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Abstract: This article addresses the possibility of incorporating intelligent decision support systems
into reinsurance decision-making. This involves the insurance company and the reinsurance company,
and is negotiated through reinsurance intermediaries. The article proposes a decision flow to
model the reinsurance design and selection process. This article focuses on adopting more than
one optimality criteria under a more generic combinational design of commonly used reinsurance
products, i.e., proportional reinsurance and stop-loss reinsurance. In terms of methodology,
the significant contribution of the study the incorporation of the well-established decision analysis tool
multiple-attribute decision-making (MADM) into the modelling of reinsurance selection. To illustrate
the feasibility of incorporating intelligent decision supporting systems in the reinsurance market,
the study includes a numerical case study using the simulation software @Risk in modeling insurance
claims, as well as programming in MATLAB to realize MADM. A list of managerial implications
could be drawn from the case study results. Most importantly, when choosing the most appropriate
type of reinsurance, insurance companies should base their decisions on multiple measurements
instead of single-criteria decision-making models so that their decisions may be more robust.

Keywords: multi-attribute decision-making; reinsurance; proportional reinsurance; non-proportional
reinsurance; TOPSIS

1. Introduction

1.1. Background

Reinsurance is generally known as “insurance for insurance”. Following similar concepts and
principles as insurance, it provides financial compensation to insurance companies with respect to the
risk of large losses. The reinsured party (or “insurance company”) buys reinsurance from the reinsurer
(or “reinsurance company”) in exchange for loss limitation, revenue protection, and freeing up of
capital. In recent years, reinsurance has grown both in market value and diversity due to worldwide
trends such as global climate change, increases in insurance mega losses, volatility in equity markets,
and emerging risks such as terrorism. Regardless of financial size, an insurance company rarely retains
all of their risk. Thus, it is of interest to understand the decision-making process with respect to the
reinsurance contract, which in reality is usually done using negotiation intermediaries, i.e., reinsurance
brokers. Typically, there are two categories of reinsurance decisions, both of which will be addressed
in this study:

• The optimal reinsurance form, under given criteria;
• Given the reinsurance form, the choice of reinsurance parameters. (e.g., optimal retention portion

for proportional reinsurance, optimal retention limit for stop-loss reinsurance, etc.)
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This study focuses on treaty reinsurance, which covers an entire portfolio with multiple single
risks. Both facultative and treaty reinsurance could be further broken down into proportional
reinsurance and non-proportional reinsurance (Carter 1979). Early works have shown that under
variance risk measurement with fixed premium, the stop-loss contract is the optimal reinsurance form
for reinsurance buyers (Borck 1960; Hürlimann 2011), whereas the quota-share best addresses the
interests of the reinsurer (Vajda 1962). Clearly, there would be conflicts of choice between two parties.
Thus, this study addresses a combinational form of proportional and stop-loss treaty reinsurance
(see Section 3.2), following the definition by Samson and Thomas (1985). Quota-share reinsurance
and stop-loss reinsurance could be considered as special cases of proportional–stop-loss reinsurance.
In deciding the optimal reinsurance design parameters, this study attempts to utilize multiple-attribute
decision-making (MADM) improving on previous works in the literature which use a single criterion.

1.2. Paper Development

The paper is organized as follows. Section 2 reviews the recent research that this study is built
upon. Section 3 develops the decision flow based on the form of proportional–stop-loss reinsurance
and determines the optimal reinsurance parameters using multi-objective decision-making (MODM).
Section 4 includes a numerical case study, which models claims using @Risk and implements MADM
for buyer’s selection using MATLAB. Section 5 discusses contributions, limitations, and further
directions, and concludes the study.

2. Literature Review

Decision analysis models using limited criterion have been extensively discussed both for the
reinsurer in structuring reinsurance and for the reinsured party for evaluating and selecting the most
appropriate reinsurance product (Samson and Thomas 1985). Only recently have researchers begun
to look into the cooperative behavior of both parties to reach a joint-party optimality. In addition,
the recent growth of promising decision analyses based on multiple criteria has ignited sparks in the
field of reinsurance research. In particular, this study is developed upon three recent works (Bazaz
and Najafabadi 2015; Karageyik and Şahin 2017; Payandeh-Najafabadi and Panahi-Bazaz 2017) which
focus on multi-attribute decision-making (MADM) and proportional–stop-loss reinsurance.

