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Abstract: Systemic risk is the risk that the distress of one or more institutions trigger a collapse
of the entire financial system. We extend CoVaR (value-at-risk conditioned on an institution)
and CoCVaR (conditional value-at-risk conditioned on an institution) systemic risk contribution
measures and propose a new CoCDaR (conditional drawdown-at-risk conditioned on an institution)
measure based on drawdowns. This new measure accounts for consecutive negative returns
of a security, while CoVaR and CoCVaR combine together negative returns from different time
periods. For instance, ten 2% consecutive losses resulting in 20% drawdown will be noticed
by CoCDaR, while CoVaR and CoCVaR are not sensitive to relatively small one period losses.
The proposed measure provides insights for systemic risks under extreme stresses related to
drawdowns. CoCDaR and its multivariate version, mCoCDaR, estimate an impact on big cumulative
losses of the entire financial system caused by an individual firm’s distress. It can be used for ranking
individual systemic risk contributions of financial institutions (banks). CoCDaR and mCoCDaR
are computed with CVaR regression of drawdowns. Moreover, mCoCDaR can be used to estimate
drawdowns of a security as a function of some other factors. For instance, we show how to perform
fund drawdown style classification depending on drawdowns of indices. Case study results, data,
and codes are posted on the web.

Keywords: systemic risk; conditional value-at-risk; CVaR; CVaR regression; drawdown;
conditional drawdown-at-risk; fund style classification

1. Introduction

Systemic risk is the risk that the distress of one or more institutions triggers a collapse of the
entire financial system. The CoVaR measure for systemic risk contributions was first proposed by
Adrian and Brunnermeier (2008). This measure is the value-at-risk (VaR) of the financial system
conditional on an institution (bank) being in financial distress. The systemic risk contribution of an
institution is defined as a difference of VaR conditioning on the institution being under distress and
being in its normal state. Huang and Uryasev (2017) replaced VaR by conditional value-at-risk (CVaR)
and proposed the CoCVaR measure. CVaR has superior mathematical properties as compared to VaR;
see, for instance, Rockafellar and Uryasev (2002). CVaR takes into account losses in the distribution
tail, while VaR is not sensitive to outcomes in the tail.

Similar to Huang and Uryasev (2017), this paper is based on CVaR, but returns are replaced by
drawdowns. The relevant risk measure is called conditional drawdown-at-risk (CDaR). By applying
the CoCVaR approach to drawdowns, we defined CoCDaR. Therefore, CoCDaR is CDaR of the
financial system conditioned on an institution in distress measured by drawdown. The intuition
behind CDaR instead of VaR or CVaR is that these two measures do not take into account consecutive
losses. As a result, small consecutive losses resulting in a large cumulative loss are not picked up
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by VaR or CVaR. Drawdown, which is capturing cumulative losses, is popular in active portfolio
management. The idea behind CoCDaR is that large drawdowns of financial institutions have a strong
effect on the system as a whole. Hence, by conditioning on large drawdowns of institutions we can
analyze systemic risk contributions (compared to effect of one-period negative returns).

We further extended CoCDaR with multiple regression framework and developed so-called
mCoCDaR. This measure allows for multiple institutions being in distress, while CoVaR, CoCVaR
and CoCDaR assume that only one institution is in distress and others are in normal states. Similar
to mCoCDaR, we considered a multiple regression version of CoCVaR, called mCoCVaR. Therefore,
mCoCVaR and mCoCDaR account for multiple marginal risk contributions of institutions and are
well-defined Shapley values. This approach is motivated by the idea of identifying a risk contribution
of each institution that is independent of contributions of other institutions. The estimation of
CoCDaR and mCoCDaR was performed with CVaR regression developed in Rockafellar et al. (2014)
and Golodnikov et al. (2019). The CVaR regression in CoCDaR uses drawdowns, while CoCVaR
uses returns.

The mCoCDaR framework was also illustrated with fund style classification by using drawdowns
instead of returns. This approach extends Bassett and Chen (2001), which used quantile regressions of
fund returns depending on returns of indices. In addition, we have considered portfolio optimization
formulations with CoCVaR and CoCDaR objectives and risk constraints.

CoCDaR and mCoCDaR approaches were demonstrated with a case study for the 10 largest USA
banks. Furthermore, we have performed drawdown style classification of the Magellan fund using four
stock indices. CVaR regression was implemented with Portfolio Safeguard (PSG) developed by AORDA
(http://aorda.com). Case studies results and codes are posted on the web for verification purposes.

2. Methodology

2.1. Drawdown Definition

Suppose r1, . . . , rT are the rates of return of a risky instrument coming from a distribution of
return random variable X. Let ξt be the cumulative rate of return of the instrument for time t,
which can be either uncompounded and defined by ξt = ∑t

k=1 rk or compounded and defined by
ξt = ∏t

k=1(1 + rk)− 1. Further analysis in this section holds for either definition of the cumulative
return, however, for the sake of tractability of optimization problems, ξt is defined as uncompounded
cumulative rate of return.

The drawdown of the instrument at time t with τ-window is defined as follows
(see Chekhlov et al. (2005); Zabarankin et al. (2014)),

yt = max
tτ≤k≤t

ξk − ξt, tτ = max{t− τ, 1}, t = 1, . . . , T, τ = 1, . . . , T. (1)

At time t, the drawdown is the loss of the instrument, since a peak of ξt that occurs within the
τ-window [tτ , t] (tτ = 1 for t ≤ τ and tτ = t − τ for t > τ). If at time t, the cumulative rate of
return ξt is the highest on [tτ , t], then yt = 0. The drawdown is always nonnegative and is often
referred to as underwater curve. It is zero for all time moments only if returns are nonnegative for
all period. See Figure 1 for the illustration of the drawdown definition (the figure is borrowed from
Zabarankin et al. (2014)).

http://aorda.com
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Figure 1. Drawdown example: the solid line is the uncompounded cumulative rate of return, which at
time t is the sum of rates of return over periods 1, . . . , t. Here, τ = 6. For t = 5, ξ5 = 0.5%, whereas the
maximum of ξt over time moments preceding t = 5 occurs at t = 2 with ξ2 = 1.5%. Consequently,
y5 = 1.5%− 0.5% = 1%. The instrument maximum drawdown over time period [0, 6] occurs at t = 5.

