilograms (Figures A34–A38).
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Figure 5: Cross-quantilograms between regional green equity and other stock markets
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Note: This figure reports the cross-quantilogram between the markets (Market 1→Market 2), where→ indicates the direction of predictability.
In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market
1. The color scale at the bottom indicates the numerical values of the heat map colors. Row 1 presents the heat maps between regional green
equity and general stock markets (proxied by the BMI index). Row 2 presents the heat maps between regional green equity and technology
stock markets (proxied by the PSE index). The lag length is k = 1 for all the heat maps in this figure. The heat maps for other lag lengths
are in Online Appendix B.
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Figure 5. Cross-quantilograms between regional green equity and other stock markets. Note: This figure reports the cross-quantilogram between the markets (Market 1→Market 2),
where→ indicates the direction of predictability. In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of
Market 1. The color scale at the bottom indicates the numerical values of the heat map colors. Row 1 presents the heat maps between regional green equity and general stock markets
(proxied by the BMI index). Row 2 presents the heat maps between regional green equity and technology stock markets (proxied by the PSE index). The lag length is k = 1 for all the heat
maps in this figure. The heat maps for other lag lengths are in Appendix B.
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6. Discussion and Conclusions

Concerns over climate change have sparked substantial interests among policymakers
and investors in environmentally friendly financial instruments. As the green financial
market expands in its scope and size, heterogeneity in the performance of sub-segments in
this market will emerge, which has important implications for policymakers and investors.
Yet, most studies so far have treated the global green equity market as one composite
market. This paper studies how the interdependence among green equity and other assets
varies across regions, market conditions, and investment horizons, thereby providing new
insights into the green equity market’s behavior.

The empirical results indicate that the dependence between regional green equity,
energy commodity and general stock markets is the most significant in the short-term
horizon and dissipates over the medium- and long-term horizons. This suggests fast
processing of information among these markets, as most shocks are transmitted in the short
run. These results are consistent with several recent papers that document the short-lived
nature of connectedness among various financial markets. For example, Lau et al. (2017)
and Tiwari et al. (2018) find larger connectedness across precious metals and several
financial assets in the short term than in the long term. Similar results are obtained in
Ferrer et al. (2018), who focus on the relationship between several financial assets and
renewable energy stocks.

Second, within the green equity market, the U.S. is the dominant shock transmitter. In
other words, other regional green equity markets are significantly affected by movements
in the U.S. market. The Asian green equity market is the dominant shock receiver, since
it is influenced by movements in both the U.S. and European markets. These results
suggest the significant role of the U.S. green equity market in determining the overall
green equity market’s financial performance. Thus, closely monitoring movements in the
U.S. green equity market allows investors to forecast movements in other regional green
equity markets. In addition, since the dependence between these regional markets becomes
weaker as the time horizon increases, a portfolio that combines green equity from different
regions can provide diversification benefits in the long run. To the author’s knowledge, this
is the first empirical paper that examines the dependence between sub-sectors of the global
green equity market. Previous studies on green equity performance rely on aggregate
stock indexes to represent the global green equity market, therefore, they may overlook the
connectedness within the green equity market. As the green equity market has experienced
substantial growth in recent years, it is essential to understand the connections between
sub-sectors of this market.

Third, this paper finds insignificant dependence between the U.S. and European green
equity markets and the energy commodity market. In contrast, the energy commodity
market exhibits a significant influence on the Asian green equity market. This finding
adds to the diverse empirical evidence on the green equity-energy commodity interre-
lationship. Several studies find a statistically significant impact of energy commodity
prices on green equity returns, for example, Kumar et al. (2012); Managi and Okimoto
(2013); Nasreen et al. (2020). However, other studies find evidence for the decoupling
of clean energy and fossil fuel markets, for example, Dawar et al. (2020); Kyritsis and
Serletis (2019); Ferrer et al. (2018). The lack of consensus in the literature could be due to
the use of a global green equity index, which masks the heterogeneous behavior among
sub-sectors of the green equity market. The empirical evidence in this paper suggests that
the interdependence between green equity and energy commodity markets depends on
the regions, market conditions and investment horizons. This finding has several implica-
tions. First, since the U.S. and European green equity markets do not exhibit significant
interdependence with the energy commodity market, a portfolio that combines energy
commodities with U.S. and European green equity may provide diversification benefits.
However, a portfolio of energy commodity and Asian green equity does not provide such
benefits, as there is significant interdependence between these markets. As for the policy
implications, this paper suggests that policy to protect green equity against crude oil price
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movements may not increase financial flows towards green equity sectors in the U.S. and
Europe, thanks to the decoupling of green equity from energy commodity in these regions.
On the contrary, policymakers should be aware that downward energy price movements
could lead to extreme downward movements in the Asian green equity markets, thereby
discouraging private green investment incentives in this region.

Fourth, regional green equity markets exhibit heterogeneous interdependence with
the general and technology stock markets. Among the regional green equity market,
the U.S. green equity market has the strongest predictive power over movements in the
general stock market across all market conditions. At the same time, movements in the
Asian green equity market can predict movements in the general stock market only during
periods of low returns. In turn, the general stock market can predict movements in the
Asian green equity market across all market conditions, but its predictive power over
the European and U.S. green equity markets is mostly concentrated during periods of
low returns. In short, the results of this paper indicate higher interdependence between
green equity and other stock markets during periods of low returns. This is in line with
the stylized fact of higher contagion among financial markets during turbulent times.
Finally, the technology stock market is the most connected to the Asian and European
green equity markets. This is because Asia and Europe have accounted for the majority
of new clean energy investments in recent years. Since the data set in this paper covers
more recent periods, it is able to capture the recent dynamics of the green equity market.
Overall, the empirical evidence shows strong interdependence between green equity
and other stock markets, which is in line with the findings in the previous literature
(for example, Ahmad (2017); Sadorsky (2012); Uddin et al. (2019)). However, while most
previous studies have used one single stock index for the global green equity market, this
paper adds to the literature by considering the heterogeneous interdependence between
green equity and other stock markets across regions, market conditions and time horizons.
The empirical results show that policies to promote green investments should reduce the
contagious effect of the aggregate stock market during periods of low returns, especially in
the Asian green equity market.

In summary, this paper finds a heterogeneous interrelationship between green equity
and other assets across regions, which highlights the importance of investigating the
environmentally friendly financial market at a disaggregate level. Future research could
further investigate the green equity market’s heterogeneous characteristics by considering
its relationship with a broader range of financial assets. Moreover, the use of firm-level
data could further unravel the heterogeneity in the green equity market, which could
have important implications for policymakers and investors. In addition, studies that
address the behavior of green equity markets during turbulent periods, especially during
the COVID-19 pandemic, would be beneficial for promoting green investments in the
future.
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Appendix A. Numerical Cross-Quantilogram Values

This section presents the numerical values of the cross-quantilogram heat maps in
Section 5. The inclusion of the numerical cross-quantilogram values for all cells in the
heat maps is impractical. Therefore, this section only presents the cross-quantilogram
values when they are most likely to be statistically significant, that is, when lag k = 1
and when the markets are in the same quantiles (τ1 = τ2). Table A1 presents the cross-
quantilograms among regional green equity markets. Each cell of the table presents the
cross-quantilograms and their 99% confidence interval (in brackets). The 99% confidence
intervals are obtained from 1000 stationary bootstraps. Tables A2–A4 present the cross-
quantilograms between each regional green equity market and the energy commodity
markets. Tables A5 and A6 present the cross-quantilograms between the regional green
equity markets and the stock market.
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Table A1. Numerical cross-quantilogram values among regional green equity markets for k = 1 and τ1 = τ2.

