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Abstract: This paper proposes a variant of a threshold stochastic conditional duration (TSCD) model
for financial data at the transaction level. It assumes that the innovations of the duration process
follow a threshold distribution with a positive support. In addition, it also assumes that the latent
first-order autoregressive process of the log conditional durations switches between two regimes.
The regimes are determined by the levels of the observed durations and the TSCD model is specified
to be self-excited. A novel Markov-Chain Monte Carlo method (MCMC) is developed for parameter
estimation of the model. For model discrimination, we employ deviance information criteria, which
does not depend on the number of model parameters directly. Duration forecasting is constructed by
using an auxiliary particle filter based on the fitted models. Simulation studies demonstrate that the
proposed TSCD model and MCMC method work well in terms of parameter estimation and duration
forecasting. Lastly, the proposed model and method are applied to two classic data sets that have
been studied in the literature, namely IBM and Boeing transaction data.

Keywords: stochastic conditional duration; threshold; Bayesian inference; Markov-Chain Monte
Carlo; probability integral transform; deviance information criterion

JEL Classification: C10; C41; G10

1. Introduction

In this paper,1 we propose a threshold Stochastic Conditional Duration (TSCD) model, in which
the innovation of a financial duration process is assumed to follow a threshold distribution, where
the two component distributions have positive supports, while the log duration process is kept to be
the same as that in the classic Stochastic Conditional Duration (SCD) models introduced by Bauwens
and Veredas (2004). In addition, we also assume that the state (i.e., the logarithm of the conditional
durations) follows a threshold AR(1) process with the threshold level being driven by observed
duration processes. The regimes are determined by a threshold parameter, which is estimated from
the data. Suitable Markov-Chain Monte Carlo (MCMC) methods are developed within a Bayesian
framework in which the parameters of the model and the augmented parameters, being the latent
states, are estimated simultaneously by the estimation process. For the in-sample and out-of-sample
duration forecasting, we use an auxiliary particle filter (APF) proposed in Pitt and Shephard (1999),
from which the filter and predictive distributions of the latent states are approximated by samples

1 This paper is built from materials presented in several earlier working papers by the authors in Men et al. (2013, 2014, 2019).
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of particles from the corresponding distributions. The APF is an efficient method for calculating the
marginal likelihood of observed data. For model selection and comparison, we employ a deviance
information criterion (DIC) proposed by Spiegelhalter et al. (2002).

The remaining parts of this paper are organized as follows. Section 2 introduces the TSCD model.
In Section 3, we propose a suitable MCMC method for parameter estimation of the models with a
Gamma distribution or a Weibull distribution serving as the component distributions in the model.
The latent states are augmented as parameters and estimated as a by-product of the MCMC estimation
processes. We simulate the state variables by using a single-move Metropolis-Hastings (MH) algorithm
with a univariate normal distribution as the proposal. In Section 4, model diagnostics, model selection,
and duration forecasting are presented and discussed. In particular, model assessment is performed by
calculating probability integral transforms (PITs) produced from the fitted TSCD models. In Section 5,
we conduct simulation studies to assess the performance of the proposed TSCD models and developed
estimation methods, while in Section 6 we present empirical results from applications of the proposed
TSCD models to two classic/benchmark data sets of IBM and Boeing transactions. In this section,
restricted versions of the TSCD models are also estimated and analyzed. Concluding remarks are
made in Section 7.

2. Threshold Stochastic Conditional Duration Model

Let yt denote the observed duration at time t, t ≤ T, where T is a positive integer representing
the sample size. The duration process of yt is characterized by a product of two independent random
variables: a lognormal random variable Ht and a positive random variable εt. Then, following
Bauwens and Veredas (2004), we specify the following set of equations:

yt = Htεt, Ht = exp(ht), t = 1, ..., T, (1)

ht+1 = µ + φ(ht − µ) + σut+1, t = 1, ..., T − 1, (2)

h1 ∼ N (µ, σ2/(1− φ2)), (3)

where εt and ut are assumed to be mutually independent shocks with ut ∼ N (0, 1). For the latent
AR(1) process in (2) to be weakly stationary, it is assumed that |φ| < 1. Bauwens and Veredas (2004)
assume that εt follows either a Gamma distribution or a Weibull distribution with scale parameters
equal to 1.

In our proposed model, we allow not only the innovation of the duration process to follow a
threshold distribution with two component distributions with positive supports, but also the latent
states to follow a threshold AR(1) process which switches between two regimes. These two regimes
are determined by the previously observed durations according to a threshold level. In particular,
the threshold distribution for the innovations of the measurement equation is given by{

εt ∼ D1(δ1), if yt−1 ≤ r,
εt ∼ D2(δ2), if yt−1 > r,

(4)

where D1(δ1) and D2(δ2) are two generic distributions with positive supports, and δ1 and δ2 are the
corresponding parameter vectors.

For the log conditional durations, ht, a threshold AR(1) process is defined as:{
ht+1 − µ1 = φ1(ht − µ1) + σ1u1,t+1, if yt ≤ r,
ht+1 − µ2 = φ2(ht − µ2) + σ2u2,t+1, if yt > r,

(5)

where u1,t+1 and u2,t+1 are two independent processes with a standard normal distribution. In the
threshold specification in (5), the latent states, ht, follow separate AR(1) processes in the two different
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regimes determined by the previously observed duration yt and the threshold level r. The threshold
level r is treated as a free parameter to be estimated by our proposed MCMC method.