2.2. CoCDaR Definitions

Conditional value-at-risk (CVaR) of a random variable X (see Rockafellar and Uryasev (2000, 2002)),
can be defined as follows,

CVaRα(X) = min
C
{C +

1
1− α

E[(X− C)+]} ,

where A+ = max{0, A}. The α-conditional drawdown is an expectation over the worst 1− α

drawdowns occurring in the considered horizon. We can look at {yt}1≤t≤T as a nonlinear
transformation of observations from the random return variable X and denote the random variable for
drawdowns by Y. The conditional drawdown-at-risk (CDaR) for X is defined as CVaR of Y:

CDaRα(X) = CVaRα(Y) .

Let Xsys denote return of a financial system and let returns of financial institutions i = 1, . . . , I
be denoted as Xi. Given a sample path of data {xsys

t , x1
t , . . . , xI

t}1≤t≤T , we can obtain the
drawdown observations for the financial system as well as all the institutions and denote them by
{ysys

t , d1
t , . . . , dI

t}1≤t≤T . Let Ysys, D1, ..., DI denote random variables associated with these observations.
Similar to Huang and Uryasev (2017), we can define CoCDaR as:

CoCDaRsys|i
α = CDaRα(Xsys|Xi, M1, ..., Mn) = CVaRα(Ysys|Di, M1, ..., Mn) .

Here M1, ..., Mn are state factor variables which we define in the next section. They are the lagged
system variables used in Huang and Uryasev (2017), but transformed to provide more explanatory
powers in drawdown regression (considered later on).

CoCDaRsys|i
α gives a measure of CDaR of a system (index) conditioning on the drawdown level

of an individual institution (stock) i, along with some other state variables. By using drawdown
instead of return, we are looking specifically at the impact of individual institution drawdown to the
entire financial system drawdown as a measure of systemic risk contribution (that takes into account
consecutive distress periods). This intuition will be further developed in Section 2.6.

2.3. State Variables

Lagged state variables M1,t−1, ..., Mn,t−1 used in the regression in the following section were
introduced by Adrian and Brunnermeier (2008):

(1) VIX = The Chicago Board Options Exchange Volatility Index;
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(2) Liquidity Spread = A short-term liquidity spread, defined as the difference between the
three-month repurchase agreement rate and the three-month treasury bill rate;

(3) 3M Treasury Change = The change in the three-month T-bill rate;
(4) Term Spread Change = The change in the slope of the yield curve, measured by the yield

spread between the ten-year treasury rate and the three-month bill rate;
(5) Credit Spread Change = The change in the credit spread between Baa-rated bonds and the

treasury rate;
(6) Equity Returns = The equity market return from S&P 500 Index;
(7) Real Estate Excess Return = The real estate sector return in excess of the market return.

2.4. Estimation of CoCDaR

Consider the following regression similar to Adrian and Brunnermeier (2008) and
Huang and Uryasev (2017),

Ysys
t ∼ β0 + β1Di

t + ω1Mt−1,1 + ... + ωn Mt−1,n .

We define the residual random variable as:

L = Ysys − (β0 + β1Di + ω1M1 + ... + ωn Mn) .

This regression problem uses a single institution’s drawdown and lagged state variables as factors
to model the drawdown of the financial system. We have T observations of the system drawdowns,
drawdowns of institution i, and the state factors. We next perform a CVaR regression with the above
model and find CVaR of the system’s drawdown conditioned on drawdowns of institution i. Here,
the state factors are cumulative changes of each fundamental factor in the period of the current
drawdown of the financial system. In particular, VIX and liquidity spread are given in numbers so
we calculate the time lagged difference of them in the current period of system drawdown. The other
state factors are given in percentage changes, so we calculate their cumulative changes in the current
period of system drawdown.

For each time step t, we consider the system cumulative returns ξ
sys
t and find the historic peak

time (used in drawdown definition), denoted by

ν(t) = arg max
tτ≤s≤t

ξ
sys
s . (2)

Let the original state variable values (numeric or cumulative changes in percentage) be denoted by mt.
The transformed state variables for the CoCDaR regression are hence defined for each j = 1, . . . , n :

Mt−1,j = mt−1,j −mν(t),j .

The estimate of the α-CVaR of Ysys can be obtained by minimizing the CVaR (superquantile) error from
Rockafellar et al. (2014):

ECVaR
α (L) =

1
1− α

∫ 1

0
CVaR+

γ (L) dγ− E[L] . (3)

Golodnikov et al. (2019) proved that minimization of error (3) for CVaR regression can be reduced
to the minimization of the Rockafellar error (convex and liner programming formulations are in
Appendix A, Golodnikov et al. (2019)). The Rockafellar error belongs to the mixed quantile quadrangle,
as defined by Rockafellar and Uryasev (2013). For given confidence levels αk ∈ (0, 1) and weights

λk > 0, k = 1, . . . , K such that
K
∑

k=1
λk=1, the Rockafellar error equals:
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EROC(L) = min
C1,...,CK

{
K

∑
k=1

λkEKB
αk

(L− Ck) |
K

∑
k=1

λkCk = 0

}
, (4)

where the rescaled Koenker–Bassett (KB) error equals:

EKB
α (L) = E

[
α

1− α
L+ + (−L)+

]
. (5)

Koenker and Bassett (1978) suggested estimating a conditional quantile by minimizing error (5).
Since CVaR is an integral of quantile (VaR), then it is not surprising that CVaR can be estimated
with Rockafellar error (4) which is a weighted average of KB-errors. The Rockafellar error is
quite a complicated function: it is a minimum of a convex nonsmooth function with respect to
variables C1, . . . , CK with a linear constraint. However, since this error is a convex piece-wise linear
function, it can be minimized very efficiently; see for instance results of numerical experiments in
Golodnikov et al. (2019). The resulting coefficients will provide an estimate of the α-CVaR of the
dependent variable conditioned on the independent variables.