Quantiles GEUS→GEEU GEEU→GEUS GEUS→GEASIA GEASIA→GEUS GEEU→GEASIA GEASIA→GEEU
(a) (b) (c) (d) (e) (f)

0.05 0.10 [0.01, 0.25] 0.06 [−0.01, 0.13] 0.10 [0.01, 0.23] 0.08 [−0.01, 0.20] 0.20 [0.10, 0.31] 0.04 [−0.02, 0.15]

0.1 0.11 [0.04, 0.20] 0.06 [0.00, 0.12] 0.29 [0.22, 0.36] 0.08 [0.03, 0.16] 0.20 [0.12, 0.28] 0.05 [0.00, 0.12]

0.2 0.16 [0.10, 0.22] 0.07 [0.00, 0.12] 0.29 [0.23, 0.36] 0.06 [−0.01, 0.13] 0.21 [0.15, 0.29] 0.09 [0.02, 0.13]

0.3 0.14 [0.08, 0.20] 0.02 [−0.04, 0.07] 0.27 [0.22, 0.33] 0.02 [−0.04, 0.07] 0.22 [0.16, 0.28] 0.02 [−0.04, 0.08]

0.4 0.10 [0.04, 0.16] −0.01 [−0.06, 0.05] 0.25 [0.19, 0.31] −0.03 [−0.09, 0.02] 0.21 [0.15, 0.27] −0.01 [−0.06, 0.04]

0.5 0.10 [0.04, 0.16] −0.05 [−0.11, 0.00] 0.24 [0.18, 0.29] −0.04 [−0.09, 0.02] 0.20 [0.15, 0.25] −0.02 [−0.08, 0.03]

0.6 0.11 [0.04, 0.17] −0.05 [−0.11, 0.01] 0.24 [0.19, 0.29] −0.03 [−0.08, 0.02] 0.21 [0.15, 0.27] −0.03 [−0.08, 0.03]

0.7 0.10 [0.04, 0.15] −0.06 [−0.11, −0.01] 0.24 [0.18, 0.29] −0.02 [−0.07, 0.04] 0.19 [0.13, 0.25] −0.02 [−0.07, 0.04]

0.8 0.10 [0.03, 0.17] −0.01 [−0.07, 0.04] 0.27 [0.21, 0.33] 0.00 [−0.05, 0.06] 0.19 [0.13, 0.25] 0.02 [−0.04, 0.07]

0.9 0.12 [0.05, 0.18] 0.01 [−0.04, 0.06] 0.25 [0.17, 0.33] 0.02 [−0.04, 0.09] 0.17 [0.10, 0.25] 0.01 [−0.04, 0.08]

0.95 0.11 [0.02, 0.19] 0.05 [0.00, 0.13] 0.27 [0.15, 0.36] 0.04 [−0.02, 0.10] 0.17 [0.06, 0.29] 0.02 [−0.03, 0.09]

This table presents the cross-quantilogram values and their 99% confidence interval (in brackets) for directional predictability among regional green equity markets when k = 1 and when the markets are in the
same quantiles. The values in this table correspond to the diagonal elements of the heat maps in Row 1 of Figure 3.

Table A2. Numerical cross-quantilogram values between regional green equity and energy commodity markets for k = 1 and τ1 = τ2.

Quantiles GEUS→Energy Energy→GEUS GEEU→Energy Energy→GEEU GEASIA→Energy Energy→GEASIA
(a) (b) (c) (d) (e) (f)

0.05 0.04 [−0.03, 0.11] 0.02 [−0.04, 0.10] 0.00 [−0.05, 0.06] 0.01 [−0.04, 0.07] 0.00 [−0.04, 0.06] 0.05 [−0.02, 0.15]

0.1 0.05 [−0.02, 0.13] 0.06 [−0.01, 0.14] 0.01 [−0.04, 0.06] 0.05 [0.00, 0.12] 0.02 [−0.03, 0.09] 0.10 [0.04, 0.17]

0.2 0.05 [0.00, 0.12] 0.03 [−0.03, 0.09] 0.05 [−0.01, 0.11] 0.08 [0.02, 0.15] 0.02 [−0.04, 0.07] 0.08 [0.03, 0.15]

0.3 0.03 [−0.03, 0.09] 0.03 [−0.02, 0.10] 0.04 [−0.01, 0.10] 0.03 [−0.02, 0.09] 0.00 [−0.05, 0.06] 0.13 [0.06, 0.18]

0.4 0.01 [−0.05, 0.06] 0.02 [−0.03, 0.08] 0.02 [−0.05, 0.06] 0.04 [−0.01, 0.10] −0.02 [−0.09, 0.04] 0.10 [0.04, 0.16]

0.5 −0.01 [−0.06, 0.05] 0.00 [−0.06, 0.05] 0.02 [−0.04, 0.08] 0.04 [−0.02, 0.08] −0.02 [−0.07, 0.03] 0.10 [0.05, 0.16]

0.6 0.00 [−0.06, 0.05] −0.02 [−0.07, 0.04] 0.00 [−0.06, 0.07] 0.01 [−0.05, 0.07] 0.00 [−0.06, 0.05] 0.10 [0.04, 0.16]

0.7 −0.02 [−0.07, 0.03] −0.02 [−0.07, 0.03] −0.03 [−0.08, 0.03] 0.01 [−0.05, 0.07] 0.00 [−0.07, 0.05] 0.08 [0.03, 0.14]

0.8 0.00 [−0.06, 0.07] 0.00 [−0.06, 0.06] −0.01 [−0.06, 0.04] 0.01 [−0.04, 0.07] 0.00 [−0.04, 0.07] 0.11 [0.04, 0.17]

0.9 0.00 [−0.06, 0.07] 0.02 [−0.04, 0.08] 0.01 [−0.04, 0.07] 0.03 [−0.03, 0.10] 0.04 [−0.02, 0.10] 0.09 [0.02, 0.16]

0.95 0.06 [0.00, 0.16] 0.02 [−0.03, 0.11] 0.01 [−0.04, 0.08] 0.05 [−0.01, 0.12] 0.05 [−0.02, 0.13] 0.08 [0.01, 0.18]

This table presents the cross-quantilogram values and their 99% confidence interval (in brackets) for directional predictability between regional green equity and energy commodity markets when k = 1 and
when the markets are in the same quantiles. The values in this table correspond to the diagonal elements of the heat maps in Row 1 of Figure 4.
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Table A3. Numerical cross-quantilogram values between regional green equity and oil commodity markets for k = 1 and τ1 = τ2.

Quantiles GEUS→OIL OIL→GEUS GEEU→OIL OIL→GEEU GEASIA→OIL OIL→GEASIA
(a) (b) (c) (d) (e) (f)

0.05 0.01 [−0.03, 0.09] 0.03 [−0.03, 0.11] −0.01 [−0.04, 0.05] 0.02 [−0.03, 0.09] 0.00 [−0.04, 0.06] 0.07 [0.00, 0.15]

0.1 0.06 [0.01, 0.14] 0.05 [−0.02, 0.11] 0.02 [−0.05, 0.07] 0.06 [−0.01, 0.13] 0.03 [−0.03, 0.08] 0.09 [0.01, 0.16]

0.2 0.03 [−0.03, 0.09] 0.04 [−0.01, 0.10] 0.03 [−0.04, 0.08] 0.09 [0.02, 0.14] 0.01 [−0.05, 0.07] 0.10 [0.05, 0.16]

0.3 0.01 [−0.04, 0.07] 0.03 [−0.02, 0.09] 0.02 [−0.04, 0.08] 0.05 [−0.01, 0.11] 0.00 [−0.05, 0.06] 0.13 [0.07, 0.19]

0.4 −0.01 [−0.07, 0.05] 0.01 [−0.04, 0.07] 0.01 [−0.05, 0.06] 0.04 [−0.01, 0.10] −0.03 [−0.08, 0.03] 0.10 [0.05, 0.16]

0.5 −0.03 [−0.09, 0.03] 0.00 [−0.06, 0.05] 0.01 [−0.04, 0.07] 0.04 [−0.02, 0.09] −0.03 [−0.08, 0.03] 0.10 [0.06, 0.17]

0.6 0.00 [−0.07, 0.05] −0.02 [−0.07, 0.04] −0.01 [−0.07, 0.04] 0.03 [−0.03, 0.08] 0.00 [−0.05, 0.05] 0.11 [0.06, 0.17]

0.7 −0.04 [−0.09, 0.02] −0.01 [−0.06, 0.04] −0.04 [−0.09, 0.02] 0.03 [−0.03, 0.10] 0.00 [−0.05, 0.07] 0.11 [0.06, 0.16]

0.8 0.01 [−0.05, 0.07] 0.02 [−0.04, 0.08] 0.00 [−0.06, 0.05] 0.04 [−0.02, 0.10] 0.02 [−0.03, 0.07] 0.11 [0.05, 0.17]

0.9 0.01 [−0.04, 0.08] 0.03 [−0.02, 0.10] 0.01 [−0.04, 0.07] 0.05 [−0.02, 0.11] 0.04 [−0.01, 0.11] 0.08 [0.02, 0.15]

0.95 0.05 [−0.01, 0.15] 0.01 [−0.03, 0.09] 0.01 [−0.04, 0.08] 0.05 [−0.02, 0.12] 0.03 [−0.02, 0.12] 0.07 [0.01, 0.17]

This table presents the cross-quantilogram values and their 99% confidence interval (in brackets) for directional predictability between regional green equity and oil commodity markets when k = 1 and when the
markets are in the same quantiles. The values in this table correspond to the diagonal elements of the heat maps in Row 2 of Figure 4.