For the components of the threshold distribution of εt, following Bauwens and Veredas (2004),
we use either a Gamma distribution or a Weibull distribution. With this assumption, the probability
density functions (pdfs) of εt are given respectively by{

f1(εt) =
1

Γ(γ1)
ε

γ1−1
t exp{−εt}, if yt−1 ≤ r,

f2(εt) =
1

Γ(γ2)
ε

γ2−1
t exp{−εt}, if yt−1 > r,

(6)

with the shape parameters γ1 > 0 and γ2 > 0, and the scale parameters are all set to 1, and{
f1(εt) = v1εv1−1

t exp{−εv1
t }, if yt−1,≤ r,

f2(εt) = v2εv2−1
t exp{−εv2

t }, if yt−1,> r,
(7)

with the shape parameters v1 > 0 and v2 > 0 and unit scale parameters. Under these assumptions, the
distribution of εt depends on the shape parameters. At time t, the observation yt affects not only the
distribution of εt+1, but also the distribution of ht+1. In other words, the observation, yt, contributes
to future durations through εt+1 and ht+1. The asymmetric property of the marginal distribution of
yt+1 is influenced by the previously observed duration according to the threshold level r. Importantly,
under the threshold distributional assumption, we no longer need to explicitly specify a correlation
structure between the observation and the latent process. In addition, as the variance of εt is not equal
to 1, the location parameters in the threshold AR(1) processes are no longer required as well.

Under the TSCD model setup, at each time t, the conditional distribution of yt is assumed to
depend on the previous observation yt−1 and the threshold parameter r, i.e., the distributions of
the observations will switch between the two regimes with the arrivals of the previously observed
durations. Similar to the arguments in De Luca and Gallo (2004, 2009), who work with Autoregressive
Conditional Duration (ACD) models, the two regimes can be interpreted as representing two
types of behavior of traders in the market, who are respectively informed and uninformed traders.
The informed and uninformed traders are assumed to respond differentially to bad news and good
news in the market over the sample period. The proposed TSCD models with two regimes are
constructed specifically to characterize these time dependent responses, giving rise to a desirably
asymmetric pattern in the marginal distributions of the model.

3. Bayesian Inference

In this section, we develop a suitable MCMC method for parameter estimation of the proposed
model. Following the literature, all the latent states, ht, are augmented as parameters and simulated or
estimated as a by-product of the derived estimators. For each specified TSCD model, the latent states
are simulated one at a time by the slice sampler introduced by Neal (2003).

In the following MCMC algorithm, we assume that the innovation of the mean equation follows a
threshold distribution with two, say Gamma, component distributions with θ = (φ1, σ1, φ2, σ2, γ1, γ2, r)
serving as the parameter vector. Given an observed duration time series of y = (y1, . . . , yT),
the conditional densities of yt are given by{

f (yt|yt−1, ht, r) = 1
Γ(γ1)

exp(−γ1ht)y
γ1−1
t exp

{
− yt exp(−ht)

}
, if yt−1 ≤ r,

f (yt|yt−1, ht, r) = 1
Γ(γ2)

exp(−γ2ht)y
γ2−1
t exp

{
− yt exp(−ht)

}
, if yt−1 > r.

(8)
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Therefore, the posterior density of (θ, h) can be conveniently split into two parts according to the
threshold parameter r,

f (θ, h|y) ∝
T

∏
t=2, yt−1≤r

[
1

Γ(γ1)
exp(−γ1ht)y

γ1−1
t exp

{
− yt exp(−ht)

}]

×
T

∏
t=2, yt−1>r

[
1

Γ(γ2)
exp(−γ2ht)y

γ2−1
t exp

{
− yt exp(−ht)

}]
, (9)

where h = (h1, ..., hT). Within the Bayesian inference, the posterior distributions of the parameters in θ,
and the latent states, h, can be readily derived from (9).

The TSCD model is completed by specifying prior distributions for all the parameters in θ.
For tractability, we assume that the prior distributions of the parameters in θ are mutually independent.
The persistence parameters φ1 and φ2 are assumed to have a univariate normal distribution
φi ∼ N(0, 5), i = 1, 2, truncated in the interval (−1, 1). Instead of sampling σ1 and σ2, we sample
σ2

1 and σ2
2 . The prior distributions of σ2

1 and σ2
2 are σ2

i ∼ IG(0.25, 5), i = 1, 2, which are inverse Gamma
distributions. For the shape parameters γ1 and γ2 we use the half-Cauchy distributions as their
prior distributions

f (γi) ∝
1

1 + γ2
i

, γi > 0, i = 1, 2. (10)

The half-Cauchy distribution is also used as the prior distribution for the shape parameters of the
Weibull components. For the threshold parameter r, we use a uniform distribution between the first
and third quartiles of the observations in y. The two quartiles are intended to ensure that there are
enough observations in each of the two regimes.

The algorithm of the MCMC estimation procedure for the TSCD model with a threshold Gamma
distribution, called TSCD-G model hereafter, is listed in Algorithm 1. The derivation of the full
conditionals for the parameters and individual latent state are given explicitly in Step 1 below, where
the full conditional of each parameter is defined as the conditional distribution given that other
parameters in the model have been sampled.

Algorithm 1: MCMC algorithm for the TSCD-G model.
Step 0. Initialize h, φi, σi, γi, i=1, 2, and r
Step 1. Sample ht, t = 2, ..., T
Step 2. Sample γ1 and γ2

Step 3. Sample r
Step 4. Sample φi and σ2

i , i = 1, 2
Step 5. Go to Step 1.

Step 0. Initialize h, φi, σi, γi and r. To start the MCMC algorithm, the initial values of the
parameters of the model are set as φ1 = 0.5, φ2 = 0.5, σ1 = 0.12, σ2 = 0.12, γ1 = 0.5, γ2 = 1.5, v1 = 0.5
and v2 = 1.5. The initial value of r is set as the mean of the observations, which falls into the interval
of the first and third quartiles of the observations. The initial values of h are generated from the latent
AR(1) process with the above initial parameters.

Step 1. Sample h. Here, we only give the full conditionals of ht, t = 3, ...T− 1. The full conditionals
of h2 and hT are easy to derive and, thus, omitted from this paper. The full conditional of ht depends
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on yt+1, yt, yt−1, ht+1, ht−1 and r. Given that r has been sampled previously, the full conditional of ht

can be calculated based on four cases: (i) If yt ≤ r and yt−1 ≤ r, the full conditional of ht is given by

f (ht|ht−1, ht+1, yt, θ−r, yt ≤ r, yt−1 ≤ r)

∝ f (yt|ht, θ−r, yt−1 ≤ r) f (ht|ht−1, yt−1 ≤ r, θ−r) f (ht|yt ≤ r, ht+1, θ−r)

∝ exp(−γ1ht) exp
{
− yt exp(−ht)

}
× exp

{
−
(
ht − φ1ht−1

)2

2σ2
1

}
× exp

{
−
(
ht+1 − φ1ht

)2

2σ2
1

}

∝ exp
{
− yt exp(−ht)

}
× exp

{
−
(
ht − µt

)2

2σ2
t

}
, (11)

where

µt = −σ2
t γ1 +

φ1(ht+1 + ht−1)

1 + φ2
1

, σ2
t =

σ2
1

1 + φ2
1

.