Denote by β̂α
0, β̂α

1, ω̂α
1 , ..., ω̂α

n the regression coefficients obtained by minimizing the Rockafellar
error (4). CoCVaR of the system’s drawdown, which is CoCDaR of the system, is estimated by:

CoCDaRsys
t,α = β̂α

0 + β̂α
1Di

t + ω̂α
1 Mt−1,1 + ... + ω̂α

n Mt−1,n .

This regression estimation is done for every institution, i = 1, . . . , I.

2.5. Institutional Drawdown-at-Risk

To calculate system CoCDaR at some risk level conditioned on institution i being in drawdown
distress, we need to set an institutional distress level Di

t.
α-value-at-risk (VaR), which is also α-quantile, of a random loss variable L is defined as:

VaRα(L) = inf{x : FL(x) ≥ α} .

We define α-drawdown-at-risk (α-DaR) of an institution i as the α-quantile (VaR) of the drawdown loss
random variable Di corresponding to its return random variable Xi, where α ∈ [0, 1],

DaRα(Xi) = VaRα(Di) .

Similar to Huang and Uryasev (2017), we can use quantile regression for estimation of α-DaR:

Di
t ∼ γi

0 + γi
1Mi

t−1,1 + ... + γi
n Mi

t−1,n .

Here, the state factors Mi
1, ..., Mi

n are defined differently compared to the CoCDaR regression. They are
the same fundamental factor changes but calculated in the current period of each institution drawdown.
Define νi(t) = argmaxtτ≤s≤t ξ i

s for each institution i = 1, . . . , I, where ξ i
t are the cumulative returns

observations. The transformed state variables for the DaR regression are hence defined for each
j = 1, . . . , n:

Mi
t−1,j = mt−1,j −mνi(t),j .

Let the residual term be denoted as:

Gi = Di − (γi
0 + γi

1Mi
1 + ... + γi

n Mi
n) .

By minimizing KB-error, EKB
α (Gi), we find coefficients γ̂i

0, ..., γ̂i
n and estimate the α-quantile of Di

t:

DaRi
t,α = γ̂i

0 + γ̂i
1Mi

t−1,1 + ... + γ̂i
n Mi

t−1,n .
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2.6. Sytemic Risk Contribution

We have defined the CoCDaR measure and suggested an estimation procedure with CVaR
regression. Next we show how to use this measure for systemic risk contribution measurement.
We follow definitions from Huang and Uryasev (2017) and define:

Xsys
t = 100 ln

It

It−1
,

as the system’s return variable which is the log return of the index value, such as the Dow Jones Index.
Similarly, the i-th financial institution log return Xi

t is defined as:

Xi
t = 100 ln

Pi
t

Pi
t−1

,

where Pi
t is the closing price of institution i at time t.

Using the definitions in previous sections, we get the drawdown observations Ysys
t , Di

t for the
financial system and an institution i. We also have state factors, Mt−1,1, ..., Mt−1,n, for every time
moment t is in the considered horizon.

We first perform the quantile regression in Section 2.5 to estimate DaRi
t,α′ for all t for two particular

levels: α′1 = 0.9 and α′2 = 0.5. The level α′1 = 0.9 corresponds to the distress level of the institution in
terms of its drawdown and α′2 = 0.5 corresponds to the median (normal) state of the institution.

Next we perform the CVaR regression from Section 2.4 and obtain an estimate of the α-CoCDaR
of the financial system conditioned on the drawdown level of institution i and state factors. Here α is
different from α′ used in the previous quantile regression. For every time step t, we calculate:

CoCDaR
sys|Di

t=DaRi
t,α′

t,α = β̂α
0 + β̂α

1DaRi
t,α′ + ω̂α

1 Mt−1,1 + ... + ω̂α
n Mt−1,n .

By choosing α′1 = 0.9 and α′2 = 0.5 for the DaR level for an individual institution and selecting a
separate risk level α for system CoCDaR, we obtain:

∆CoCDaRsys|i
t,α = CoCDaR

sys|Di
t=DaRi

t,0.9
t,α − CoCDaR

sys|Di
t=DaRi

t,0.5
t,α .

This difference is defined as the systemic drawdown risk contribution of institution i to the financial
system at the selected risk level α. More concretely, it calculates the difference in conditional
drawdown-at-risk values of the financial system given that the drawdown level of institution i is at its
distress level or its normal level as a measure of systemic drawdown risk contribution.

2.7. mCoCDaR Definition

Using the same set of state factors and extending the idea of CoCDaR as a measure of systemic risk
contribution, we propose a more comprehensive measure called multiple-CoCDaR, which measures
the conditional drawdown-at-risk of the financial system conditioned on the distress levels of all I
institutions being considered. The idea is an extension of the CoCDaR approach defined above by
combining it with a generalization of the multiple-CoVaR method defined in Bernardi et al. (2013) and
Bernardi and Petrella (2014). In their paper, a similar approach was developed that defines conditional
tail risk of a system/institution conditioned on the distress level of multiple institutions at the same
time. A similar approach was also seen in Cao (2013). Different from their methods, our approach uses
a simple multiple regression formulation. In the multiple regression framework, we can measure risk
contribution of an institution by taking the difference between CoCDaR values of the system under
different drawdown levels of that institution alone, while holding other institutions’ drawdown values
fixed at their normal levels. We define mCoCDaR as:
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mCoCDaRsys|1,...,I
α = CDaRα(Xsys|X1, ..., X I , M1, ..., Mn) = CVaRα(Ysys|D1, ..., DI , M1, ..., Mn) .

2.8. Estimation of mCoCDaR

Consider the following regression using the same set of state factors as in CoCDaR regression,

Ysys
t ∼ β0 + β1D1

t + ... + β I DI
t + ω1Mt−1,1 + ... + ωn Mt−1,n ,

with residual:
L = Ysys − (β0 + β1D1 + ... + β I DI + ω1M1 + ... + ωn Mn) .