Table A4. Numerical cross-quantilogram values between regional green equity and gas commodity markets for k = 1 and τ1 = τ2.

Quantiles GEUS→GAS GAS→GEUS GEEU→GAS GAS→GEEU GEASIA→GAS GAS→GEASIA
(a) (b) (c) (d) (e) (f)

0.05 −0.02 [−0.05, 0.05] 0.04 [−0.02, 0.12] −0.02 [−0.05, 0.04] 0.01 [−0.04, 0.08] −0.01 [−0.05, 0.05] 0.02 [−0.04, 0.09]

0.1 0.04 [−0.02, 0.10] 0.02 [−0.04, 0.08] 0.01 [−0.04, 0.07] 0.02 [−0.04, 0.09] 0.02 [−0.04, 0.07] 0.03 [−0.03, 0.09]

0.2 0.01 [−0.05, 0.07] 0.00 [−0.05, 0.06] 0.02 [−0.03, 0.08] 0.03 [−0.02, 0.08] 0.01 [−0.04, 0.07] 0.02 [−0.03, 0.08]

0.3 −0.01 [−0.06, 0.04] 0.02 [−0.04, 0.07] 0.03 [−0.02, 0.10] 0.01 [−0.04, 0.07] −0.01 [−0.06, 0.05] 0.01 [−0.04, 0.06]

0.4 −0.03 [−0.08, 0.03] 0.00 [−0.06, 0.06] 0.03 [−0.02, 0.09] −0.03 [−0.08, 0.04] −0.02 [−0.07, 0.03] −0.05 [−0.10, 0.01]

0.5 0.01 [−0.04, 0.06] −0.02 [−0.08, 0.03] 0.03 [−0.03, 0.08] −0.02 [−0.08, 0.03] 0.00 [−0.05, 0.05] −0.01 [−0.06, 0.04]

0.6 0.01 [−0.05, 0.06] −0.03 [−0.09, 0.03] 0.03 [−0.03, 0.08] −0.02 [−0.08, 0.04] 0.00 [−0.05, 0.06] −0.02 [−0.06, 0.05]

0.7 0.01 [−0.05, 0.06] −0.04 [−0.09, 0.02] 0.02 [−0.04, 0.08] −0.02 [−0.08, 0.03] 0.02 [−0.02, 0.08] −0.01 [−0.06, 0.05]

0.8 0.01 [−0.04, 0.06] −0.02 [−0.07, 0.04] 0.00 [−0.06, 0.06] 0.00 [−0.05, 0.05] 0.00 [−0.05, 0.07] 0.01 [−0.04, 0.06]

0.9 −0.02 [−0.07, 0.03] 0.00 [−0.05, 0.06] 0.01 [−0.04, 0.07] 0.00 [−0.05, 0.06] 0.04 [−0.02, 0.11] 0.01 [−0.05, 0.07]

0.95 0.00 [−0.05, 0.05] 0.01 [−0.04, 0.08] 0.01 [−0.05, 0.07] 0.02 [−0.03, 0.08] 0.02 [−0.03, 0.09] 0.01 [−0.04, 0.07]

This table presents the cross-quantilogram values and their 99% confidence interval (in brackets) for directional predictability between regional green equity and gas commodity markets when k = 1 and when
the markets are in the same quantiles. The values in this table correspond to the diagonal elements of the heat maps in Row 3 of Figure 4.
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Table A5. Numerical cross-quantilogram values between regional green equity and general stock markets for k = 1 and τ1 = τ2.

Quantiles GEUS→BMI BMI→GEUS GEEU→BMI BMI→GEEU GEASIA→BMI BMI→GEASIA
(a) (b) (c) (d) (e) (f)

0.05 0.10 [0.03, 0.21] 0.09 [0.01, 0.18] 0.05 [−0.01, 0.13] 0.08 [−0.01, 0.21] 0.06 [−0.01, 0.17] 0.24 [0.13, 0.37]

0.1 0.14 [0.07, 0.20] 0.09 [0.02, 0.16] 0.09 [0.01, 0.14] 0.09 [0.02, 0.16] 0.07 [0.01, 0.14] 0.25 [0.17, 0.33]

0.2 0.14 [0.08, 0.21] 0.09 [0.01, 0.14] 0.11 [0.05, 0.18] 0.15 [0.08, 0.21] 0.09 [0.03, 0.16] 0.26 [0.20, 0.34]

0.3 0.14 [0.08, 0.19] 0.04 [−0.02, 0.10] 0.10 [0.04, 0.15] 0.10 [0.04, 0.15] 0.06 [−0.01, 0.12] 0.29 [0.21, 0.34]

0.4 0.12 [0.07, 0.17] 0.00 [−0.05, 0.06] 0.08 [0.02, 0.14] 0.06 [0.00, 0.12] 0.00 [−0.05, 0.06] 0.26 [0.21, 0.32]

0.5 0.10 [0.05, 0.17] −0.04 [−0.10, 0.01] 0.04 [−0.02, 0.11] 0.05 [−0.02, 0.11] 0.00 [−0.06, 0.05] 0.24 [0.19, 0.30]

0.6 0.13 [0.06, 0.17] −0.05 [−0.10, 0.01] 0.03 [−0.02, 0.09] 0.05 [0.00, 0.11] 0.00 [−0.05, 0.06] 0.24 [0.18, 0.30]

0.7 0.11 [0.07, 0.17] −0.02 [−0.08, 0.02] 0.04 [−0.01, 0.09] 0.07 [0.02, 0.13] 0.01 [−0.04, 0.07] 0.24 [0.18, 0.30]

0.8 0.13 [0.06, 0.19] −0.01 [−0.06, 0.04] 0.07 [0.01, 0.13] 0.07 [0.01, 0.11] 0.02 [−0.03, 0.08] 0.24 [0.18, 0.30]

0.9 0.09 [0.03, 0.16] 0.01 [−0.03, 0.08] 0.08 [0.01, 0.15] 0.07 [0.00, 0.13] 0.02 [−0.04, 0.08] 0.24 [0.15, 0.33]

0.95 0.10 [0.02, 0.20] 0.03 [−0.02, 0.11] 0.08 [0.01, 0.16] 0.04 [−0.01, 0.10] 0.04 [−0.02, 0.11] 0.20 [0.10, 0.33]

This table presents the cross-quantilogram values and their 99% confidence interval (in brackets) for directional predictability between regional green equity and general stock markets when k = 1 and when the
markets are in the same quantiles. The values in this table correspond to the diagonal elements of the heat maps in Row 1 of Figure 5.

Table A6. Numerical cross-quantilogram values between regional green equity and technology stock markets for k = 1 and τ1 = τ2.