Here θ−r defines as a collection of model parameters except for r. Thus, the full conditional of ht

can be sampled by the slice sampler.

Algorithm of the slice sampler for ht

SS1. Draw u1 uniformly from the interval (0, 1) and set u2 = u1 exp
{
−
(

ht−µt

)2

2σ2
t

}
. Let u2 <

exp
{
−
(

ht−µt

)2

2σ2
t

}
, then we have

µt −
√
−2σ2

t log(u2) < ht < µt +
√
−2σ2

t log(u2). (12)

SS2. Draw u3 uniformly from the interval (0, 1) and set u4 = u3 exp
{
− yt exp(−ht)

}
. Let u4 <

exp
{
− yt exp(−ht)

}
then we have

ht > − log(− log(u4)/yt)

SS3. Draw ht uniformly from the interval determined by the inequalities in (11) and (12) such as

ht ∼ U
(

max
{
− log(− log(u4)/yt), µt −

√
−2σ2

t log(u2)
}

, µt +
√
−2σ2

t log(u2)

)
.

As a brief remark to the above algorithm, we note that in our approach, each ht is simulated
based on its conditional distribution. So conditionally µt is known in our situation. Also note that
yt+1’s are the only observations available to our model. As we subsequently perform a one-step-ahead
prediction for the fitted model, we only need to sample ht+1, and do not need to sample yt+1.

In each MCMC iteration, when we simulate ht, the sampled value of ht from the previous MCMC
step is set at the initial value. As the full conditionals of ht in each MCMC step are similar, this initial
value should provide a good starting point. As the slice sampler adapts to the form of the density
function of the underlying variable, it is more efficient than many other existing samplers. In addition,
under certain conditions, Roberts and Rosenthal (1999) also show that the slice algorithm is robust
and has geometric periodicity properties. Moreover, Mira and Tierney (2002) prove that the slice
sampler has a smaller second-largest eigenvalue, which ensures faster convergence to the underlying
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distribution. Indeed, in our study, we find that even with only five iterations of our slice algorithm, we
can feasibly and efficiently estimate the TSCD models by the MCMC.2

The single-move simulation method is popular in the literature and used in Jacquier et al. (2004);
Yu et al. (2006); Zhang and King (2008), Men et al. (2015, 2016a, 2016b) among others. The advantage
of the slice sampler is that five iterations can give us a point from the underlying distribution unlike
the MH algorithm where many generated points must be discarded.

The full conditional of ht, given (ii) yt > r and yt−1 ≤ r, is

f (ht|ht−1, ht+1, yt, θ−r, yt > r, yt−1 ≤ r)

∝ f (yt|ht, θ−r, yt−1 ≤ r) f (ht|ht−1, yt−1 ≤ r, θ−r) f (ht|yt > r, ht+1, θ−r)

∝ exp(−γ1ht) exp
{
− yt exp(−ht)

}
× exp

{
−
(
ht − φ1ht−1

)2

2σ2
1

}
exp

{
−
(
ht+1 − φ2ht

)2

2σ2
2

}

∝ exp
{
− yt exp(−ht)

}
× exp

{
−
(
ht − µt

)2

2σ2
t

}
, (13)

where

µt = −γ1σ2
t +

a
b

, σ2
t =

1
b

with a =
φ1ht−1

σ2
1

+
φ2ht+1

σ2
2

, b =
1
σ2

1
+

φ2
2

σ2
2

.

The full conditional of ht is also sampled through the slice sampler. Under the other conditions
(iii) yt > r and yt−1 > r, and (iv) yt ≤ r and yt−1 > r, the full condition of ht can be calculated in the
same fashion, and the realized full conditionals of ht can be sampled through the slice sampler.

Step 2. Sample γ1 and γ2. Given that other parameters and the latent states have been sampled
from the previous iteration of the MCMC algorithm, the full conditionals of γi, i = 1, 2, are given
respectively by

f (γ1|y, h, θ−γ1) ∝
T

∏
t=2, yt−1≤r

(
exp(−γ1ht)

Γ(γ1)
yγ1−1

t

)
1

1 + γ2
1

, (14)

f (γ2|y, h, θ−γ2) ∝
T

∏
t=2, yt−1>r

(
exp(−γ2ht)

Γ(γ2)
yγ2−1

t

)
1

1 + γ2
2

. (15)

These distributions are not simple distributions that can be simulated directly. Our simple solution
to this is to use a random-walk MH method with a univariate normal distribution with mean zero and
non-unit variance. The variance can be fined tuned to obtain a reasonable acceptance rate for the MH
algorithm. Experience from our study suggests that an acceptance rate between 25% and 55% gives us
a more accurate estimate of r in the simulation studies.

2 For further efficiency considerations, Pitt and Shephard (1999) for instance proposes the use of block samplers for ht for a
stochastic volatility (SV) model. We have tried to apply this block sampling scheme to our variant of the TSCD models and
found the required computation to be highly intractable.
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Step 3. Sample r. The full conditional of r is

f (r|y, h, θ−r)

∝
T

∏
t=2, yt−1≤r

(
exp(−γ1ht)y

γ1−1
t

Γ(γ1)

) T

∏
t=2, yt−1>r

(
exp(−γ2ht)y

γ2−1
t

Γ(γ2)

)
. (16)

The full conditional of r is not a simple distribution either. Therefore, again, we use a random-walk
MH method to simulate this posterior distribution with a univariate normal distribution N(0, σ2

0 ),
where σ0 is fined tuned for the random-walk MH method to have a reasonable acceptance rate.