Karageyik and Dickson (2016) first proposed using MADM with respect to the problem of selecting
optimal reinsurance levels under competing criteria. On choosing the input alternatives, they use ruin
probability as a constraint, i.e., the insurance company should not have a probability of ruin greater
than 1%. Loss distribution was modeled as the translated gamma process and the forms considered
were pure proportional and pure stop-loss reinsurance. The study also includes comparison with
single-criterion decision-making and concludes that MADM is extremely insightful for selecting
optimal reinsurance.

Later, Karageyik and Şahin (2017) improved on this research by taking value-at-risk (VaR)
measurement into consideration, specifically targeting at optimal retention level in excess-of-loss
reinsurance design. Key measurement criteria are expected profit, expected shortfall, finite
time ruin probability, and variance of risk. By comparing and contrasting different MADM
techniques, the authors safely concluded that under the case of reinsurance where correlation
between measurements are low enough, different MADM techniques will generate similar optimal
retention level.

However, both studies focused either on pure proportional reinsurance or pure non-proportional
reinsurance, with neither considering the combination of both. The most contemporary discussion
of general reinsurance model took a viewpoint from both the insurer and reinsurer, and based
on TVaR measurement, suggesting that a pareto-optimal solution always exists (Cai et al. 2017).
The pareto-optimality studies have been successful in addressing multiple decision objectives,
especially in trading cases where both seller and buyer parties could simultaneously make decisions
on contracts (Trade procedure P1 in Section 3.1). Our approach of using MADM is different from a nest
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of Multiple Objective Decision Models (MODM) in that MADM is assigning rankings to a cluster of
available alternatives. This would be especially useful in settings (Trade procedure P2 in Section 3.2)
where buyers may have limited, discrete alternatives to choose from. In such settings, deriving
an optimal contract would be less meaningful as such contract may not be in the feasible set faced by
the buyer party (the reinsured, in our story).

To the best of my knowledge, there is no previous research conducting ranking of proportional–
stop-loss reinsurance alternatives based on multiple measurement schemes while considering decisions
from both parties. Thus, this study serves the purpose of filling this gap. Section 3 incorporates
two-sided deal procedures into the reinsurance optimality study and describes the procedure of
applying MADM to reinsurance selection. Following this, Section 4 includes a case study to model the
reinsured party´s choice of reinsurance in real time.

3. Methodology

3.1. Decision Flow

As reinsurance decision-making involves the selling party (the reinsurance company, or the
reinsurer) and the buying party (the insurance company, or the reinsured party), it could be safely
viewed as a two-sided trade process, which involves negotiation between the selling and buying
parties. Furthermore, reinsurance deals could be viewed as the established two-sided trade matching
models P1 (Figure 1) or P2 (Figure 2) with the existence of a broker (Liang 2014).
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For the first trade procedure P1, both the reinsurer and the reinsured party exchange information
through the broker. Previous research on two-sided optimality could largely be viewed as P1 when
both firms make decisions simultaneously. In this case, an equilibrium strategy either optimizing one
side or both side’s benefits could be reached (see Borch 1960; Wang 2003; Cai et al. 2017), while few
works in literature have discussed reinsurance deals settled under procedure P2. Under P2, the seller
(the reinsurer) will provide several plans for the buyer to choose from. Noting the prevalence of
procedure P2 in reinsurance industry practice, this study attempts to model reinsurance scenarios
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under P2 by using classic MODM in providing reinsurance alternatives and by using MADM in
selecting an appropriate reinsurance design for the reinsured party. The rest of the section follows this
decision flow. Section 3.2 defines the proportional-stop-loss reinsurance form; Section 3.4 constructs
one simplified set of reinsurer’s offerings using MODM. Section 3.5 defines each of the key criteria the
reinsured may consider. Finally, Section 3.6 presents the application of MADM in aiding the decision
of ranking the reinsurance alternatives.

3.2. The Proportional–Stop-Loss Reinsurance Model

The paper discusses proportional–stop-loss reinsurance, adopting definitions from Samson and
Thomas (1985), Hürlimann (2011) and Payandeh-Najafabadi and Panahi-Bazaz (2017), under which,
given a single loss of X and a reinsurance arrangement with parameters (a, M), the reinsurer is bonded
to pay a claim amount of:

Xr = a(X−M)+ ⇔ Xr =

{
0 i f X ≤ M

a(X−M) i f X > M
(1)

where a is the fraction ceded to the reinsurer and M is the retention limit. The reinsured party will
pay the rest of the claim Xi = X− Xr, where Xr represents the amount of claim paid by the reinsurer.
When M = 0, the proportional–stop-loss model becomes the classical quota-share reinsurance model,
and when a = 1, it becomes the classical stop-loss reinsurance model.