Quantiles GEUS→PSE PSE→GEUS GEEU→PSE PSE→GEEU GEASIA→PSE PSE→GEASIA
(a) (b) (c) (d) (e) (f)

0.05 0.06 [0.00, 0.15] 0.09 [0.01, 0.20] 0.02 [−0.03, 0.09] 0.08 [0.00, 0.18] 0.08 [0.00, 0.17] 0.27 [0.17, 0.38]

0.1 0.09 [0.02, 0.15] 0.07 [0.01, 0.15] 0.07 [0.01, 0.13] 0.08 [0.01, 0.17] 0.07 [0.00, 0.14] 0.27 [0.21, 0.36]

0.2 0.09 [0.01, 0.15] 0.09 [0.02, 0.14] 0.08 [0.02, 0.13] 0.16 [0.10, 0.22] 0.07 [0.02, 0.14] 0.28 [0.21, 0.35]

0.3 0.03 [−0.02, 0.09] 0.04 [−0.01, 0.10] 0.03 [−0.03, 0.08] 0.16 [0.09, 0.21] 0.03 [−0.03, 0.09] 0.30 [0.23, 0.35]

0.4 −0.01 [−0.08, 0.05] −0.01 [−0.06, 0.05] 0.01 [−0.04, 0.06] 0.12 [0.06, 0.18] −0.01 [−0.06, 0.05] 0.25 [0.19, 0.30]

0.5 −0.04 [−0.09, 0.02] −0.02 [−0.07, 0.04] −0.02 [−0.08, 0.04] 0.10 [0.03, 0.15] −0.02 [−0.08, 0.03] 0.23 [0.17, 0.28]

0.6 −0.04 [−0.10, 0.01] −0.03 [−0.08, 0.03] −0.04 [−0.09, 0.02] 0.08 [0.03, 0.14] −0.02 [−0.07, 0.04] 0.22 [0.17, 0.28]

0.7 0.00 [−0.06, 0.05] −0.03 [−0.08, 0.03] −0.02 [−0.08, 0.03] 0.10 [0.05, 0.17] −0.01 [−0.07, 0.05] 0.25 [0.19, 0.30]

0.8 0.01 [−0.04, 0.08] 0.01 [−0.05, 0.06] 0.00 [−0.06, 0.05] 0.11 [0.04, 0.17] −0.02 [−0.06, 0.05] 0.24 [0.18, 0.31]

0.9 0.02 [−0.03, 0.09] 0.03 [−0.03, 0.10] 0.02 [−0.04, 0.07] 0.08 [0.02, 0.16] 0.02 [−0.04, 0.08] 0.23 [0.15, 0.31]

0.95 0.08 [0.00, 0.18] 0.07 [−0.01, 0.16] 0.05 [−0.01, 0.12] 0.09 [0.01, 0.17] 0.02 [−0.03, 0.09] 0.22 [0.12, 0.33]

This table presents the cross-quantilogram values and their 99% confidence interval (in brackets) for directional predictability between regional green equity and technology stock markets when k = 1 and when
the markets are in the same quantiles. The values in this table correspond to the diagonal elements of the heat maps in Row 2 of Figure 5.
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Appendix B. Cross-Quantile Dependence between Regional Green Equity and Other
Assets at Alternative Lags

This section presents the cross-quantilograms between regional green equity and other
assets, specifically energy commodity and stock markets, for lags 1 (daily), 5 (weekly),
22 (monthly) and 66 (quarterly). The figures in this section complement the discussion in
Sections 5.2 and 5.3. The heat maps below follow the same color scale as the heat maps in
Section 5. Overall, these figures indicate weakening interdependence between the markets
as the lag length increases.
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Figure S1: Cross-quantilogram heat maps between regional green equity markets and energy commodity market
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(b) Energy → GEUS (c) GEEU → Energy (d) Energy → GEEU (e) GEASIA → Energy (f) Energy → GEASIA

Note: This figure reports the cross-quantilogram between the markets (Market 1→Market 2), where→ indicates the direction of predictability.
The heat maps are separated for four time horizons: daily (k = 1), weekly (k = 5), monthly (k = 22), quarterly (k = 66). In each heat map,
the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1. The color scale
at the bottom indicates the numerical values of the heat map colors.

9

Figure A1. Cross-quantilogram heat maps between regional green equity markets and energy commodity market. Note: This figure reports the cross-quantilogram between the markets
(Market 1→Market 2), where→ indicates the direction of predictability. The heat maps are separated for four time horizons: daily (k = 1), weekly (k = 5), monthly (k = 22), quarterly
(k = 66). In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1. The color scale at the bottom
indicates the numerical values of the heat map colors.
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Figure S2: Cross-quantilogram heat maps between regional green equity markets and oil commodity market

(a) GEUS → OIL
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(b) OIL → GEUS (c) GEEU → OIL (d) OIL → GEEU (e) GEASIA → OIL (f) OIL → GEASIA

Note: This figure reports the cross-quantilogram between the markets (Market 1→Market 2), where→ indicates the direction of predictability.
The heat maps are separated for four time horizons: daily (k = 1), weekly (k = 5), monthly (k = 22), quarterly (k = 66). In each heat map,
the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1. The color scale
at the bottom indicates the numerical values of the heat map colors.

10

Figure A2. Cross-quantilogram heat maps between regional green equity markets and oil commodity market. Note: This figure reports the cross-quantilogram between the markets
(Market 1→Market 2), where→ indicates the direction of predictability. The heat maps are separated for four time horizons: daily (k = 1), weekly (k = 5), monthly (k = 22), quarterly
(k = 66). In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1. The color scale at the bottom
indicates the numerical values of the heat map colors.
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Figure S3: Cross-quantilogram heat maps between regional green equity markets and natural gas commodity market

(a) GEUS → GAS
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(b) GAS → GEUS (c) GEEU → GAS (d) GAS → GEEU (e) GEASIA → GAS (f) GAS → GEASIA

Note: This figure reports the cross-quantilogram between the markets (Market 1→Market 2), where→ indicates the direction of predictability.
The heat maps are separated for four time horizons: daily (k = 1), weekly (k = 5), monthly (k = 22), quarterly (k = 66). In each heat map,
the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1. The color scale
at the bottom indicates the numerical values of the heat map colors.
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Figure A3. Cross-quantilogram heat maps between regional green equity markets and natural gas commodity market. Note: This figure reports the cross-quantilogram between the
markets (Market 1→Market 2), where→ indicates the direction of predictability. The heat maps are separated for four time horizons: daily (k = 1), weekly (k = 5), monthly (k = 22),
quarterly (k = 66). In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1. The color scale at the
bottom indicates the numerical values of the heat map colors.
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Figure S4: Cross-quantilogram heat maps between regional green equity markets and general stock market
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(b) BMI → GEUS (c) GEEU → BMI (d) BMI → GEEU (e) GEASIA → BMI (f) BMI → GEASIA

Note: This figure reports the cross-quantilogram between the markets (Market 1→Market 2), where→ indicates the direction of predictability.
The heat maps are separated for four time horizons: daily (k = 1), weekly (k = 5), monthly (k = 22), quarterly (k = 66). In each heat map,
the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1. The color scale
at the bottom indicates the numerical values of the heat map colors.
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Figure A4. Cross-quantilogram heat maps between regional green equity markets and general stock market. Note: This figure reports the cross-quantilogram between the markets (Market
1→Market 2), where→ indicates the direction of predictability. The heat maps are separated for four time horizons: daily (k = 1), weekly (k = 5), monthly (k = 22), quarterly (k = 66). In
each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1. The color scale at the bottom indicates the
numerical values of the heat map colors.
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Figure S5: Cross-quantilogram heat maps between regional green equity markets and technology stock market
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(b) PSE → GEUS (c) GEEU → PSE (d) PSE → GEEU (e) GEASIA → PSE (f) PSE → GEASIA

Note: This figure reports the cross-quantilogram between the markets (Market 1→Market 2), where→ indicates the direction of predictability.
The heat maps are separated for four time horizons: daily (k = 1), weekly (k = 5), monthly (k = 22), quarterly (k = 66). In each heat map,
the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1. The color scale
at the bottom indicates the numerical values of the heat map colors.
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Figure A5. Cross-quantilogram heat maps between regional green equity markets and technology stock market. Note: This figure reports the cross-quantilogram between the markets
(Market 1→Market 2), where→ indicates the direction of predictability. The heat maps are separated for four time horizons: daily (k = 1), weekly (k = 5), monthly (k = 22), quarterly
(k = 66). In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1. The color scale at the bottom
indicates the numerical values of the heat map colors.
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Appendix C. Granger Causality Tests in Quantiles

To further validate the main empirical results, this paper employs the non-parametric
quantile Granger causality tests by Jeong et al. (2012). Specifically, xt does not Granger-
cause yt in the θth quantile with respect to (yt−1, . . . , yt−p, xt−1, . . . xt−p) if