Step 4. Sample φ1, φ2, σ2
1 and σ2. The full conditionals of φi are univariate normal distributions

truncated in the interval (−1,1), which can be simulated by a slice sampler. The full conditionals
of σ2

i are inverse Gamma distributions from which the sampling is relatively easy to carry out.
The derivation of these full conditionals are not given in this paper, but they can be found for instance
in Men et al. (2016a) or any in prior studies on SV models such as Men et al. (2016b), where MCMC
algorithms are used.

To conduct a Bayesian inference in the TSCD model with threshold Weibull component
distributions, the estimation algorithm can be derived similarly. As a result, details of these derivations
are omitted from the paper.

4. Model Selection, Assessment and Duration Forecasting

4.1. Model Selection

Information criteria such as AIC due to Akaike (1987) and BIC due to Schwarz (1978) are often
used for model comparison. For instance, in the study of SV models, Lopes and West (2004) and
Zhang and King (2008) use the AIC and the BIC for model selection. It is well-known that the AIC
tends to choose a model with a larger number of parameters, while the BIC tends to prefer a model
with a smaller number of parameters. It is important to note that in the calculation of the AIC and the
BIC, we need to know the exact number of parameters of the model. For hidden Markov models such
as the TSCD models proposed in this paper, the number of parameters is difficult to determine since
all the latent states are augmented as parameters and highly correlated. For instance, when a TSCD-G
model is fitted to a data set with T observations, the number of parameters in the fitted model could
be (T + 7) or less. However, it is worth reiterating that the AIC and the BIC are functions of both the
number of parameters and the sample size. This indicates that the AIC and the BIC are not suitable for
discriminating hidden Markov models, including the TSCD models. A new criterion, called the DIC
proposed by Spiegelhalter et al. (2002) is used in this paper to discriminate between these models since
it does not depend on the number of parameters directly. The DIC is defined as follows:

DIC = D̄ + PD.

The first term

D̄(θ, h) = Eθ,h|y[D(θ, h)], where D(θ, h) = −2 log f (y|θ, h),

represents a Bayesian measure of a model fit. It is called the posterior mean of the deviance. The second
term is

PD = D̄− D(θ̄, h̄)

= Eθ,h|y[D(θ, h)]− 2 log f (y|θ̄, h̄),

where D(θ̄, h̄) is the deviance of the posterior mean, and PD is the effective number of parameters,
which measures the complexity of the model. Thus, the DIC represents a trade-off between model
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adequacy and model complexity. When prior information is dominated by the likelihood, we have
pD = p + o(1), where p is the number of parameters in the model. In other words, when likelihood
information dominates, we expect that the observed-data DIC is not sensitive to different prior
distributions, and pD is close to p with the difference capturing the amount of prior information.

4.2. Duration Forecasting

To perform duration forecasting via the fitted TSCD models, we use the APF proposed in
Pitt and Shephard (1999). In our MCMC method, the conditional of ht depends on yt, ht−1 and ht+1,
while in the APF, the filtered distribution depends on yt and ht−1, and the predictive distribution of ht

depends on ht−1 and yt−1. In addition, the filtered distribution of ht is also represented by a sample of
the conditional distribution of ht|yt. APF is an efficient recursive algorithm to approximate the filtered
and one-step-ahead predictive distributions. The sample likelihood of a specified TSCD model via the
successive conditional decomposition is given by

f (y|θ) = f (y2|θ,F1)
T

∏
t=3

f (yt|Ft−1, θ), (17)

where Ft = (y1, . . . , yt) is the information known at time t. The conditional density of yt+1, given θ

and Ft, has the following expression

f (yt+1|Ft, θ) =
∫

f (yt+1|ht+1, θ,Ft)dF(ht+1|Ft, θ)

=
∫

f (yt+1|ht+1, θ,Ft) f (ht+1|ht, θ,Ft)dF(ht|Ft, θ). (18)

As it is impossible to obtain an analytical representation of this conditional density function,
numerical methods such as the APF method must be employed. The APF algorithm has been used
in the context of the SV models such as in Chib et al. (2006); Men et al. (2016b); and in the context
of the SCD models such as in Men et al. (2015, 2016a) and among others. It is given in Appendix A.
It should point out that the one-step-ahead in-sample and out-of-sample duration forecasting can be
constructed with the APF algorithm using the latent AR(1) process. Our experience shows that using
3000 particles is sufficient for our simulation studies and real stock transaction data used to illustrate
our estimation approach.

4.3. Model Assessment

There are several statistical tools that can be used to assess the overall model fit of our TSCD
model. Our approach in this paper is to analyze the PITs, which was proposed by Diebold et al. (1998).
If the fitted TSCD model agrees with the data, the PITs will follow a uniform distribution U(0, 1). The
Kolmogorov-Smirnov (KS) test, which is designed to examine whether realized observation errors
originated from the assumed distribution, is used to assess the distribution of the PITs.

Suppose that { f (yt|Ft−1)}T
t=1 is a sequence of conditional densities of yt and {p(yt|Ft−1)}T

t=1 is
the corresponding sequence of one-step-ahead density forecasts. The PIT of yt is defined as

u(t) =
∫ yt

−∞
p(z|Ft−1)dz. (19)

Under the null hypothesis that the sequence {p(yt|Ft−1)}T
t=1 coincides with { f (yt|Ft−1)}T

t=1,
the sequence {u(t)}T

t=1 corresponds to i.i.d. observations from the distribution U(0, 1). In our TSCD
model, the PITs can be calculated using the following formulas.
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The TSCD-G model: If yt−1 ≤ r then

u(t) ≈ 1
N

N

∑
i=1

∫ yt

−∞

1
Γ(γ1)

zγ1−1 exp(−γ1h(i)t ) exp
{
− z

exp(h(i)t )

}
dz

=
1
N

N

∑
i=1

1
Γ(γ1)

g(γ1, yt exp(−h(i)t )), (20)

where g(γ1, yt exp(−ht)) is the incomplete Gamma function, and N is the number of particles.
Similarly, if yt−1 > r then

u(t) ≈ 1
N

N

∑
i=1

1
Γ(γ2)

g(γ2, yt exp(−h(i)t )). (21)

The TSCD-W model: If yt−1 ≤ r then

u(t) ≈ 1
N

N

∑
i=1

∫ yt

−∞
v1zv1−1 exp(−v1h(i)t ) exp

{
−
(

z

exp(h(i)t )

)v1}
dz

= 1− 1
N

N

∑
i=1

exp
{
−
(

yt

exp(−h(i)t )

)v1}
. (22)

Similarly, if yt−1 > r then

u(t) ≈ 1− 1
N

N

∑
i=1

exp
{
−
(

yt

exp(−h(i)t )

)v2}
. (23)

In the computation of u(t), h(i)t are particles from the corresponding predictive distribution of ht

with weights 1/N.