3.3. Variable Definition

To ensure the consistency of notations in this paper, we define the key variables as shown in
Table 1. Almost all definitions follow previous literature, and necessary elaborations will be given in
later sections.

Table 1. Key variable definitions.

Variable Variable Explanation

t the time period of one contract, in our case study t = 1;
N the number of claims incurred in period t (during one contract);

W(t) the wealth held by insurance company at time t;
ζ the loading factor of the reinsurance premium paid to the reinsurer;
θ the loading factor of the premium paid to the reinsured party;
X the claim amount of one single loss;
Xi the claim amount payable by the insurance company (the reinsured party);
Xr the claim amount payable by the reinsurance company (the reinsurer);

S(t) the aggregate loss of an insurance portfolio;
Si(t) the aggregate claim (loss) incurred to insurance company (the reinsured party);
Sr(t) the aggregate claim (loss) incurred to the reinsurance company (reinsurer);
FS(X) the cumulative distribution function of S;

FS = 1− FS(X) the survival distribution function of S;
(a, M) the proportional–stop-loss reinsurance parameter, Xr = a(X−M)+;

c the total premium per unit time;
ci the premium gained by the insurance company;
cr the premium payable to the reinsurer;

ESα the expected shortfall with a confidence level of α;
PROFITi the expected profit gained by insurance company;

ψ(i) the ruin probability of insurance company’s wealth U(t);
Ui(t) the utility of insurance company at the end of period t;

3.4. Simulating Alternatives Using MODM

Considering the reinsurance practices and following previous research on the joint-party
reinsurance problem, we first attempt to model the reinsurer pricing objectives. As such, we provide
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a list of alternatives for the reinsured party to choose from. We attempt to formulate a model
maximizing the reinsurer’s expected profit while minimizing the variance of profit. In deciding
a reinsurance design, the reinsurer needs to specify the premium and the arrangement of the
reinsurance claim amount, in other words, the reinsurance premium loading factor ζ and the
reinsurance design parameter (a, M). Under the expected value premium principle, the insurance
premium must be at least greater than the expected individual loss (Karageyik and Şahin 2017). Thus,
the bi-objective model is formulated as:

max
a∈[0,1],M≥0,ζ∈[1,0]

E[cr · t− Sr]

min
a∈[0,1],M≥0,ζ∈[1,0]

Var[cr · t− Sr]

subject.to. M ≥ ln(ζ/θ)

ζ ≥ θ

(2)

where Sr is defined as the aggregated claim of loss (compounded from individual loss Xr), and cr is
the premium paid to the reinsurance company per unit of time, defined according to the expected
value premium principle (formulas are in Section 3.5.1).

Clearly, there is conflict between two objectives and there is no single design of (ζ, a, M) that can
achieve all objectives. The closed-form derivations (Hürlimann 2011) are omitted and the optimal
solution set would be an efficient frontier analyzed in closed form. The optimal pairs will satisfy:

ζ = eM/λ · θ subject to : ζ ≥ θ (3)

Note that for an increasing ceding level a, the reinsurer risk and expected profit will both increase
proportionally; thus, the reinsurer preference will be ambiguous for different ceding portion a while
fixing the pair of (ζ, M). This is in line with the work of Payandeh-Najafabadi and Panahi-Bazaz (2017)
where it is suggested that optimal design (a, M, ζ) depends on the loss distribution (in our case, λ) but not
on the market premium (θ) , and does not depend on the portion retained (a). Thus, it would be flexible
for the reinsurance company to select an appropriate ceding portion a given their risk appetite and their
financial capability (which is often not necessarily known by the broker). In Section 5, we will briefly
discuss the resulting effects of choosing different ceding portions of a, based on a numerical case study.

Thus, the alternatives provided by the reinsurance firm will be in the form of (a, M, ζ). These are
inputing alternatives we will use to apply MADM.

3.5. Calculating Decision Criteria

Now, we need to define the selection criteria for reinsurance design. In this study, we are concerned
with expected profit, expected shortfall, ruin probability, and expected utility as selection criteria.
All of these factors are calculated taking the viewpoints of reinsurance buyers (the reinsured parties).