Qθ(yt|yt−1, . . . , yt−p, xt−1, . . . xt−p) = Qθ(yt|yt−1, . . . , yt−p) (A1)

xt Granger-causes yt in the θth quantile with respect to (yt−1, . . . , yt−p, xt−1, . . . xt−p)
if

Qθ(yt|yt−1, . . . , yt−p, xt−1, . . . xt−p) 6= Qθ(yt|yt−1, . . . , yt−p) (A2)

where Qθ(yt|·) is the θth conditional quantile of yt given ·. Let Yt = (yt−1, . . . , yt−p);
Xt = (xt−1, . . . xt−p) and Zt = (Yt, Xt) and Fyt |·(yt|·) be the conditional distribution of yt
given ·. Then the hypotheses in Equations (A1) and (A2) can be stated as:

P{Fyt |Zt
(Qθ(yt|Yt)|Zt)} = 1 (A3)

P{Fyt |Zt
(Qθ(yt|Yt)|Zt)} < 1 (A4)

To test the above hypotheses, Jeong et al. (2012) uses the distance measure
J = E{εtE(εt|Zt) fZ(Zt)}, where fZ(Zt) denotes the marginal density function of Zt and εt
is the regression error which is given as:

ε̂t = 1{yt <= Q̂θ(Yt)} − θ (A5)

where 1{·} is an indicator function. Q̂θ(Yt) is the conditional quantile of yt given Yt, which
is estimated using the nonparametric kernel method:

Q̂θ(Yt) = F̂−1
yt |Yt

(θ|Yt) (A6)

where F̂yt |Yt
(yt|Yt) =

∑s 6=t Lts1{ys≤yt}
∑s 6=t Lts

is the Nadaraya–Watson kernal estimator of F̂yt |Yt
(yt|Yt)

with the kernel function of Lts = L(yt − ys)/α. Following Jeong et al. (2012), we use the
least squares cross validation to choose the optimal bandwidth α and employ the Gaussian
kernel for L(·). The optimal lag length p is selected based on the Bayesian information
criterion (BIC).

Appendix D. Robustness Analyses: Cross-Quantile Dependence Among Green
Equity Markets

This section summarizes the robustness analyses of the results in Section 5.1. Specifi-
cally, the following robustness tests are employed:

1. Quantile Granger causality tests: Figure A6. The x-axis indicates the quantiles and
the y-axis indicates the test statistics for a specific pair of assets. For example, the
top-left graph in Figure A6 is named “GEUS-GEEU”, which captures the quantile
Granger causality test of whether the GEUS returns Granger cause the GEEU returns.
The red and blue lines in each graph correspond to the critical values at the 95% and
99% confidence levels.

2. Cross-quantilograms with GARCH-standardized residuals: Figure A7
3. Cross-quantilograms after controlling for market uncertainties (proxied by the OVX,

VIX and EPU indexes): Figures A8–A10
4. Cross-quantilograms among regional clean energy markets: Figure A11
5. Cross-quantilograms before, during and after the 2014–2016 oil price collapse:

Figures A12–A14
6. Recursive cross-quantilograms: Figure A15
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The optimal lag length of the quantile Granger causality tests is selected based on the
Bayesian information criteria. For the cross-quantilograms (Figures A7–A15), this section
only presents the results for lag k = 1 (the daily time horizon).14 The results for other lags
will be available upon request. The heat maps in this section follow the same color scale
as the heat maps in Section 5. Overall, these robustness analyses are consistent with the
results in Section 5.1.

14 As indicated in the main results (Section 5), the interdependence between the markets are the most significant at lag 1 and dissipates at longer lags.
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Note: This figure summarizes the quantile Granger causality test statistics. The x-axis indicates the quantiles and the y-axis indicates the test
statistics for a specific pair of assets. For example, the top-left graph is named “GEUS-GEEU”, which captures the quantile Granger causality
test of whether the GEUS returns Granger-cause the GEEU returns. The red and blue lines in each graph correspond to the critical values at
the 95% and 99% confidence levels.

Figure S7: Cross-quantilogram heat maps among regional green equity markets with GARCH-standardized residuals

(a) GEUS → GEEU (b) GEEU → GEUS (c) GEUS → GEASIA (d) GEASIA → GEUS (e) GEEU → GEASIA (f) GEASIA → GEEU

Note: This figure reports the cross-quantilogram between regional green equity markets (Market 1 → Market 2) using GARCH standardized
residuals. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure
S1. In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of
Market 1.
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Figure A6. Non-parametric quantile Granger causality tests among regional green equity markets. Note: This figure summarizes the quantile Granger causality test statistics. The x-axis
indicates the quantiles and the y-axis indicates the test statistics for a specific pair of assets. For example, the top-left graph is named “GEUS-GEEU”, which captures the quantile Granger
causality test of whether the GEUS returns Granger-cause the GEEU returns. The red and blue lines in each graph correspond to the critical values at the 95% and 99% confidence levels.

Figure S6: Non-parametric quantile Granger causality tests among regional green equity markets

Note: This figure summarizes the quantile Granger causality test statistics. The x-axis indicates the quantiles and the y-axis indicates the test
statistics for a specific pair of assets. For example, the top-left graph is named “GEUS-GEEU”, which captures the quantile Granger causality
test of whether the GEUS returns Granger-cause the GEEU returns. The red and blue lines in each graph correspond to the critical values at
the 95% and 99% confidence levels.

Figure S7: Cross-quantilogram heat maps among regional green equity markets with GARCH-standardized residuals

(a) GEUS → GEEU (b) GEEU → GEUS (c) GEUS → GEASIA (d) GEASIA → GEUS (e) GEEU → GEASIA (f) GEASIA → GEEU

Note: This figure reports the cross-quantilogram between regional green equity markets (Market 1 → Market 2) using GARCH standardized
residuals. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure
S1. In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of
Market 1.
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Figure A7. Cross-quantilogram heat maps among regional green equity markets with GARCH-standardized residuals. Note: This figure reports the cross-quantilogram between regional
green equity markets (Market 1→Market 2) using GARCH standardized residuals. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the
same color scales as in Figure A1. In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.Figure S8: Cross-quantilograms among regional green equity markets after controlling for OVX

(a) GEUS → GEEU (b) GEEU → GEUS (c) GEUS → GEASIA (d) GEASIA → GEUS (e) GEEU → GEASIA (f) GEASIA → GEEU

Note: This figure reports the cross-quantilogram between regional green equity markets (Market 1→ Market 2) after controlling for oil market
volatility. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure
S1. In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of
Market 1.

Figure S9: Cross-quantilograms among regional green equity markets after controlling for VIX

(a) GEUS → GEEU (b) GEEU → GEUS (c) GEUS → GEASIA (d) GEASIA → GEUS (e) GEEU → GEASIA (f) GEASIA → GEEU

Note: This figure reports the cross-quantilogram between regional green equity markets (Market 1 → Market 2) after controlling for stock
market volatility. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales
as in figure S1. In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return
quantiles of Market 1.
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Figure A8. Cross-quantilograms among regional green equity markets after controlling for OVX. Note: This figure reports the cross-quantilogram between regional green equity markets
(Market 1→Market 2) after controlling for oil market volatility. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as
in Figure A1. In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.
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Figure S8: Cross-quantilograms among regional green equity markets after controlling for OVX

(a) GEUS → GEEU (b) GEEU → GEUS (c) GEUS → GEASIA (d) GEASIA → GEUS (e) GEEU → GEASIA (f) GEASIA → GEEU

Note: This figure reports the cross-quantilogram between regional green equity markets (Market 1→ Market 2) after controlling for oil market
volatility. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure
S1. In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of
Market 1.