This regression problem uses I institutions drawdowns and lagged state variables as factors to model
the drawdown of the financial system. We have T observations for the system drawdown random
variable, the I institutions’ drawdown random variables, and the state factors’ random variables.
We next perform a CVaR regression of the above model to find CVaR of the system drawdown
conditioned on all I institution drawdown. Denote by β̂α

0, β̂α
1, ..., β̂α

I , ω̂α
1 , ..., ω̂α

n coefficients obtained by
minimizing Rockafellar error (4). These coefficients allow one to compute the α-CDaR of the financial
system conditioned on drawdowns of all the institutions and state factors.

The multiple-CoCVaR of the system drawdown, which is equivalent to the multiple-CoCDaR of
the financial system, is estimated by:

mCoCDaRsys
t,α = β̂α

0 + β̂α
1D1

t + ... + β̂α
I DI

t + ω̂α
1 Mt−1,1 + ... + ω̂α

n Mt−1,n .

This procedure applies one regression problem using all institutions’ drawdown observations to obtain
coefficient estimates. The institutional DaRs are calculated exactly the same way as in Section 2.5.

2.9. Sytemic Risk Contribution using mCoCDaR

We have defined mCoCDaR measure and the estimation procedure with CVaR regression. We use
this measure for systemic risk contribution measurement, following the definitions in Section 2.4.
The drawdown observations are denoted by Ysys

t , D1
t , ..., DI

t for the financial system and all I institutions
respectively. We also have lagged state variables Mt−1,1, ..., Mt−1,n for every time moment t.

We first perform the quantile regression in Section 2.5 to estimate DaRi
t,α′ for all t and for all i for

two particular levels: α′i,1 = 0.9 and α′i,2 = 0.5. Level α′i,1 = 0.9 corresponds to the distress level of the
i-th institution in terms of its drawdowns and α′i,2 = 0.5 corresponds to its median (normal).

Next we perform the CVaR regression from Section 2.8 and estimate the financial system’s
conditional drawdown-at-risk conditioned on the drawdown levels of all I institutions and state
factors. For every time step t, we calculate,

mCoCDaR
sys|D1

t =DaR1
t,α′1

,...,DI
t =DaRI

t,α′I
t,α = β̂α

0 + β̂α
1DaR1

t,α′1
+ ... + β̂α

I DaRI
t,α′I

+ ω̂α
1 Mt−1,1 + ... + ω̂α

n Mt−1,n .

Now, to analyze the effect of a single institution i on the financial system, we compute the mCoCDaR
values based on α′i,1 = 0.9 and α′i,2 = 0.5, while holding α′−i = 0.5 fixed where −i means all the
institutions other than i, and calculate the difference in mCoCDaR,

∆mCoCDaRsys|i
t,α = mCoCDaR

sys|Di
t=DaRi

t,0.9,D−i
t =DaR−i

t,0.5
t,α −mCoCDaR

sys|Di
t=DaRi

t,0.5,D−i
t =DaR−i

t,0.5
t,α .

This difference is the incremental/marginal systemic drawdown risk contribution of the distress of
institution i to the financial system, while other institutions are at their normal states.

We can switch back to the original return observations instead of the drawdown observations
and perform the regression procedure in Sections 2.7 and 2.8. This way we get another measure for
systemic risk contribution which we call mCoCVaR. It measures the incremental/marginal conditional
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value-at-risk of the financial system’s returns conditioned on one institution’s return being in distress
while all the other institutions are in their normal states.

2.10. Advantages of mCoCDaR and mCoCVaR

As we have seen in the previous section, the multiple version of the systemic risk conditional
estimation provides a more general framework to analyze the effect on the financial system posed by
a particular institution’s distress, or perhaps multiple financial institutions’ joint distress. It is based
on the idea that during periods of financial instability, several institutions may experience financial
distress at the same time, so their risk contributions can be highly correlated. Switching from the
CoCVaR and CoCDaR to their multiple regression versions helps to mitigate these dependencies on
risk contribution measures.

With mCoCDaR, we can measure the contribution to the financial system’s conditional
drawdown-at-risk conditioned on the drawdown levels of two institutions i, j as follows,

∆mCoCDaRsys|i,j
t,α = mCoCDaR

sys|Di
t=DaRi

t,0.9,Dj
t=DaRj

t,0.9,D−i,j
t =DaR−i,j

t,0.5
t,α

−mCoCDaR
sys|Di

t=DaRi
t,0.5,Dj

t=DaRj
t,0.5,D−i,j

t =DaR−i,j
t,0.5

t,α .

There is a lot of flexibility on the risk levels to choose for this type of analysis, which means the
DaR level for the two institutions in distress can be set differently. This approach considers the joint
impact of two institutions without distinguishing their respective contributions, which is not included
in the original framework without using multiple regression. The flexibility given by mCoCDaR,
and similarly mCoCVaR, does not come at additional computation costs. In fact, by combining all
institutions in one regression problem, we save computational time.

Another advantage of the multiple-CoCVaR and multiple-CoCDaR are their consistency as
risk distribution measures. Bernardi et al. (2013) noticed that the original ∆CoVaRsys|i is not a
desirable risk distribution measure, because summing up ∆CoVaRsys|i for all institutions i does not
generally equal their overall effect on the system. This issue is addressed in Bernardi et al. (2013)
and Bernardi and Petrella (2014) via the Shapley value, which transforms the calculated contribution
using ∆Multiple− CoVaR to a Shapley value for each institution so that their contribution adds up to
the joint contribution of all institutions together on the system. The Shapley value methodology was
originally proposed to measure shared utility or cost among participants of a cooperative game.

We observe that the individual risk contribution calculated with ∆mCoCVaR or ∆mCoCDaR does
not have this drawback. For instance, for mCoCDaR:

mCoCDaR
sys|D1

t =DaR1
t,α′1

,...,DI
t =DaRI

t,α′I
t,α = β̂α

0 + β̂α
1DaR1

t,α′1
+ ... + β̂α

I DaRI
t,α′I

+ ω̂α
1 Mt−1,1 + ... + ω̂α

n Mt−1,n .