3.5.1. Expected Profit of the Insurance Company (Reinsured Party): PROFITi

In general, the expected profit of the reinsured party is calculated as the difference between the
insurer’s income and the claims paid to the policyholders. Net premium gained by the insurance
company is calculated under the expected value premium principle, defined as:

c∗ = Total Premium Income − Reinsurance Premium = (1 + θ)E[S]− (1 + ζ)E[Sr] (4)

The net insurance profit after considering the reinsurance arrangement is:

Pro f iti = c∗ − E[Si] (5)

Our objective is to maximize the expected profit of the insurance company.
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3.5.2. Expected Shortfall ESα

Expected shortfall is calculated under value at risk (VaR) measurement. VaR, given a confidence
level of α ∈ (0, 1), is defined as the smallest l, such that the probability of loss L < l∗ is at least α (Bazaz
and Najafabadi 2015), i.e.,

VaRα(L) = min(l∗ ∈ R : Pr(L ≤ l∗) ≥ α) (6)

Expected shortfall is the financial risk measurement to investigate market risk of the portfolio.
It is calculated as the expected value of tail distribution of VaRα as follows:

ESα(L) =
1

1− α

∫ 1

α
VaRu(L)du (7)

An increase in retention level M will cause the insurer’s liability to insurance policyholders
to increase, and thus ES will increase accordingly. In contrast, a larger ceding portion will release
the insurer from burden and thus will decrease the amount of liability held by the reinsured party.
Our objective is to find the optimal (a,M) pair that could minimize the expected shortfall of the
insurance company.

3.5.3. Ruin Probability

The ruin probability criterion is based on definitions of finite time ruin probability measurement.
The insurer’s asset is represented as W(t) and is defined by:

Wi(t) = wi(0) + c∗ · t− Si(t) (8)

In Equation (8) c∗ is the net premium income per unit time gained by the insurance company,
and S(t) is the aggregate claim amount up to time t, which is calculated by:

Si(t) =
N(t)

∑
i=1

Xi (9)

The finite time ruin probability, ψ(w0, t), is given as:

ψ(w0, t) = Pr(W(s) < 0) for some s, 0 < s ≤ t (10)

In our study, the ruin probability is approximated through a simulation study, as the closed
form ruin probability for compounding exponential loss distribution under proportional–stop-loss
reinsurance design is hard to obtain. Our objective is to minimize the ruin probability of ψ(w, t) such
that the insurance company would be less likely to go bankrupt if there is a large loss incurred.

3.5.4. Expected Utility

To address the utility theory used in vast literature on reinsurance optimization (Samson and
Thomas 1983), the utility function of the reinsured is defined as exponential utility function, which
assumes constant absolute risk aversion:

Ut
i (Wi(t)) = −e−kWi(t) (11)

In reality, utility function may have much more complexity and may be different for different
insurance companies. However, as long as the value of utility could be obtained in numeric value,
decisions could be made through MADM. In deciding the ranking of reinsurance alternatives, one of
our objectives is to maximize the expected utility of the insurance company.
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3.6. Selecting the Best Alternative Using MADM

In Section 2, we reviewed decision analysis techniques on reinsurance decisions under single
measurement. In order to model the decision of the reinsurance purchasing party (the insurance
company or the reinsured) under multiple measurement criteria, this study adopts multi-criteria
decision-making techniques. In particular, the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS), reviewed in prior works (Bazaz and Najafabadi 2015) is the most popular MADM
technique and is the most suitable for pure numerical criteria. TOPSIS was originally developed by
Hwang and Yoon (1981), and was later developed by Yoon (1987) and Hwang et al. (1993).

TOPSIS is thus applied to the reinsurance selection problem. Furthermore, as suggested by
Karageyik and Şahin (2017), the correlation amongst criteria in reinsurance problem is small enough to
return similar results from different TOPSIS methodologies. Thus, in this study we choose the classical
TOPSIS method to support our analysis.

Following similar definitions of TOPSIS in a previous study (Bazaz and Najafabadi 2015; Ameri
Sianaki 2015; Karageyik and Şahin 2017), we briefly describe the steps of applying the method
as follows. This study attempts to implement the TOPSIS decision supporting system by storing
reinsurance alternatives in Excel and processing the input matrices with a MATLAB code. Part of
the MATLAB code was developed with reference to previous efforts by Amari (Ameri Sianaki 2015),
and was revised accordingly to serve the needs of this study. Below is the complete procedure of
conducting TOPSIS.

1. Formulate decision matrix D with m alternatives A1, A2, . . . , Am and n decision criteria C1, C2, . . . , Cn.
The attribute value of Ai on Cj for i = 1, 2, . . . , m and j = 1, 2, . . . , n is represented as dij.