Figure S9: Cross-quantilograms among regional green equity markets after controlling for VIX

(a) GEUS → GEEU (b) GEEU → GEUS (c) GEUS → GEASIA (d) GEASIA → GEUS (e) GEEU → GEASIA (f) GEASIA → GEEU

Note: This figure reports the cross-quantilogram between regional green equity markets (Market 1 → Market 2) after controlling for stock
market volatility. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales
as in figure S1. In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return
quantiles of Market 1.
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Figure A9. Cross-quantilograms among regional green equity markets after controlling for VIX. Note: This figure reports the cross-quantilogram between regional green equity markets
(Market 1→Market 2) after controlling for stock market volatility. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales
as in Figure A1. In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.Figure S10: Cross-quantilograms among regional green equity markets after controlling for EPU

(a) GEUS → GEEU (b) GEEU → GEUS (c) GEUS → GEASIA (d) GEASIA → GEUS (e) GEEU → GEASIA (f) GEASIA → GEEU

Note: This figure reports the cross-quantilogram between regional green equity markets (Market 1 → Market 2) after controlling for economic
policy uncertainty. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales
as in figure S1. In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return
quantiles of Market 1.
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Figure A10. Cross-quantilograms among regional green equity markets after controlling for EPU. Note: This figure reports the cross-quantilogram between regional green equity markets
(Market 1→Market 2) after controlling for economic policy uncertainty. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color
scales as in Figure A1. In each heat map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.

Figure S11: Cross-quantilograms among regional clean energy markets

(a) CLNUS → CLNEU
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(b) CLNEU → CLNUS (c) CLNUS → CLNASIA (d) CLNASIA → CLNUS (e) CLNEU → CLNASIA (f) CLNASIA → CLNEU

Note: This figure reports the cross-quantilogram between the regional clean energy markets (Market 1 → Market 2). “→” indicates the
direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1. In each heat map, the
vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.
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Figure A11. Cross-quantilograms among regional clean energy markets. Note: This figure reports the cross-quantilogram between the regional clean energy markets (Market 1→
Market 2). “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1. In each heat map, the vertical axis
represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.
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Figure S12: Cross-quantilograms among regional green equity markets before the oil price collapse

(a) GEUS → GEEU
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(b) GEEU → GEUS (c) GEUS → GEASIA (d) GEASIA → GEUS (e) GEEU → GEASIA (f) GEASIA → GEEU

Note: This figure reports the cross-quantilogram between the markets (Market 1 → Market 2) before the oil price collapse. “→” indicates the
direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1. In each heat map, the
vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.

Figure S13: Cross-quantilograms among regional green equity markets during the oil price collapse

(a) GEUS → GEEU
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(b) GEEU → GEUS (c) GEUS → GEASIA (d) GEASIA → GEUS (e) GEEU → GEASIA (f) GEASIA → GEEU

Note: This figure reports the cross-quantilogram between the markets (Market 1 → Market 2) during the oil price collapse. “→” indicates the
direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1. In each heat map, the
vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.

Figure S14: Cross-quantilograms among regional green equity markets after the oil price collapse
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(b) GEEU → GEUS (c) GEUS → GEASIA (d) GEASIA → GEUS (e) GEEU → GEASIA (f) GEASIA → GEEU

Note: This figure reports the cross-quantilogram between the markets (Market 1 → Market 2) after the oil price collapse. “→” indicates the
direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1. In each heat map, the
vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.
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Figure A12. Cross-quantilograms among regional green equity markets before the oil price collapse. Note: This figure reports the cross-quantilogram between the markets (Market 1→
Market 2) before the oil price collapse. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1. In each heat
map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.

Figure S12: Cross-quantilograms among regional green equity markets before the oil price collapse
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Note: This figure reports the cross-quantilogram between the markets (Market 1 → Market 2) before the oil price collapse. “→” indicates the
direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1. In each heat map, the
vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.

Figure S13: Cross-quantilograms among regional green equity markets during the oil price collapse
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Note: This figure reports the cross-quantilogram between the markets (Market 1 → Market 2) during the oil price collapse. “→” indicates the
direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1. In each heat map, the
vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.

Figure S14: Cross-quantilograms among regional green equity markets after the oil price collapse
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Note: This figure reports the cross-quantilogram between the markets (Market 1 → Market 2) after the oil price collapse. “→” indicates the
direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1. In each heat map, the
vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.
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Figure A13. Cross-quantilograms among regional green equity markets during the oil price collapse. Note: This figure reports the cross-quantilogram between the markets (Market 1→
Market 2) during the oil price collapse. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1. In each heat
map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.
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Note: This figure reports the cross-quantilogram between the markets (Market 1 → Market 2) before the oil price collapse. “→” indicates the
direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1. In each heat map, the
vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.
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(a) GEUS → GEEU

D
ay

(b) GEEU → GEUS (c) GEUS → GEASIA (d) GEASIA → GEUS (e) GEEU → GEASIA (f) GEASIA → GEEU

Note: This figure reports the cross-quantilogram between the markets (Market 1 → Market 2) during the oil price collapse. “→” indicates the
direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1. In each heat map, the
vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.
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Note: This figure reports the cross-quantilogram between the markets (Market 1 → Market 2) after the oil price collapse. “→” indicates the
direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1. In each heat map, the
vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.
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Figure A14. Cross-quantilograms among regional green equity markets after the oil price collapse. Note: This figure reports the cross-quantilogram between the markets (Market 1→
Market 2) after the oil price collapse. “→” indicates the direction of predictability. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1. In each heat
map, the vertical axis represents the return quantiles of Market 2, while the horizontal axis represents return quantiles of Market 1.
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Figure S15: Recursive cross-quantilograms among regional green equity markets
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Note: This figure reports the recursive cross-quantilogram between the markets (Market 1 → Market 2) when both are at the 5%, 50% and
95% quantiles. “→” indicates the direction of predictability. The blue lines indicate the cross-quantilogram values and the red lines indicate
the 95% confidence intervals, which is obtained from 1000 bootstrap iterations.

22

Figure A15. Recursive cross-quantilograms among regional green equity markets. Note: This figure reports the recursive cross-quantilogram between the markets (Market 1→Market 2)
when both are at the 5%, 50% and 95% quantiles. “→” indicates the direction of predictability. The blue lines indicate the cross-quantilogram values and the red lines indicate the 95%
confidence intervals, which is obtained from 1000 bootstrap iterations.
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Appendix E. Robustness Analyses: Cross-Quantile Dependence between Regional
Green Equity Markets and Energy Commodity Markets

This section summarizes the robustness analyses of the results in Section 5.2. Specifi-
cally, the following robustness tests are employed:

1. Quantile Granger causality tests: Figure A16.
2. Cross-quantilograms with GARCH-standardized residuals: Figure A17
3. Cross-quantilograms after controlling for market uncertainties (proxied by the OVX,

VIX and EPU indexes): Figures A18–A20
4. Cross-quantilograms among regional clean energy markets: Figure A21
5. Cross-quantilograms before, during and after the 2014–2016 oil price collapse:

Figures A22–A24
6. Recursive cross-quantilograms: Figures A25–A27

The optimal lag length of the quantile Granger causality tests is selected based on the
Bayesian information criteria. For the cross-quantilograms (Figures A17–A25), this section
only presents the results for lag k = 1 (the daily time horizon).15 The results for other lags
will be available upon request. The heat maps in this section follow the same color scale
as the heat maps in Section 5. Overall, these robustness analyses are consistent with the
results in Section 5.2.

15 As indicated in the main results (Section 5), the interdependence between the markets are the most significant at lag 1 and dissipates at longer lags.
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Figure S16: Non-parametric Granger causality tests in quantiles between regional green equity and energy commodity
markets

I. Energy commodity

II. Oil commodity

III. Natural gas commodity

Note: This figure summarizes the quantile Granger causality test statistics. The x-axis indicates the quantiles and the y-axis indicates the test
statistics for a specific pair of assets. For example, the top-left graph is named “GEUS-Energy”, which captures the quantile Granger causality
test of whether the GEUS returns Granger-cause the Energy returns. The red and blue lines in each graph correspond to the critical values at
the 95% and 99% confidence levels.
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Figure A16. Non-parametric Granger causality tests in quantiles between regional green equity and energy commodity markets. Note: This figure summarizes the quantile Granger
causality test statistics. The x-axis indicates the quantiles and the y-axis indicates the test statistics for a specific pair of assets. For example, the top-left graph is named “GEUS-Energy”,
which captures the quantile Granger causality test of whether the GEUS returns Granger-cause the energy returns. The red and blue lines in each graph correspond to the critical values at
the 95% and 99% confidence levels.