5. Simulation Studies

In this section, we assess the performance of the TSCD models and the MCMC algorithms by
simulation studies. Since the component distributions can be either a Gamma or Weibull distribution,
we examine two types of the TSCD models. The values of parameters used to generate artificial duration
time series are listed in the second column of Table 1 in boldface. We generate 12,000 observations from
each TSCD model indexed by these parameters, where the first 10,000 observations are fitted by the
corresponding TSCD model and the fitted model is then used for the one-step-ahead in-sample and
out-of-sample duration forecasting. The estimated parameters as well as the corresponding standard
errors and Bayesian highest probability density (HPD) credible intervals, which can be calculated based
on the 2.5% and 97.5% quantiles of the sampled data, are also included in this table. With relatively
small standard deviations and narrow credible intervals, we conclude that the estimated parameters
are close to their true values.

One way to assess the goodness-of-fit of the TSCD models is to compare the empirical survival
function and the hazard function with those calculated from the fitted TSCD models visually. Denote
by f (y) and F(y) = p(Y < y) respectively the pdf and cumulative distribution function (cdf) of the
observed duration data. Then the survival function and the hazard function of the data are defined
as S(y) = 1− F(y) and H(y) = f (y)/(1− F(y)), respectively. As discussed in Bauwens and Veredas
(2004), both the f (y) and F(y) for a given duration data have to be calculated by using a numerical
method such as a kernel density fitting method, which can be found in Silverman (1986), pp. 11–13,
and Bowman and Azzalini (1997). In addition, numerical integration methods such as the Gaussian
quadrature method must be used for the calculation of F(y) as well.
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Table 1. True and estimated parameters of the TSCD models based on the simulated duration data.

Parameter True Est. Std. HPD CI(95%)

Panel A: With Gamma(γ,1) component

φ1 0.94 0.9368 0.0080 (0.9209, 0.9521)
σ1 0.12 0.1298 0.0098 (0.1107, 0.1480)
φ2 0.80 0.8014 0.0206 (0.7699, 0.8499)
σ2 0.19 0.1819 0.0105 (0.1619, 0.2025)
r 3.5 3.5054 0.0035 (3.4978, 3.5106)

γ1 3.5 3.4677 0.0550 (3.3584, 3.5743)
γ2 5.0 4.9855 0.0582 (4.8654, 5.0953)

Panel B: With Weibull(v,1) component

φ1 0.94 0.9346 0.0062 (0.9221, 0.9465)
σ1 0.12 0.1201 0.0065 (0.1073, 0.1328)
φ2 0.80 0.7940 0.0139 (0.7668, 0.8213)
σ2 0.19 0.1841 0.0049 (0.1744, 0.1938)
r 0.8 0.7985 0.0014 (0.7956, 0.8005)

v1 3.5 3.4761 0.0546 (3.3694, 3.5823)
v2 5.0 4.9703 0.0931 (4.7910, 5.1526)

Given the highly comparable results reported in Table 1 for the Gamma and Weibull component
cases, for brevity, we focus only on the Weibull component case in the subsequent discussion.
The top panel in Figure 1 compares the empirical survival function of the simulated durations with
the conditional survival function based on the TSCD-W model, while the bottom panel plots the
corresponding empirical hazard of the simulated data together with the conditional hazard function.
It is observed in the presented figures that the empirical survival function and the hazard function
implied by the fitted TSCD-W model behave similarly to the empirical counterparts except that there
is a very small jump at the threshold value of 0.7983. The reason for this jump is presumably because
the threshold level of 0.8 was used in generating the artificial duration time series.
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Figure 1. Top Panel: conditional survival function of the TSCD-W model for the simulated durations
and its empirical survival function. Bottom Panel: the corresponding conditional hazard function for
the simulated data and its empirical hazard rate.

To check the convergence of the MCMC algorithms, we plot the histogram and time series
of samples simulated from each posterior distribution of the parameters of the TSCD-W model in
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Figures 2 and 3, respectively. It can be seen visually that the time series drawn from the full conditionals
of parameters are convergent. Subsequent statistical tests also confirm this conclusion.
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Figure 2. Time series and histograms of the samples drawn from the full conditionals of the parameters
in the AR(1) process of the TSCD-W model based on the simulated duration data.
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Figure 3. Time series and histograms of the samples drawn from the full conditionals of the parameters
in the Weibull component distributions of the TSCD model and the full conditional of threshold based
on simulated duration data.

To assess the overall model fit, we consider the PITs calculated from the fitted TSCD-W model.
Figure 4 includes the scatter and histogram plots of the PITs. The two horizontal lines in the histogram
plot are the 95% confidence intervals of the uniformity, constructed under the normal approximation
of a binomial distribution, the calculation of which is detailed in Diebold et al. (1998). It is evident that
the PITs originated from the uniform distribution U(0, 1). The KS test statistic for the PITs is calculated
as 0.0136 with the corresponding p-value of 0.8916. So, we do not reject the null hypothesis at any
reasonable level of significance that the fitted TSCD model with the threshold Weibull innovations
agrees with the generated duration data. Figure 5 graphs the cdf of the uniform distribution U(0, 1)
together with the empirical cdf of the PITs. The two cdfs appear to be very close with each other,
which confirms our earlier conclusion. Figure 6 compares the simulated durations with the filtered and
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one-step-ahead in-sample and out-of-sample forecasted durations, where the latter is separated by the
vertical dotted line. We observe that the forecasted durations resemble the true durations, indicating
that our TSCD-W model is again able to give a reasonably accurate forecast of future durations.