2. Calculate weight of the criteria using entropy technique as follows:

qig =
dig

d1g+d2g+...dmg
; ∀g ∈ {1, 2, . . . , c}

∆g = −k ∑ qig · log2
(
qig
)
; ∀g ∈ {1, 2, . . . , c}

dg = 1− ∆g, wg =
dg

(d1+...+dg)

wg
′ =

λg ·wg
λ1·w1+λ2·w2+...+λc ·wc

(12)

3. Normalize the decision matrix using the following formula:

rij =
dij√

∑m
i=1 d2

ij

(13)

One may notice that by scaling the criteria (multiplying a constant to dij), the decision will not
change. However, it will not necessarily return same decision for different utility functions that
generate the same decision under expected utility measurement, as adding a constant to dij in the
rij formula will change the resulting rij.

4. Calculate the weighted normalized decision matrix by using the normalized decision matrix
parameter rij and weight vector ω = (ω1, ω2, . . . , ωn) to return the weighted normalized decision
matrix parameter Vij = ωj · rij. If criteria are given same weight, ω1 = ω2 = . . . = ωn = 1

n .

5. Compute the vectors of positive ideal solutions and the negative ideal solutions, denoted by:

S+ =
(
S+

1 , S+
2 , S+

3 , . . . , S+
n
)

S− =
(
S−1 , S−2 , S−3 , . . . , S−n

) (14)

6. Calculate the distance between each alternative and the positive and negative ideal points.
The distance between alternative Ai and the positive ideal points is:
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D+
i =

√√√√ n

∑
j=1

(Vij − S+
j )

2, for i = 1, 2, . . . , m; (15)

The distance between alternative and the negative ideal solutions are:

D−i =

√√√√ n

∑
j=1

(Vij − S−j )
2, for i = 1, 2, . . . , m; (16)

7. Calculate the relative closeness coefficient of each alternative represented as:

Ci =
D−i

D+
i + D−i

, Ci ∈ [0, 1] (17)

8. Rank the alternatives according to Ci. The alternative with higher Ci value is preferred over lower
Ci alternatives.

A graphical representation of TOPSIS is shown in Figure 3. Each blue ball represents one available
alternative. The red ball represents the negative ideal solution and the green ball represents the positive
ideal solution. The blue ball that is relatively near to the green ball and away from the red ball would
be the best alternative amongst all. Given at least four selection criteria, it would be hard to visualize
the alternatives in 3-dimensional space, thus the calculation of distance is coded using MATLAB.
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4. Case Study

Following the decision flow in Section 3, this study models the reinsurance deal procedure as
illustrated in Figure 4. We will choose a loss distribution model in Section 4.1, generate reinsurance
offering alternatives in Section 4.2, tabulate the decision matrix in Section 4.3, and finally apply MADM
in selecting from alternatives in Section 4.4.
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4.1. Loss Distribution Modeling

Under treaty reinsurance, which covers the entire line of insurance business handled by the
insurance company, the aggregated claim S is a compounding distribution of N single risks or claims
incurred during time period t.

Following the majority of research on modeling losses or claims (e.g., Samson and Thomas 1985;
Bazaz and Najafabadi 2015; Payandeh-Najafabadi and Panahi-Bazaz 2017; Karageyik and Şahin 2017);
our case study chooses to model individual claims as an exponential loss model with the parameter
µ = 100, i.e.,

Pr(X = x∗) =
1
µ

e−
1
µ x∗ (18)

The occurrence of a claim follows Poisson distribution with mean λ = 10, i.e.,

Pr(N(t) = n) =
(λn)e−λ

n!
(19)

Thus, S is the compounding distribution of N(t) identical, independently distributed risks,
each with distribution X.

In this case study, we set t = 1, u(0) = 1500 and original insurance premium parameter θ = 0.1.

4.2. Generating Alternatives from the Viewpoints of Reinsurers

Following Section 3.2, we define the case by setting the portion ceded as a = 0.6, a = 0.75, a = 0.9
and a = 1, respectively, in assessing the differences in results when the retention level is changed.
The optimal pair (ζ, M) (Figure 5 with ζ on x-axis and M on y-axis) is sought by a grid search,
as solving Formula 3.2 in mathematical form may not be succinct.
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When ζ < 0.1, constraint ζ < θ will be violated; all points to the right and below of the
efficient frontier are deemed as inferior to the points on the efficient frontier. In managerial terms,
the reinsurance designs with parameters to the southeast of the efficient frontier will cause the
reinsurance company to likely generate less profit while suffering from a larger risk.