J. Risk Financial Manag. 2021, 14, 39 38 of 58Figure S17: Cross-quantilograms between regional green equity and energy commodity markets with GARCH standardized
residuals
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the Energy, Crude oil and Natural gas
commodity markets using GARCH standardized residuals. “→” in the column titles indicates the direction of predictability, while the row
titles indicate the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A17. Cross-quantilograms between regional green equity and energy commodity markets with GARCH standardized residuals. Note: This figure reports the cross-quantilogram
between the regional green equity markets and the energy, crude oil and natural gas commodity markets using GARCH standardized residuals. “→” in the column titles indicates the
direction of predictability, while the row titles indicate the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.
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Figure S18: Cross-quantilograms between regional green equity and energy commodity markets after controlling for OVX
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the Energy, Crude oil and Natural gas
commodity markets after controlling for oil market volatility. “→” in the column titles indicates the direction of predictability, while the row
titles indicate the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A18. Cross-quantilograms between regional green equity and energy commodity markets after controlling for OVX. Note: This figure reports the cross-quantilogram between the
regional green equity markets and the energy, crude oil and natural gas commodity markets after controlling for oil market volatility. “→” in the column titles indicates the direction of
predictability, while the row titles indicate the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.
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Figure S19: Cross-quantilograms between regional green equity and energy commodity markets after controlling for VIX
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the Energy, Crude oil and Natural gas
commodity markets after controlling for stock market volatility. “→” in the column titles indicates the direction of predictability, while the
row titles indicate the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A19. Cross-quantilograms between regional green equity and energy commodity markets after controlling for VIX. Note: This figure reports the cross-quantilogram between the
regional green equity markets and the energy, crude oil and natural gas commodity markets after controlling for stock market volatility. “→” in the column titles indicates the direction of
predictability, while the row titles indicate the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.
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Figure S20: Cross-quantilograms between regional green equity and energy commodity markets after controlling for EPU
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the Energy, Crude oil and Natural gas
commodity markets after controlling for economic policy uncertainty. “→” in the column titles indicates the direction of predictability, while
the row titles indicate the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure
S1.

28

Figure A20. Cross-quantilograms between regional green equity and energy commodity markets after controlling for EPU. Note: This figure reports the cross-quantilogram between the
regional green equity markets and the energy, crude oil and natural gas commodity markets after controlling for economic policy uncertainty. “→” in the column titles indicates the
direction of predictability, while the row titles indicate the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.
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Figure S21: Cross-quantilograms between regional clean energy and energy commodity markets
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Note: This figure reports the cross-quantilogram between the regional clean energy markets and the Energy, Crude oil and Natural gas com-
modity markets. “→” in the column titles indicates the direction of predictability, while the row titles indicate the commodity in consideration.
The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A21. Cross-quantilograms between regional clean energy and energy commodity markets. Note: This figure reports the cross-quantilogram between the regional clean energy
markets and the energy, crude oil and natural gas commodity markets. “→” in the column titles indicates the direction of predictability, while the row titles indicate the commodity in
consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.
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Figure S22: Cross-quantilograms between regional green equity and energy commodity markets before the oil price collapse
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the Energy, Crude oil and Natural gas
commodity markets before the oil price collapse. “→” in the column titles indicates the direction of predictability, while the row titles indicate
the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A22. Cross-quantilograms between regional green equity and energy commodity markets before the oil price collapse. Note: This figure reports the cross-quantilogram between the
regional green equity markets and the energy, crude oil and natural gas commodity markets before the oil price collapse. “→” in the column titles indicates the direction of predictability,
while the row titles indicate the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.
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Figure S23: Cross-quantilograms between regional green equity and energy commodity markets during the oil price collapse
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the Energy, Crude oil and Natural gas
commodity markets during the oil price collapse. “→” in the column titles indicates the direction of predictability, while the row titles indicate
the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A23. Cross-quantilograms between regional green equity and energy commodity markets during the oil price collapse. Note: This figure reports the cross-quantilogram between the
regional green equity markets and the energy, crude oil and natural gas commodity markets during the oil price collapse. “→” in the column titles indicates the direction of predictability,
while the row titles indicate the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.
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Figure S24: Cross-quantilograms between regional green equity and energy commodity markets after the oil price collapse
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the Energy, Crude oil and Natural gas
commodity markets after the oil price collapse. “→” in the column titles indicates the direction of predictability, while the row titles indicate
the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A24. Cross-quantilograms between regional green equity and energy commodity markets after the oil price collapse. Note: This figure reports the cross-quantilogram between the
regional green equity markets and the energy, crude oil and natural gas commodity markets after the oil price collapse. “→” in the column titles indicates the direction of predictability,
while the row titles indicate the commodity in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.
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Figure S25: Recursive cross-quantilograms between regional green equity markets and energy commodity market
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Note: This figure reports the recursive cross-quantilogram between the markets (Market 1 → Market 2) when both are at the 5%, 50% and
95% quantiles. “→” indicates the direction of predictability. The blue lines indicate the cross-quantilogram values and the red lines indicate
the 95% confidence intervals, which is obtained from 1000 bootstrap iterations.
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Figure A25. Recursive cross-quantilograms between regional green equity markets and energy commodity market. Note: This figure reports the recursive cross-quantilogram between the
markets (Market 1→Market 2) when both are at the 5%, 50% and 95% quantiles. “→” indicates the direction of predictability. The blue lines indicate the cross-quantilogram values and
the red lines indicate the 95% confidence intervals, which is obtained from 1000 bootstrap iterations.
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Figure S26: Recursive cross-quantilograms between regional green equity markets and oil commodity market
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Note: This figure reports the recursive cross-quantilogram between the markets (Market 1 → Market 2) when both are at the 5%, 50% and
95% quantiles. “→” indicates the direction of predictability. The blue lines indicate the cross-quantilogram values and the red lines indicate
the 95% confidence intervals, which is obtained from 1000 bootstrap iterations.
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Figure A26. Recursive cross-quantilograms between regional green equity markets and oil commodity market. Note: This figure reports the recursive cross-quantilogram between the
markets (Market 1→Market 2) when both are at the 5%, 50% and 95% quantiles. “→” indicates the direction of predictability. The blue lines indicate the cross-quantilogram values and
the red lines indicate the 95% confidence intervals, which is obtained from 1000 bootstrap iterations.
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Figure S27: Recursive cross-quantilograms between regional green equity markets and natural gas commodity market
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Note: This figure reports the recursive cross-quantilogram between the markets (Market 1 → Market 2) when both are at the 5%, 50% and
95% quantiles. “→” indicates the direction of predictability. The blue lines indicate the cross-quantilogram values and the red lines indicate
the 95% confidence intervals, which is obtained from 1000 bootstrap iterations.
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Figure A27. Recursive cross-quantilograms between regional green equity markets and natural gas commodity market. Note: This figure reports the recursive cross-quantilogram between
the markets (Market 1→Market 2) when both are at the 5%, 50% and 95% quantiles. “→” indicates the direction of predictability. The blue lines indicate the cross-quantilogram values
and the red lines indicate the 95% confidence intervals, which are obtained from 1000 bootstrap iterations.
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Appendix F. Robustness Analyses: Cross-Quantile Dependence between Regional
Green Equity Markets and the Stock Market

This section summarizes the robustness analyses of the results in Section 5.3. Specifi-
cally, the following robustness tests are employed:

1. Quantile Granger causality tests: Figure A28.
2. Cross-quantilograms with GARCH-standardized residuals: Figure A29
3. Cross-quantilograms after controlling for market uncertainties (proxied by the OVX,

VIX and EPU indexes): Figures A30–A32
4. Cross-quantilograms among regional clean stock markets: Figure A33
5. Cross-quantilograms before, during and after the 2014–2016 oil price collapse:

Figures A34–A36
6. Recursive cross-quantilograms: Figures A37 and A38

The optimal lag length of the quantile Granger causality tests is selected based on the
Bayesian information criteria. For the cross-quantilograms (Figures A29–A37), this section
only presents the results for lag k = 1 (the daily time horizon).16 The results for other lags
will be available upon request. The heat maps in this section follow the same color scale
as the heat maps in Section 5. Overall, these robustness analyses are consistent with the
results in Section 5.3.