In applications to real data, although the true financial durations are not observable, we are
reasonably confident that the fitted TSCD-W model can do a good job for duration forecast. While the
above analysis is based on the TSCD-W model, we, unsurprisingly, also reach a very similar conclusion
for the TSCD-G model.
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Figure 4. Goodness-of-fit test via the scatter plot (top) and the histogram (bottom) of the PITs produced
by the fitted TSCD-W model based on simulated transaction data. The two horizontal lines in the
histogram plot are the 95% confidence intervals of the uniformity, constructed under the normal
approximation of a binomial distribution, the calculation of which is detailed in Diebold et al. (1998).
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Figure 5. Comparison between the empirical CDF of the PITs and the theoretical CDF of a uniform
distribution over the interval [0, 1] based on the TSCD-W model using simulated transaction data.
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Figure 6. Comparison between observed durations with the estimated and one-step-ahead forecasted
conditional durations based on the TSCD-W model using the simulated transaction data.

Overall, the simulation studies carried out above demonstrate that the TSCD models and MCMC
methods can recover the true parameters obtained by using the simulated duration data. In addition,
duration forecasting can also be adequately performed using the AFP.

6. Empirical Analysis

In this section, we apply the proposed TSCD model to the classic/benchmark IBM and Boeing
transaction data. Both data sets have been used previously in Knight and Ning (2008); Xu et al. (2011)
and Men et al. (2015, 2016a). The IBM transaction data cover the period from 1 November 1990
to 31 January 1991 with a total of 24,765 transactions, while the Boeing data covers the period
from 1 September 2001, to 31 October 2001 with a total of 90,136 observations. These datasets are
admittedly from several decades ago. However, the use of these datasets is intended to facilitate a direct
comparison between the results obtained from our models and methods with those in the literature
(including our own previous studies), which all have conveniently used these same benchmark datasets.
The frequency of the data is tick by tick, which records every single transaction that occurs in the
market. Its salient feature is irregularly spaced in time and is primarily caused by financial transactions
being clustered over time or occurring in a scattered fashion over time. The main implication of the
irregular spacing of these data is that the time between any two consecutive market events, which is
the financial duration, is a random variable.

Tables 2 and 3 present the estimated parameters of the TSCD models based on the two data sets.
The proposed MCMC algorithms were iterated 100,000 times. After the first 50,000 sampled values are
discarded as the burn-in to eliminate initial value problems, the parameters and the states were then
estimated by sample means. Standard errors and Bayesian HPD intervals are also reported in the two
tables. The Bayesian HPD intervals are calculated by the 2.5% and 97.5% quartiles. The relatively small
standard errors of these Bayesian HPD intervals indicate that our estimation process is quite efficient.

We note that for the IBM transaction data, the two persistent parameter estimates (e.g., for the
TSCD-W model, φ̂1 = 0.9847 and φ̂2 = 0.8640) and, to a lesser extent, also the two volatility parameter
estimates (e.g., for the TSCD-W model, σ̂1 = 0.1369 and σ̂2 = 0.1397) of the latent threshold AR(1)
processes are quite different from each other. This indicates that at least two latent dynamic market
factors that affect the duration innovation in different scales can be captured by the TSCD model.
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In other words, the IBM transaction data can be adequately characterized by the two specified threshold
processes in the TSCD model. However, for the Boeing transaction data, the parameter estimates
between the two regimes are relatively closer to each other (e.g., for the TSCD-W model, φ̂1 = 0.9897
and φ̂2 = 0.9705, and σ̂1 = 0.0703 and σ̂2 = 0.0669).

Table 2. Parameter estimates based on TSCD models based on the IBM transaction data.

Parameter Est. Std. HPD CI(95%)

Panel A: With Gamma(γ,1) components

φ1 0.9704 0.0061 (0.9588, 0.9818)
σ1 0.1788 0.0129 (0.1538, 0.2037)
φ2 0.8065 0.0322 (0.7431, 0.8667)
σ2 0.2096 0.0254 (0.1618, 0.2593)
γ1 1.0015 0.0135 (0.9768, 1.0278)
γ2 0.9528 0.0120 (0.9287, 0.9767)
r 1.0337 0.2010 (0.7377, 1.3145)

Panel B: With Weibull(v,1) components

φ1 0.9847 0.0043 (0.9766, 0.9933)
σ1 0.1369 0.0090 (0.1180, 0.1535)
φ2 0.8640 0.0290 (0.8223, 0.9018)
σ2 0.1397 0.0144 (0.1114, 0.1681)
v1 0.9664 0.0075 (0.9553, 0.9843)
v2 0.9280 0.0101 (0.9001, 0.9393)
r 0.9622 0.1756 (0.6711, 1.2980)

Table 3. Parameter estimates based on TSCD models based on the Boeing transaction data.

Parameter Est. Std. HPD CI(95%)

Panel A: With Gamma(γ,1) components

φ1 0.9979 0.0012 (0.9956, 1.0000)
σ1 0.0573 0.0036 (0.0501, 0.0640)
φ2 0.9923 0.0020 (0.9897, 0.9951)
σ2 0.0496 0.0040 (0.0430, 0.0599)
γ1 1.2697 0.0097 (1.2506, 1.2891)
γ2 1.2959 0.0067 (1.2832, 1.3089)
r 0.3420 0.1363 (0.2778, 0.4682)

Panel B: With Weibull(v,1) components

φ1 0.9897 0.0014 (0.9869, 0.9923)
σ1 0.0703 0.0038 (0.0636, 0.0780)
φ2 0.9705 0.0039 (0.9626, 0.9778)
σ2 0.0669 0.0060 (0.0559, 0.0787)
v1 1.1415 0.0043 (1.1332, 1.1499)
v2 1.1081 0.0064 (1.0960, 1.1208)
r 1.1775 0.0974 (0.0965, 1.3085)

Again, given the highly comparable results for the Gamma and Weibull component cases for
both datasets reported in Tables 2 and 3, for brevity and without much loss of generality, we focus our
ensuing discussion only for the Weibull component case, i.e., the TSCD-W model. However, the fitted
TSCD-G model will later be subjected to a formal model discrimination against the fitted TSCD-W
model for both datasets.