Once we have estimated the coefficients via CVaR regression, we can calculate the individual
contribution of institution i entering stress level 0.9 as:

∆mCoCDaRsys|i
t,α = mCoCDaR

sys|Di
t=DaRi

t,0.9,D−i
t =DaR−i

t,0.5
t,α −mCoCDaR

sys|Di
t=DaRi

t,0.5,D−i
t =DaR−i

t,0.5
t,α

= β̂α
i (DaRi

t,0.9 − DaRi
t,0.5) ≡ Vsys(i) .

The total contribution of all financial institutions distress on the systemic risk is:

∆mCoCDaRsys|1,...,I
t,α

= mCoCDaR
sys|D1

t = DaR1
t,0.9,...,DI

t =DaRI
t,0.9

t,α − mCoCDaR
sys|D1

t =DaR1
t,0.5,...,DI

t =DaRI
t,0.5

t,α
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=
I

∑
i=1

β̂α
i (DaRi

t,0.9 − DaRi
t,0.5) =

I

∑
i=1

Vsys(i) .

A similar statement is valid for mCoCVaR. The entire systemic risk is exactly distributed to its
institutional components. ∆mCoCVaR and ∆mCoCDaR are both Shapley value functions, denoted by
Vsys(i) for contributor i, such that they satisfy the following desirable mathematical properties as
outlined in Bernardi et al. (2013). Let S be a set of I institutions:

(1) Efficiency: ∑I
i=1 Vsys(i) = Vsys(S). This axiom states that the total risk is distributed to

participants.
(2) Symmetry: For i 6= j such that Vsys(H ∪ i) = Vsys(H ∪ j), ∀H such that i, j /∈ H,

then Vsys(i) = Vsys(j). This axiom states that the contribution measure is permutation invariant
and fair for all contributors.

(3) Dummy axiom: Vsys(H ∪ i) = Vsys(i), ∀i ∈ H and H ⊇ S . This means, if the risk of institution
j is independent of all other institutions, then its risk contribution to the system should be its own
risk. Generally, in CoCVaR and CoCDaR approaches (also CoVaR), the risks are not orthogonal among
institutions. Hence, their ranking should differ from those provided by a Shapley value measure such
as mCoCVaR and mCoCDaR.

(4) Linearity (additivity): If i, j ∈ H, i 6= j are two institutions, where Vsys(i) 6= Vsys(j), let
wi > 0, wj > 0, k = wii + wj j, then new combined risk contributions equal the weighted average of
individual risk contributions: Vsys(k) = wiVsys(i) + wjVsys(j).

(5) Zero player: If i /∈ S, Vsys(i) = 0. A null player receives zero risk contribution.

2.11. mCoCDaR Versus mCoCVaR

We do not claim that one of the considered risk measures is better for analyzing systemic risk
contributions than the other one. CoCVaR is concerned with the conditional risk in terms of the
returns’ tail behavior, while CoCDaR is concerned with the conditional risk in terms of the drawdowns.
These measures have a nonlinear relationship embedded in their definitions.

When a financial system’s large drawdowns are significantly correlated with large drawdowns
of some particular institutions, it can be hypothesized that the CoCDaR measure will provide a
more reasonable estimate of the risk contributions and therefore give a more reasonable ranking of
the systemic risk contribution of each institution. This can be generalized to comparing mCoCVaR
and mCoCDaR measures which are proposed in this work. Another intuition for using drawdown
based approaches is that drawdown measures a psychological effect from a consistent distress in
stock returns.

3. Case Studies

This case study uses data from CoCVaR paper Huang and Uryasev (2017), which is posted at this
link 1. Codes, data, calculation results for this case study are posted at this link 2.

We first computed the drawdowns from the return data and transformed the state factors
corresponding to each regression problem. Next, we proceeded to the quantile regressions on
institutional drawdowns and the CVaR regression on the system’s drawdowns. The CVaR regression
is implemented using Portfolio Safeguard (PSG)3 in MATLAB environment. PSG includes efficiently
implemented (precoded) Koenker–Bassett, Rockafellar and CVaR errors.

1 http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-cocvar-
approach-risk-contribution-measurement

2 http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-cocdar-
approach-systemic-risk-contribution-measurement

3 Portfolio Safeguard (PSG) is a product of American Optimal Decisions: http://aorda.com

http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-cocvar-approach-risk-contribution-measurement
http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-cocvar-approach-risk-contribution-measurement
http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-cocdar-approach-systemic-risk-contribution-measurement
http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-cocdar-approach-systemic-risk-contribution-measurement
http://aorda.com
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3.1. Financial Institutions

We consider the ten largest publicly traded banks in the USA as of 31 December 2014:

1. JP Morgan Chase & Company (JPM)
2. Bank of America (BAC)
3. Citigroup Inc (C)
4. Wells Fargo & Company (WFC)
5. The Bank of New York Mellon Corporation (BK)
6. US Bancorp (USB)
7. Capital One Financial Corporation (COF)
8. PNC Financial Services Group Inc (PNC)
9. State Street Corporation (STT)

10. The BB&T Corporation (BBT)

Data period is from 18 February 2000 to 30 January 2015. Closing prices are downloaded from Yahoo
Finance for the Dow Jones US Financial Index and the financial institutions.