4.3. Constructing Decision Matrix

For illustration, Figure 6 shows the optimal pairs of (ζ, M) given other parameters in the case study.
For the first trial, we fixed the ceding portion at a = 0.6 and select 35 pairs of the optimal (ζ, M) as the
reinsurance design parameters for TOPSIS alternatives. Profit for the insurance company and expected
utility after claims are calculated using theoretical mean of the random distributions. However, given
that the claim process compounds exponential loss with Poisson occurrence, ruin probability and
expected shortfall at 95% confidence level are hard to obtain in analytic terms. Thus, by using Monte
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Carlo simulation with 100,000 iterations, losses and claims are modeled as exponential values with
Poisson occurrence, and ES0.95 and ruin probability ψ(a, M) are calculated in Excel as follows in
Figure 6:
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By retrieving criteria value and reformatting in the tabulated workbook for processing TOPSIS,
the decision matrix is built as shown in Figure 7 and is ready for processing using MATLAB, coded
and developed in Section 2.
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4.4. Selecting Alternatives Using TOPSIS

With the above alternatives inputting the decision matrix, we observe that if we only consider
minimizing expected shortfall and ruin probability, the profit or expected utility will be exceptionally
low. The color scale shows intuitively this conflict with red representing smallest value and green
representing largest value. We define the weight vector of criteria as all equals (equal values in
blue cells Range F39:I39). Recalling the Matlab function built earlier in Section 3 by executing the
following code:

topsis (decisionMakingMatrix,lambdaWeight,criteriaSign)

we could get normalized weight matrix, the identified ideal solutions and the distance between each
alternative and the ideal optimality. All these results are stored in Excel sheet “TOPSIS OUTPUT
Variables” with selection ranking results shown in Figure 8.
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From the TOPSIS output, we could identify that Alternative 18 (0.27, 100) is the best choice,
followed closely by Alternative 17 (0.26, 96). Alternative 19 (0.28, 103) is not far away as the third
best alternative identified. Alternative 35 (0.44, 149) is the furthest from ideal solution. Multiple trials
were tested fixing a at a = 0.75 (Trial 2), a = 0.9 (Trial 3) and a = 1 (Trial 4). Trial 4 resembles pure
Excess-of-loss Reinsurance to compare and contrast decision differences under different ceding portion
in Proportional-Stop-loss Reinsurance design. Results of these trials are included in Appendix A.
From the result, we could draw insightful managerial implications.

5. Managerial Implications

The result shows several interesting findings:

1. The best alternative suggested by TOPSIS does not necessarily optimize any one single criterion,
rather, it has an overall highest ranking due to its relative weighted closeness to all four criteria.
In reality, if reinsurance is chosen merely according to expected profit, the insurance company
may suffer from a high probability of financial crisis. On the other hand, if the decision merely
considers constraining higher shortfalls, the insurance company may appear to have poor
performance based on their profit and loss statement due to the low profits obtained.

By increasing the ceding amount from a = 0.6 to a = 0.75, 0.9, one result from Trial 1,2,3,4 (Trial
2–4 are reported in Appendix A) suggests that the ranking of alternatives is different when
parameters are changed. When the ceding portions are fixed at relatively lower level (such as
a = 0.6 to a = 0.75) the best alternative to choose will have the retention limit equaling to mean
value of loss. Thus, if the given reinsurance parameters (either a, θ or M2) are altered, it is
recommended for the insurance company to evaluate once again the reinsurance plans instead of
extrapolating conclusions from previous experiences.
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2. In addition, Trial 4 with a = 1 models an excess-of-loss reinsurance form where
Xr = MAX(0, X−M) = 1 ∗ (0, X−M)+. Accordingly, results from Trial 4 are in accordance
with previous knowledge on excess-of-loss reinsurance. Under excess-of-loss reinsurance, the best
form is given at M = Mmax, which is in correspondence with Section 2 in Payandeh-Najafabadi
and Panahi-Bazaz (2017).

3. In each trial, the Alternative 1 M = 0 simulates the scenario of pure proportional reinsurance.
Trial 5 attempts to model different retention level under proportional reinsurance (M = X) with
fixed reinsurance premium loading factor θ. The result shows that given same premium loading
factor, retention level of 0.6 would be most preferable.

4. By setting (a, M) to (0, 0), we could also model the scenario of no reinsurance. The results show
that with no reinsurance, the expected shortfall of insurance company will be significantly higher
than all other alternatives, and the ruin probability will be higher as well. This suggests that
insurance company without reinsurance is more likely to become bankrupt if large losses are
incurred. As compensation, the expected profit and utility will increase by a small amount
for the insurance company due to high profit from insurance premium and low probability of
large losses. However, noting the high ruin probability, which suggests a much higher risk of
bankruptcy, the insurance company will often seek for reinsurance to keep ruin probability low.