To check the convergence of the samples drawn from the full conditionals, we again plot the time
series and histograms for each parameter of the TSCD-W models based on the Boeing transaction
data in Figures 7 and 8. It is visually evident that these time series are convergent. Please note that
in our TSCD models, after 50,000 iterations, the generated time series typically converge. Figure 9
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compares the duration time series with the filtered (or, Bayesian estimated) durations, and with the
one-step-ahead in-sample and out-of-sample forecasted durations. It is observed that the forecasted
durations also resemble the true durations closely.
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Figure 7. Time series and histograms of the samples drawn from the full conditionals of the parameters
in the AR(1) process of the double TSCD-W model based on the Boeing stock duration data.
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Figure 8. Time series and histograms of the samples drawn from the full conditionals of the parameters
of the TSCD-W model based on the Boeing duration data.
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Figure 9. Comparison between observed durations, estimated, and one-step-ahead forecasted
conditional durations based on the TSCD-W model using the Boeing stock transaction data.

As we did in the simulation studies, we compare in Figure 10 the empirical survival function of
the Boeing durations with the conditional survival function based on the estimated TSCD-W model.
The bottom panel plots the corresponding empirical hazard of the Boeing data together with the
conditional hazard function. It is observed that the empirical survival function and the hazard function
behave similarly to the counterparts implied by the fitted TSCD model except that there is a very small
jump at the threshold value of 1.1775 in the hazard function implied by the fitted model.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Time

S
ur

vi
va

l

 

 

Empirical
TSCD−W model

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Time

H
az

ar
d

 

 

Empirical
TSCD−W model

Figure 10. Top Panel: conditional survival function of the TSCD-W model for the Boeing durations
and its empirical survival function. Bottom Panel: the corresponding conditional hazard function for
the Boeing durations data and its empirical hazard rate.

To check the goodness-of-fit of the model, we plot the scatter and histogram plots of the PITs
originated from the fitted TSCD-W model in Figure 11, while Figure 12 plots the empirical cdf of the
PITs together with the theoretical cdf of the uniform distribution U(0, 1). The plots reveal that the
PITs do not appear to follow a uniform distribution over the interval (0,1). The results from the KS
test confirm this assertion. The reason for these unfavorable results can be understood by inspecting
Figures 11 and 12 where we see that the right tail of the marginal distribution of the data is well fitted,
but the left tail of the marginal distribution is less so. The intensity of small durations is around 0.18.
Bauwens and Veredas (2004); Feng et al. (2004) and Men et al. (2015, 2016a) also observed a similar
lack of fit for their SCD models to duration data. Fractional latent processes have been proposed to
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improve the fit of the model. Distributional assumptions for the innovations of the duration equation
other than the Gamma and Weibull distributions may also prove to be fruitful in this regard.3
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Figure 11. Scatter plot (top) and the histogram (bottom) of the PITs produced by the fitted TSCD-W
model to the Boeing transaction data. The two horizontal lines in the histogram plot are the 95%
confidence intervals of the uniformity, constructed under the normal approximation of a binomial
distribution, the calculation of which is detailed in Diebold et al. (1998).
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Figure 12. Comparison between the empirical CDF of the PITs and the theoretical CDF of a uniform
distribution over the interval (0,1) based on the TSCD-W model to the Boeing transaction data.

Given the above qualification, we next proceed to select a better TSCD model for each of the two
data sets of transactions by calculating the DIC values from the four fitted TSCD models. Berg et al.
(2004) propose that the DIC be calculated by using the conditional likelihood. It is referred to as the
conditional DIC. The conditional DIC is widely used for comparing SV models and is also used in the

3 Another potential source of rejection for the KS statistic may lie in the fact that it is calculated by using estimated parameters
in the empirical analysis. This alters the standard limiting distribution of the KS statistics to a non-standard one involving
functionals of Brownian bridges.
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earlier version of this paper. In this paper, we follow Celeux et al. (2006) in computing the DIC by
using an observed-data likelihood. This is referred to as an observed-data DIC. This observed-data
DIC is not computed in practice due to the difficulty in evaluating the observed-data likelihood.
However, despite its popularity, the Monte Carlo study reported by Chan and Grant (2016) shows
that the conditional DIC tends to pick overfitted models (often with negative values of pD, which is
difficult to justify), whereas the observed-data DIC is better able to choose the correct model. The
challenge associated with the computation of the observed-data DICs for the proposed TSCD models
is overcome by suitably modifying importance sampling algorithms proposed by Chan and Grant
(2016) for estimating the observed-data likelihoods for SV models.

The observed-data DIC measures are listed in Table 4. First, note that the computed values of
PD for both models are positive, suggesting a positive penalty for model complexity, which makes
sense. Second, for both the IBM and Boeing transaction data, the TSCD-G model is preferred given
that the two fitted TSCD-G models have smaller observed-data DIC values compared to the TSCD-W
counterparts.4

Table 4. Model selection by using the observed-data DIC criterion.

Data Model D(θ) PD DIC

IBM
TSCD-G 35,960.8 14.4 35,975.2

TSCD-W 36,305.7 19.6 36,325.3

Boeing
TSCD-G 146,155.6 15.4 146,171.0

TSCD-W 147,022.5 20.1 147,042.6

To undertake a further specification analysis, we pre-set φ1 = φ2 = φ, and σ1 = σ2 = σ to
arrive at a restricted TSCD (RTSCD) model.5 Thus, this RTSCD model is obtained by not allowing the
latent first-order autoregressive process of the log conditional duration process to switch between the
two regimes. However, it still permits the innovations of the duration process to follow a threshold
distribution with a positive support. To select a better fitted RTSCD models for the IBM and Boeing
transaction data, we compute the observed-data DICs from the models. The values of the observed-data
DICs are presented in Table 5. Among the observed-data DIC values, the smallest ones are from the
RTSCD-G model, which means that the RTSCD-G model is better suited than the RTSCD-W model for
the analysis of the real transaction data of the IBM and Boeing stocks.6 In addition, the computed DICs
for the unrestricted TSCD models are uniformly smaller than those for the RSTCD models, suggesting
that the unrestricted TSCD models are the preferred models for both datasets.7 Thus, for these datasets,
the latent first-order autoregressive process of the log conditional duration process switch between the
two regimes.