3.2. CoCVaR Calculation Results

In addition to numerical results presented in the following sections for new measures,
we calculated systemic risk contributions based on the CoCVaR method. We reproduced the case
study described in Section 3.3.4 of Huang and Uryasev (2017) with corrected input data (corrected the
wrong sign in return data of financial instruments). We considered negative returns (losses) for each
bank and the index. We averaged each bank’s contributions across time and ranked them accordingly,
where larger values correspond to stronger contributions to system’s CoCVaR (the units of all reported
values are 100%):

1. WFC: 0.03608
2. BBT: 0.03210
3. PNC: 0.03089
4. JPM: 0.03077
5. BAC: 0.03063

6. STT: 0.02905
7. COF: 0.02776
8. BK : 0.02740
9. USB: 0.02341
10. C : 0.00187

3.3. CoCDaR Calculation Results

The drawdown-at-risk values of each institution at two different risk levels, α′1 = 0.9 for distress
level and α′2 = 0.5 for normal level, are computed using the quantile regression defined in Section 2.5.
The CoCDaR values of the system at a specific risk level α = 0.9 conditioned on each institution’s DaR
being at a distress level and a normal level are respectively computed based on the CVaR regression in
Section 2.4. Following Section 2.6, the difference in CoCDaR values is taken and this results in a time
series of ∆CoCDaRsys|i

t,α for each institution i and for each observation time t.
We observe that the quantile regression for DaR using the state variables as regressors yields

different behaviors for different institutions. Responses are different for the state variables: some
are positive while others are negative. This is true for both the distress level and the normal
level. The pseudo R2 metrics for these quantile regressions are generally between 0.5 to 0.7,
which indicates a descent level of explanatory power as compared with using just the original state
factors. The observation is consistent with that made in Huang and Uryasev (2017). The CoCDaR
and DaR calculation results are posted in the CoCDaR case study2, see Problems 1 and 3. For the ten
CVaR regressions of index drawdowns on the state variables and respective institution drawdowns,
we observe that the coefficients for each factor typically have the same sign (with a few exceptions).
The pseudo R2 for CoCDaR regressions are all above 0.8.
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We averaged each bank’s contributions to CoCDaR across time and ranked the ten banks
accordingly, where larger values correspond to stronger contributions to system’s CoCDaR:

1. WFC: 0.27695 [1]
2. BAC: 0.22285 [5]
3. BBT: 0.07073 [2]
4. COF: 0.06107 [7]
5. USB: 0.05502 [9]

6. BK: 0.03564 [8]
7. PNC: 0.02558 [3]
8. JPM: 0.02306 [4]
9. STT: 0.00242 [6]
10. C: –0.01390 [10]

The number in brackets is the ranking based on ∆CoCVaR in Section 3.2. Results show that only
Citigroup Inc. has negative CoCDaR contribution to the index on average, hinting that its drawdowns
could have a negative correlation with index drawdowns. All other institutions are contributing
positively to the system’s conditional drawdown-at-risk.

In particular, PNC Financial Services Group Inc (PNC) was ranked third by ∆CoCVaR but ranked
seventh by ∆CoCDaR. On the other hand, Bank of America (BAC) was ranked fifth by ∆CoCVaR but
ranked second by ∆CoCDaR. Clearly, these two approaches provide different perspectives.

3.4. mCoCVaR Calculation Results

This section demonstrates the performance of suggested mCoCVaR, which is the multiple
version of the CoCVaR approach developed in Huang and Uryasev (2017). We begin by performing
the mCoCVaR analysis of the ten financial institutions in one CVaR regression. The pseudo R2 for
mCoCVaR regression is 0.76. The value-at-risk for normal and distress states are calculated for every
institution respectively using quantile regressions on the original state variables. The procedure
for VaR calculation is described in Huang and Uryasev (2017), Sections 2.3 and 3.3.2. By holding
all other institutions’ return values to their VaR values in a normal state (which corresponds to the
median) and looking at the differences resulting from changing one particular institution’s return
value to its VaR value in a distress state, we obtain a time series of ∆mCoCVaRsys|i

t,α for each institution
and for each observation time t. We averaged each bank’s contributions to mCoCVaR across time
and ranked the ten banks accordingly, where larger values correspond to stronger contributions to
system’s mCoCVaR:

1. BBT: 0.00813 [2]
2. BAC: 0.00721 [5]
3. BK: 0.00619 [8]
4. JPM: 0.00598 [4]
5. PNC: 0.00494 [3]

6. STT: 0.00463 [8]
7. WFC: 0.00306 [1]
8. COF: 0.00266 [7]
9. USB: 0.00149 [9]
10. C: 0.00062 [10]

The number in the bracket is the ranking according to ∆CoCVaR in Section 3.2. The results based
on ∆mCoCVaR are similar to those based on ∆CoCVaR, but there are some significant differences.
For instance, WFC, originally ranked the highest, dropped to the seventh place in this new ranking.
This might have been caused by its returns having a high correlation to returns of other institutions,
for example The BB&T Corporation (BBT). This effect is neglected in the previous CoCVaR method,
but in our multiple regression setting, by explicitly fixing the other institutions’ returns to their
respective normal states, we are analyzing the marginal impact of WFC’s distress. Hence, the drop
in ranking may indicate that WFC is not a key systemic risk contributor in the sense that its risk
contributions are dependent on the high risk contributions of other institutions. Clearly, CoCVaR
and mCoCVaR provide different perspectives regarding the ranking of financial institutions’
risk contributions.
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3.5. mCoCDaR Results

The drawdown-at-risk of each institution at two different risk levels, α′1 = 0.9 for distress level
and α′2 = 0.5 for normal level, are computed using the quantile regression defined in Section 2.5;
this step is identical to the first step performed in Section 3.3. The mCoCDaR values of the system at a
specific risk level α = 0.9 conditioned on each institution’s DaR being at a distress level and a normal
level are computed respectively based on the CVaR regression with multiple institutions as specified
in Section 2.8. Following Section 2.9, the difference in mCoCDaR values is taken and this results in a
time series of ∆mCoCDaRsys|i

t,α for each institution i and for each observation time t.
Since we are using the same quantile estimates for DaR, we obtained the same observations as

that in Section 3.3. For the CVaR regression of the drawdowns of the index on the state variables
and the institution drawdowns, we observe that some institutions’ regression coefficients are positive
in the CVaR regression, while others are negative. The pseudo R2 for mCoCDaR regression is 0.9.
The mCoCDaR and DaR results are posted in the CoCDaR case study2, see Problems 2 and 3.