5. Furthermore, through the simulation process, the variance and profitability of the reinsurer
are also being observed and calculated (as can be seen from Figure 9). The result was in
correspondence with our previous argument that by scaling the ceding portion a to larger
values, both the variance and the profitability of the reinsurer will increase, suggesting that there
is a trade-off between high profit and high risk of large losses. Thus, this supports our previous
assumption that the reinsurer is ambiguous towards a design that only differs with respect to
parameter a.
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6. Conclusions

6.1. Contributions

The research has the following contributions:

1. To the best of our knowledge, this is the first theoretical study using MADM to approach
proportional–stop-loss reinsurance model, though there are a few recent studies using MADM in
designing either pure proportional or pure stop-loss reinsurance contracts;

2. This is one of the few studies taking a non-discriminatory position considering both the insurance
and the reinsurance company in designing an optimal reinsurance contract, and the study made
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significant contribution by incorporating existing MODM models and the promising MADM
model into one decision flow process to arrive at a robust decision for reinsurance design;

3. This study demonstrates the feasibility of incorporating intelligent decision supporting systems
in reinsurance deal-making. As observed by the author through industry experiences, @Risk has
grown its popularity recently for actuarial study in modeling risk and claims. The prototype of
TOPSIS implemented through Matlab suggests that a software of multi-criteria decision support
would be promising.

4. As previous research suggested (Bazaz and Najafabadi 2015), MADM is not likely to
address finding of optimal type of reinsurance. However, with the generic formulation
of proportional–stop-loss reinsurance, we would be able to model proportional reinsurance
and stop-loss reinsurance as special cases of proportional–stop-loss, thus the choice between
proportional and non-proportional reinsurance using MADM could be possible under this
formulation of reinsurance.

6.2. Limitations

There are still some limitations for this research, specifically in the following aspects:

1. In terms of the scope of study, due to time and resource constraints the study only considers
proportional-stop-loss treaty reinsurance, while basing the decision process on ruin probability,
CVaR, and expected utility criteria. Other types of reinsurance and decision measurements have
not been elaborated and tested.

2. In terms of methodology, this study attempts to utilize the simulation software @Risk to model
the loss and claim distribution and to use numerical TOPSIS model in modeling decisions from
the insurance company, without reaching to a close-form solution. Thus, the conclusions were
drawn based on simulation result rather than robust theoretical derivation.

3. In terms of model implementation, due to resource constraints, this study only includes
a numerical made-up case instead of existing cases to conduct archival research in addressing the
decision process in the reinsurance purchase decisions.

6.3. Future Directions

In reality, trade contracts will usually go through lengthy negotiations with broking firms acting
as intermediaries, thus, empirical study with cases from existing broking firms may be more realistic
and practical in addressing the usefulness of this decision framework. In addition, behavioral study of
both the reinsurer and the reinsured party would be of great importance to suggest whether they are
rational players in the reinsurance market.

Furthermore, it would be promising for mathematical and quantitative researchers to look into
the closed-form optimization for proportional–stop-Loss under each single measurement. As pure
proportional or stop-loss reinsurance could be regarded as special cases of proportional–stop-loss
reinsurance could, this will reconcile existing mathematical models on either side and help in
calculating the precise decision matrix for MADM analysis.

Author Contributions: The authors contributed equally to the paper.

Conflicts of Interest: The authors declare no conflict of interest.



J. Risk Financial Manag. 2017, 10, 22 14 of 17

Appendix A. TOPSIS Trials #2, #3 and #4
J. Risk Financial Manag. 2017, 10, 22 14 of 17 

 

Appendix A. TOPSIS Trials #2, #3 and#4  

 
Figure A1. Trial 2: Screen-shot of crucial TOPSIS output parameters. 

 
Figure A2. Trial 2: Screen-shot of crucial TOPSIS output parameters. 

Figure A1. Trial 2: Screen-shot of crucial TOPSIS output parameters.

J. Risk Financial Manag. 2017, 10, 22 14 of 17 

 

Appendix A. TOPSIS Trials #2, #3 and#4  

 
Figure A1. Trial 2: Screen-shot of crucial TOPSIS output parameters. 

 
Figure A2. Trial 2: Screen-shot of crucial TOPSIS output parameters. 
Figure A2. Trial 2: Screen-shot of crucial TOPSIS output parameters.



J. Risk Financial Manag. 2017, 10, 22 15 of 17

J. Risk Financial Manag. 2017, 10, 22 15 of 17 

 

 
Figure A3. Trial 3: Screen-shot of crucial TOPSIS output parameters. 

 
Figure A4. Trial 3: Screen-shot of crucial TOPSIS output parameters. 

Figure A3. Trial 3: Screen-shot of crucial TOPSIS output parameters.