16 As indicated in the main results (Section 5), the interdependence between the markets are the most significant at lag 1 and dissipates at longer lags.
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Figure S28: Non-parametric Granger causality tests in quantiles between regional green equity and other stock markets
I. BMI

II. PSE

Note: This figure summarizes the quantile Granger causality test statistics. The x-axis indicates the quantiles and the y-axis indicates the test
statistics for a specific pair of assets. For example, the top-left graph is named “GEUS-BMI”, which captures the quantile Granger causality
test of whether the GEUS returns Granger-cause the BMI returns. The red and blue lines in each graph correspond to the critical values at
the 95% and 99% confidence levels.
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Figure A28. Non-parametric Granger causality tests in quantiles between regional green equity and other stock markets. Note: This figure summarizes the quantile Granger causality test
statistics. The x-axis indicates the quantiles and the y-axis indicates the test statistics for a specific pair of assets. For example, the top-left graph is named “GEUS-BMI”, which captures the
quantile Granger causality test of whether the GEUS returns Granger-cause the BMI returns. The red and blue lines in each graph correspond to the critical values at the 95% and 99%
confidence levels.



J. Risk Financial Manag. 2021, 14, 39 51 of 58Figure S29: Cross-quantilograms between regional green equity and other stock markets with GARCH standardized
residuals
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE stock indexes using
GARCH standardized residuals. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index
in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.

Figure S30: Cross-quantilograms between regional green equity and other stock markets after controlling for OVX
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE indexes after controlling
for oil market volatility. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index in
consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A29. Cross-quantilograms between regional green equity and other stock markets with GARCH standardized residuals. Note: This figure reports the cross-quantilogram between
the regional green equity markets and the BMI and PSE stock indexes using GARCH standardized residuals. “→” in the column titles indicates the direction of predictability, while the
row titles indicate the stock index in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.

Figure S29: Cross-quantilograms between regional green equity and other stock markets with GARCH standardized
residuals
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE stock indexes using
GARCH standardized residuals. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index
in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.

Figure S30: Cross-quantilograms between regional green equity and other stock markets after controlling for OVX
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE indexes after controlling
for oil market volatility. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index in
consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A30. Cross-quantilograms between regional green equity and other stock markets after controlling for OVX. Note: This figure reports the cross-quantilogram between the regional
green equity markets and the BMI and PSE indexes after controlling for oil market volatility. “→” in the column titles indicates the direction of predictability, while the row titles indicate
the stock index in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.
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Figure S31: Cross-quantilograms between regional green equity and other stock markets after controlling for VIX
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE indexes after controlling
for stock market volatility. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index in
consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.

Figure S32: Cross-quantilograms between regional green equity and other stock markets after controlling for EPU
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE indexes after controlling
for economic policy uncertainty. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index
in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A31. Cross-quantilograms between regional green equity and other stock markets after controlling for VIX. Note: This figure reports the cross-quantilogram between the regional
green equity markets and the BMI and PSE indexes after controlling for stock market volatility. “→” in the column titles indicates the direction of predictability, while the row titles
indicate the stock index in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.

Figure S31: Cross-quantilograms between regional green equity and other stock markets after controlling for VIX
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE indexes after controlling
for stock market volatility. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index in
consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.

Figure S32: Cross-quantilograms between regional green equity and other stock markets after controlling for EPU
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE indexes after controlling
for economic policy uncertainty. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index
in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A32. Cross-quantilograms between regional green equity and other stock markets after controlling for EPU. Note: This figure reports the cross-quantilogram between the regional
green equity markets and the BMI and PSE indexes after controlling for economic policy uncertainty. “→” in the column titles indicates the direction of predictability, while the row titles
indicate the stock index in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.
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Figure S33: Cross-quantilograms between regional clean energy and other stock markets
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Note: This figure reports the cross-quantilogram between the regional clean energy markets and the BMI and PSE indexes. “→” in the column
titles indicates the direction of predictability, while the row titles indicate the stock index in consideration. The heat maps are plotted for lag
1 (k = 1) and have the same color scales as in figure S1.

Figure S34: Cross-quantilograms between regional green equity and other stock markets before the oil price collapse
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE indexes before the oil price
collapse. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index in consideration. The
heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A33. Cross-quantilograms between regional clean energy and other stock markets. Note: This figure reports the cross-quantilogram between the regional clean energy markets and
the BMI and PSE indexes. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index in consideration. The heat maps are plotted for lag 1
(k = 1) and have the same color scales as in Figure A1.

Figure S33: Cross-quantilograms between regional clean energy and other stock markets
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Note: This figure reports the cross-quantilogram between the regional clean energy markets and the BMI and PSE indexes. “→” in the column
titles indicates the direction of predictability, while the row titles indicate the stock index in consideration. The heat maps are plotted for lag
1 (k = 1) and have the same color scales as in figure S1.

Figure S34: Cross-quantilograms between regional green equity and other stock markets before the oil price collapse
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE indexes before the oil price
collapse. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index in consideration. The
heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A34. Cross-quantilograms between regional green equity and other stock markets before the oil price collapse. Note: This figure reports the cross-quantilogram between the
regional green equity markets and the BMI and PSE indexes before the oil price collapse. “→” in the column titles indicates the direction of predictability, while the row titles indicate the
stock index in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.
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Figure S35: Cross-quantilograms between regional green equity and other stock markets during the oil price collapse
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE indexes during the oil price
collapse. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index in consideration. The
heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.

Figure S36: Cross-quantilograms between regional green equity and other stock markets after the oil price collapse
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE indexes after the oil price
collapse. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index in consideration. The
heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A35. Cross-quantilograms between regional green equity and other stock markets during the oil price collapse. Note: This figure reports the cross-quantilogram between the
regional green equity markets and the BMI and PSE indexes during the oil price collapse. “→” in the column titles indicates the direction of predictability, while the row titles indicate the
stock index in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.

Figure S35: Cross-quantilograms between regional green equity and other stock markets during the oil price collapse
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE indexes during the oil price
collapse. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index in consideration. The
heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.

Figure S36: Cross-quantilograms between regional green equity and other stock markets after the oil price collapse
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Note: This figure reports the cross-quantilogram between the regional green equity markets and the BMI and PSE indexes after the oil price
collapse. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index in consideration. The
heat maps are plotted for lag 1 (k = 1) and have the same color scales as in figure S1.
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Figure A36. Cross-quantilograms between regional green equity and other stock markets after the oil price collapse. Note: This figure reports the cross-quantilogram between the regional
green equity markets and the BMI and PSE indexes after the oil price collapse. “→” in the column titles indicates the direction of predictability, while the row titles indicate the stock index
in consideration. The heat maps are plotted for lag 1 (k = 1) and have the same color scales as in Figure A1.
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Figure S37: Recursive cross-quantilograms between regional green equity markets and the general stock market
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Note: This figure reports the recursive cross-quantilogram between the markets (Market 1 → Market 2) when both are at the 5%, 50% and
95% quantiles. “→” indicates the direction of predictability. The blue lines indicate the cross-quantilogram values and the red lines indicate
the 95% confidence intervals, which is obtained from 1000 bootstrap iterations.
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Figure A37. Recursive cross-quantilograms between regional green equity markets and the general stock market. Note: This figure reports the recursive cross-quantilogram between the
markets (Market 1→Market 2) when both are at the 5%, 50% and 95% quantiles. “→” indicates the direction of predictability. The blue lines indicate the cross-quantilogram values and
the red lines indicate the 95% confidence intervals, which is obtained from 1000 bootstrap iterations.
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Figure S38: Recursive cross-quantilograms between regional green equity markets and the technology stock market
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Note: This figure reports the recursive cross-quantilogram between the markets (Market 1 → Market 2) when both are at the 5%, 50% and
95% quantiles. “→” indicates the direction of predictability. The blue lines indicate the cross-quantilogram values and the red lines indicate
the 95% confidence intervals, which is obtained from 1000 bootstrap iterations.
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Figure A38. Recursive cross-quantilograms between regional green equity markets and the technology stock market. Note: This figure reports the recursive cross-quantilogram between
the markets (Market 1→Market 2) when both are at the 5%, 50% and 95% quantiles. “→” indicates the direction of predictability. The blue lines indicate the cross-quantilogram values
and the red lines indicate the 95% confidence intervals, which is obtained from 1000 bootstrap iterations.
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