We averaged each bank’s contributions to mCoCDaR across time and ranked the ten banks
accordingly, where larger values correspond to stronger contributions to system’s mCoCDaR:

1. BAC: 0.20572 [2]
2. BBT: 0.02964 [3]
3. USB: 0.02485 [5]
4. STT: 0.02011 [9]
5. COF: 0.01749 [4]

6. BK: 0.01548 [6]
7. C: 0.00434 [10]
8. PNC: –0.01353 [7]
9. JPM: –0.01353 [8]
10. WFC: –0.06106 [1]

The number in the bracket is the ranking according to ∆CoCDaR. ∆mCoCDaR and ∆CoCDaR
rankings are mostly similar, yet have some interesting differences as well. While WFC is ranked
highest by ∆CoCDaR, it is ranked last by ∆mCoCDaR. This observation coincides with what we saw
in Section 3.4, indicating the high correlation that WFC might have with other top risk contributors
such as BB&T and BAC. Furthermore, while STT is ranked second last by ∆CoCDaR, it is ranked
fourth by ∆mCoCDaR.

3.6. Comparative Summary of the Proposed Methods

Table 1 provides a complete summary of the rankings of the ten banks with the four risk measures.
Compared with CoCVaR, CoCDaR takes into account drawdowns and focuses on consecutive

losses. Using drawdowns is particularly insightful because drawdowns identify cumulative losses
(negative cumulative returns), hence the dependencies between institutions and the system in “good”
times are ignored. Dependencies in “bad” times are captured, which is important for risk analysis.
We observe that CoCVaR and CoCDaR may provide very different rankings. For instance, USB with
mCoCDaR and CoCDaR are ranked 3 and 5, accordingly (i.e., BAC is a top contributor), but with
mCoCVaR and CoCVaR it is ranked 9 (i.e., close to bottom contributor). Even more surprisingly, JPM
is ranked 9 and 8 with mCoCDaR and CoCDaR, but ranked 4 with mCoCVaR and CoCVaR.

mCoCVaR and mCoCDaR approaches add further insights to CoCVaR and CoCDaR, since they
employ a multiple regression that marginalizes the systemic risk contributions of individual institutions.
Running the multiple regression instead of individual ones enables us to look at institutions’
contributions in a unified way, since their fraction contributions sum up to one.

Risk contributions based on CoVaR and CoCVaR measures, as a function of time, demonstrate
a similar pattern for different institutions, see Huang and Uryasev (2017). This is probably because
the methodology is based on separate regression for each institution. On the other hand, mCoCDaR
results (plotted below) show that the time series of mCoCDaR risk contributions exhibit quite different
patterns compared to CoVaR and CoCVaR, and compared across different institutions. With multiple
regression, marginal risk contributions of each institution change significantly over time.
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Table 1. Systemic Risk Contribution Ranking Summary.

mCoCDaR CoCDaR mCoCVaR CoCVaR

JPM 9 8 4 4
BAC 1 2 2 5

C 7 10 10 10
WFC 10 1 7 1
STT 4 9 6 6
PNC 8 7 5 3
USB 3 5 9 9
COF 5 4 8 7
BK 6 6 3 8

BTT 2 3 1 2

Furthermore, we plot time dependent drawdowns and mCoCDaR contributions; see Figures 2–11.
Each institution graph on the left plots its drawdown curve in blue versus the orange curve showing
drawdowns of the Dow Jones index in the same time period, both based on cumulative uncompounded
returns on a weekly basis. Every graph on the right plots fraction contribution to the total systemic risk
from an individual bank. This fraction is obtained by normalizing individual contributions measured
by ∆mCoCDaR described in Section 3.5. Normalization is done by dividing individual contributions
by the total contribution from the ten banks. By construction, the normalized contributions sum up
to one for each time step. As a result of applying the mCoCDaR regression setting, we observe that
individual contributions significantly vary over time as well as across institutions. Moreover, risk
contributions may have different signs. For instance, JPM and WFC always have negative contributions
(see, Figures 2 and 5). Citigroup starts with negative contributions and moves to contributing positively
(see, Figure 4), while the others always have positive contributions.

Figure 2. JP Morgan Chase & Company.

Figure 3. Bank of America.
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Figure 4. Citigroup Inc.

Figure 5. Wells Fargo & Company.

Figure 6. The Bank of New York Mellon Corporation.

Figure 7. US Bancorp.

Figure 8. Capital One Financial Corporation.
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Figure 9. PNC Financial Services Group Inc.

Figure 10. State Street Corporation.

Figure 11. The BB&T Corporation.

4. mCoCDaR Application to Style Classification

This section extends the approach to hedge fund style classification. We show how to estimate
CDaR as a function of drawdowns of several market indices. Style classification is a well studied
topic approached by Sharpe (1992) and Carhart (1997) with a standard regression (for returns of
instruments). Furthermore, it was extended by Bassett and Chen (2001) using quantile regression. Here,
we demonstrate results with the mCoCDaR method. This classification explains fund drawdowns, as a
function of drawdowns of several market indices (as factors). Codes, data, and results for this case
study are posted at this link4.

Similar to Bassett and Chen (2001), we investigated dependence of drawdowns of the Magellan
fund (fund) from four indices: Russell 1000 value index (rlv), Russell 1000 growth index (rlg), Russell
2000 value index(ruj), and Russell 2000 growth index (ruo). These indices correspond to four equity
classes: large value stocks, large growth stocks, small value stocks, and small growth stocks.

4 http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-style-
classification-with-mcocdar-regression/

http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-style-classification-with-mcocdar-regression/
http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-style-classification-with-mcocdar-regression/
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We used a dataset from a quantile regression style classification case study posted at5. Golodnikov
et al. (2019) considered the same dataset for testing CVaR regression, which is posted at this link6.
The dataset contains 1264 weekly return observations for the fund and indices.

We calculated drawdowns for the fund and the four indices using weekly returns in the considered
time period. CVaR regression of drawdowns is done by minimizing CVaR2 error in PSG3, as follows,

D f und,t = β0 + β1Drlv,t + β2Drlg,t + β3Druj,t + β4Druo,t ,

where Di,t for i = rlv, rlg, ruj, ruo are (uncompounded) drawdowns of index i at time t and D f und,t
are (uncompounded) drawdowns of the fund. See definition of drawdowns of a financial instrument
in Section 2.1.