J. Risk Financial Manag. 2017, 10, 22 15 of 17 

 

 
Figure A3. Trial 3: Screen-shot of crucial TOPSIS output parameters. 

 
Figure A4. Trial 3: Screen-shot of crucial TOPSIS output parameters. Figure A4. Trial 3: Screen-shot of crucial TOPSIS output parameters.



J. Risk Financial Manag. 2017, 10, 22 16 of 17

J. Risk Financial Manag. 2017, 10, 22 16 of 17 

 

 
Figure A5. Trial 4: Screen-shot of crucial TOPSIS output parameters. 

 
Figure A6. Trial 4: Screen-shot of crucial TOPSIS output parameters. 

References 

(Ameri Sianaki 2015) Ameri Sianaki, Omid. 2015. Intelligent Decision Support System for Energy Management 
in Demand Response Programs and Residential and Industrial Sectors of the Smart Grid. Doctoral 
dissertation, Curtin University, Bentley, Western Australia, Australia. 

(Bazaz and Najafabadi 2015) Bazaz, Ali Panahi, and Amir T Payandeh Najafabadi. 2015. An Optimal Reinsurance 
Contract from Insurer’s and Reinsurer’s Viewpoints. Applications & Applied Mathematics 10: 970–982. 

(Borch 1960) Borch, Karl. 1960. Reciprocal Reinsurance Treaties Seen as a Two-Person Co-Operative Game. 
Scandinavian Actuarial Journal 1960: 29–58. 

Figure A5. Trial 4: Screen-shot of crucial TOPSIS output parameters.

J. Risk Financial Manag. 2017, 10, 22 16 of 17 

 

 
Figure A5. Trial 4: Screen-shot of crucial TOPSIS output parameters. 

 
Figure A6. Trial 4: Screen-shot of crucial TOPSIS output parameters. 

References 

(Ameri Sianaki 2015) Ameri Sianaki, Omid. 2015. Intelligent Decision Support System for Energy Management 
in Demand Response Programs and Residential and Industrial Sectors of the Smart Grid. Doctoral 
dissertation, Curtin University, Bentley, Western Australia, Australia. 

(Bazaz and Najafabadi 2015) Bazaz, Ali Panahi, and Amir T Payandeh Najafabadi. 2015. An Optimal Reinsurance 
Contract from Insurer’s and Reinsurer’s Viewpoints. Applications & Applied Mathematics 10: 970–982. 

(Borch 1960) Borch, Karl. 1960. Reciprocal Reinsurance Treaties Seen as a Two-Person Co-Operative Game. 
Scandinavian Actuarial Journal 1960: 29–58. 

Figure A6. Trial 4: Screen-shot of crucial TOPSIS output parameters.



J. Risk Financial Manag. 2017, 10, 22 17 of 17

References

Ameri Sianaki, Omid. 2015. Intelligent Decision Support System for Energy Management in Demand Response
Programs and Residential and Industrial Sectors of the Smart Grid. Doctoral dissertation, Curtin University,
Bentley, Western Australia, Australia.

Bazaz, Ali Panahi, and Amir T Payandeh Najafabadi. 2015. An Optimal Reinsurance Contract from Insurer’s and
Reinsurer’s Viewpoints. Applications & Applied Mathematics 10: 970–982.

Borch, Karl. 1960. Reciprocal Reinsurance Treaties Seen as a Two-Person Co-Operative Game. Scandinavian
Actuarial Journal 1960: 29–58. [CrossRef]

Borck, Karl. 1960. An Attempt to Determine the Optimum Amount of Stop Loss Reinsurance. Brussels: Brussels,
pp. 597–610.

Cai, Jun, Haiyan Liu, and Ruodu Wang. 2017. Pareto-optimal reinsurance arrangements under general model
settings. Insurance: Mathematics and Economics. [CrossRef]

Carter, R. L. 1979. Reinsurance. Berlin: Springer.
Chauhan, Aditya, and Rahul Vaish. 2013. Fluid Selection of Organic Rankine Cycle Using Decision Making

Approach. Journal of Computational Engineering 2013. [CrossRef]
Hürlimann, Werner. 2011. Optimal Reinsurance Revisited–point of View of Cedent and Reinsurer. Astin Bulletin

41: 547–74.
Hwang, Ching-Lai, Young-Jou Lai, and Ting-Yun Liu. 1993. A new approach for multiple objective decision

making. Computers and Operational Research 20: 889–99. [CrossRef]
Hwang, Ching-Lai, and Kwangsun Yoon. 1981. Multiple Attribute Decision Making: Methods and Applications. New

York: Springer.
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