4 The conditional DICs for the TSCD-G model and the TSCD-W model are 35,669.5 and 36,025.1 for the IBM dataset and
145,874.4 and 146,749.1 for the Boeing dataset respectively. These results are comparable with those reported for the
unobserved-data DICs.

5 We thank one of the anonymous reviewers for this suggestion.
6 The conditional DICs for the RTSCD-G model and the RTSCD-W model are 33,252.8 and 33,557.9 for the IBM dataset

and 143,287.3 and 144,758.8 for the Boeing dataset respectively. These results are comparable with those reported for the
unobserved-data DICs but in all four cases the effective numbers of parameters, PD , are negative, implying a negative
penalty for model complexity, which is difficult to justify.

7 The conditional DICs for the RTSCD models are always smaller than those for the unrestricted TSCD models. This is because
the effective number of parameters that measures the model complexity is positive in the observed-data DIC, which is
expected, and negative in the conditional DIC, which is less plausible. This is consistent with the Monte Carlo study in
Chan and Grant (2016). At the same time, the posterior mean deviance, which is used as a Bayesian measure of the model
fit, is always negative in both methods.
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Table 5. Restricted model selection by using the observed-data DIC criterion.

Data Model D(θ) PD DIC

IBM
TSCD-G 35,981.9 10.7 35,992.6

TSCD-W 36,378.2 12.5 36,390.7

Boeing
TSCD-G 146,182.3 11.9 146,194.2

TSCD-W 147,064.6 16.3 147,080.9

What is the economic interpretation of the findings in this paper? The findings are consistent
with the prediction of the market micro-structure theory (MMT) in finance. The MMT suggests that
there are informed and uninformed traders in the financial market. The interaction between the two
trader types through information-revealing price formation processes is consistent with the observed
financial market behavior. The informed traders will buy if the market price of an asset is below the
true value (based on their information set). Conversely, they will sell, if the price is above the value.
However, information is not free to the traders, and there are traders who base their trading decisions
by observing the asset prices. As this latter trader type is a follower, its actions will be regulated by a
distinct innovation process. This difference in behavior is consistent with the introduction of the two
regimes for the innovation process in the TSCD model, since the instantaneous rate of transaction can
be seen as being different across the two trader types.

7. Concluding Remarks

In this paper, we have proposed a TSCD model to analyze financial duration time series.
The innovations of the duration process were assumed to follow a threshold distribution, where
component distributions could be either a Gamma distribution or a Weibull distribution. In addition,
we also assumed that the logarithm of the conditional durations followed a threshold latent AR(1)
process. In the specified TSCD model, we allowed for the informed and uninformed traders in the
market. Loosely speaking, these two types of traders have different trading behavior in response to the
information arriving in the market. Suitable MCMC methods were developed for Bayesian inference of
the parameters of the models in which the latent states were estimated as a by-product. Using the APF,
the one-step-ahead in-sample and out-of-sample duration forecasts were carried out in a relatively
straightforward way. Simulation studies and applications to two classic/benchmark data set of IBM
and Boeing transactions demonstrated that the threshold SCD models work reasonably well in terms
of parameter estimation and duration forecasting.

We have also considered a restricted version of the TSCD (RTSCD) model, in which the latent
first-order autoregressive process of the log conditional duration process does not switch between the
two regimes. We found that the RTSCD-G model performs better than the RTSCD-W model, when
they are applied to both the IBM and Boeing transaction data. In addition, the proposed, unrestricted
TSCD models uniformly outperform the restricted counterparts for both datasets.

Lastly, one important task remains outstanding at this juncture; i.e., we still need to further
improve the empirical fit of the left tail of the marginal distribution of financial duration data. This
entails a continued search for an ideal distribution of the financial duration data.
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Appendix A. The APF Algorithm for the TSCD Model

The question is how to sample (ht+1|Ft+1, θ, ) given that we have a particle sample from the filter
distribution of (ht|Ft, θ). Below we present an algorithm for the TSCD model based on the procedure
suggested by Chib et al. (2006):

PF1. Given a sample {h(i)t , i = 1, . . . , N} from (ht|Ft, θ), calculate the expectation ĥ∗(i)t+1 =

E(ht+1|h
(i)
t ,Ft) and

πit = f (yt+1|ĥ
∗(i)
t+1, θ,Ft+1), i = 1, . . . , N. (A1)

Sample N times with replacement the integers 1, . . . , N with probabilities given by π̂it =

πit/ ∑N
i=1 πit. Denote the sampled indexes by n1, . . . , nN and associate these with particles

{h(n1)
t , . . . , h(nN)

t }.
PF2. For each value ni from Step PF1, sample the values {h∗(1)t+1 , . . . , h∗(N)

t+1 } using

h∗(i)t+1 = φ1h(ni)
t + σ1ut+1, i = 1, . . . , N, if yt ≤ r, or (A2)

h∗(i)t+1 = φ2h(ni)
t + σ2ut+1, i = 1, . . . , N, if yt > r, (A3)

where ut+1 ∼ N (0, 1).
PF3. Calculate the weights of the values {h∗(1)t+1 , . . . , h∗(N)

t+1 } as

π∗it =
f (yt+1|h

∗(i)
t+1, θ,Ft+1)

f (yt+1|ĥ
∗(i)
t+1, θ,Ft+1)

, i = 1, . . . , N, (A4)

and using these weights resample the values {h∗(1)t+1 , . . . , h∗(N)
t+1 } N times with replacement

to obtain a sample {h(1)t+1, . . . , h(N)
t+1} from the filter distribution of (ht+1|Ft+1, θ). In our

implementation we used N = 3000.
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