For 0.9-CVaR regression the pseudo-R square equals 0.91 and the estimated coefficients are:

β̂0 = 0.3713, β̂1 = 0.4621, β̂2 = 0.5493, β̂3 = −0.0171, β̂4 = −0.0591 .

We considered also 0.0-CVaR regression, which estimates mean and corresponds to an ordinary
least squares regression. Pseudo-R square equals 0.91 and estimated coefficients are:

β̂0 =−0.2733, β̂1 = 0.4891, β̂2 = 0.5150, β̂3 = −0.0618, β̂4 = −0.0003 .

Regression coefficients show that both large and average drawdowns of the Magellan fund are
mostly explained by drawdowns in large value stocks index (coefficient β̂1) and large growth stocks
index (coefficient β̂2). The fund exhibits roughly 50–50% mix of these two classes of stocks in the sense
of drawdown behavior.

Furthermore, we compared these results with previous studies, which used CoVaR- and
CoCVaR-based measures. The CoVaR approach based on quantile regression5 (see Problem 1 in
the link) gives the following coefficient estimate:

β̂0 = −0.0089, β̂1 = 0.4602, β̂2 = 0.5176, β̂3 = −0.0156, β̂4 = 0.0001 .

and the CoCVaR approach based on CVaR regression6 (see Problem 1, α=0.9 in the link) gives the
following estimate:

β̂0 = 0.0105, β̂1 = 0.6058, β̂2 = 0.4721, β̂3 = −0.0778, β̂4 = −0.0071 .

We observe that this particular dataset considered regressions of a similar style with around a
50–50% mix of two stock indices.

5. On Portfolio Optimization with mCoCDaR and mCoCVaR

Previous sections defined and tested mCoCDaR and mCoCVaR multiple regression versions for
systemic risk measurement. It should be considered that risk measures can be used for other purposes.
For instance, we can build a portfolio minimizing CoCVaR or CoCDaR, conditioned on the distress
level of several market indices (or factors), under the constraint that the expected return meets some
target. Similar problems were studied in Kurosaki and Kim (2013a, 2013b) with CoAVaR and CoVaR
measures for conditional risk. Here, we present portfolio optimization problems using mCoCVaR and
mCoCDaR risk measures:

min
~wt

mCoCVaR ~wt | f 1
t ,..., f K

t
α,t s.t.

I

∑
i=1

wi
tr

i
t = r?,

I

∑
i=1

wi
t = 1

5 http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/style-classification-with-
quantile-regression/

6 http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/on-implementation-of-
cvar-regression/

http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/style-classification-with-quantile-regression/
http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/style-classification-with-quantile-regression/
 http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/on-implementation-of-cvar-regression/
 http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/on-implementation-of-cvar-regression/
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min
~wt

mCoCDaR ~wt | f 1
t ,..., f K

t
α,t s.t.

I

∑
i=1

wi
tr

i
t = r?,

I

∑
i=1

wi
t = 1

where K is the number of market index factors, f 1
t , ..., f K

t are risk levels at time t of K factors
(market indices), ~wt is vector of portfolio weights for I stocks, ri

t is return of stock i at time t,
and r? is a target return. Systemic risk-driven portfolio selection problems were also studied in
Capponi and Rubtsov (2019), where they considered portfolio optimization given a systemic event.
Detailed analysis of these portfolio optimization problems is beyond the scope of this paper. We have
included a short description to show that considered risk measures can be used in various areas
of finance.

6. Conclusions

This paper proposed a new systemic risk measure, CoCDaR, which is based on conditional
drawdown-at-risk and inspired by the CoCVaR approach from Huang and Uryasev (2017). We further
extended the approach to mCoCDaR, which calculates conditional drawdown-at-risk of the financial
system conditioned on all the institutions’ drawdown distress levels. These measures can rank
institutions according to their incremental (marginal) contributions to the systemic risk of the
system, conditional on other institutions’ distress levels. The multiple regression setting is applied
to the CoCVaR measure from Huang and Uryasev (2017) and resulted in so-called mCoCVaR.
Since mCoCDaR and mCoCVaR are based on multiple regression, they have the flexibility to measure
joint contributions of multiple institutions. These measures are also well-defined Shapley value
functions with desirable mathematical properties for a risk contribution measure. After normalization,
individual risk contributions sum up to one. These advantages do not come at any additional
computational cost.

CoCDaR and mCoCDaR measures are based on drawdowns (path dependent cumulative losses).
These two measures capture the impact of an institution’s drawdowns on the financial system’s
drawdowns, which is particularly suitable for market crash situations. They are useful for determining
which institution may lead to a bigger crash in the market in terms of large drawdown events.

We performed a case study for the three proposed methods, CoCDaR, mCoCVaR, and mCoCDaR,
using data from the ten largest banks and the Dow Jones Index, along with some state factors.
The case study with codes and data are posted on the web. We have also reproduced the case
study for CoCVaR measure from Huang and Uryasev (2017), with corrected signs in the returns data.
We compared the ranking of institutions based on contributions to system’s CoCDaR, mCoCDaR,
mCoCVaR, and CoCVaR. The difference in applying CVaR- and CDaR-based measures is observed
from quite different rankings of institutions. Multiple regression identifies key drivers in systemic
risk because effects are marginalized. We compared time dependent curves of risk contributions for
mCoCDaR and CoCVaR. Risk contributions based on CoCVaR are quite similar across institutions,
while those based on mCoCDaR have very different patterns. These different patterns are implied by
both the use of drawdowns and the use of multiple regressions.

Other applications of the proposed method include fund style classifications based on mCoCDaR
regression. We have conducted a case study analyzing drawdowns of the Magellan fund as a function
of drawdowns of four market indices. We have posted this case study to the web. The suggested
methodology may also be used in various other areas of finance. In particular, we have stated portfolio
selection problems with mCoCVaR or mCoCDaR objectives and constraints on expected returns.
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