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Abstract: Fluorescence-guided oncology promises to improve both the detection and treatment of
malignancy. We sought to investigate the temporal distribution of indocyanine green (ICG), an exoge-
nous fluorophore in human colorectal cancer. This analysis aims to enhance our understanding of
ICG’s effectiveness in current tumour detection and inform potential future diagnostic and therapeu-
tic enhancements. Methods: Fifty consenting patients undergoing treatment for suspected/confirmed
colorectal neoplasia provided near infrared (NIR) video and imagery of transanally recorded and
ex vivo resected rectal lesions following intravenous ICG administration (0.25 mg/kg), with a sub-
group providing tissue samples for microscopic (including near infrared) analysis. Computer vision
techniques detailed macroscopic ‘early’ (<15 min post ICG administration) and ‘late’ (>2 h) tissue
fluorescence appearances from surgical imagery with digital NIR scanning (Licor, Lincoln, NE, USA)
and from microscopic analysis (Nikon, Tokyo, Japan) undertaken by a consultant pathologist de-
tailing tissue-level fluorescence distribution over the same time. Results: Significant intra-tumoural
fluorescence heterogeneity was seen ‘early’ in malignant versus benign lesions. In all ‘early’ samples,
fluorescence was predominantly within the tissue stroma, with uptake within plasma cells, blood
vessels and lymphatics, but not within malignant or healthy glands. At ‘late’ stage observation,
fluorescence was visualised non-uniformly within the intracellular cytoplasm of malignant tissue
but not retained in benign glands. Fluorescence also accumulated within any present peritumoural
inflammatory tissue. Conclusion: This study demonstrates the time course diffusion patterns of ICG
through both benign and malignant tumours in vivo in human patients at both macroscopic and
microscopic levels, demonstrating important cellular drivers and features of geolocalisation and how
they differ longitudinally after exposure to ICG.

Keywords: colorectal cancer; fluorescence-guided surgery; fluorescence microscopy; fluorophore
biodistribution

1. Introduction

Fluorescence-guided surgery is becoming increasingly utilized for perfusion assess-
ment across many specialties, including in the management of colorectal cancer, with the
next focus for field advance being cancer identification and delineation for intraoperative
guidance [1–6]. New near infrared (NIR) fluorophores are in clinical trials for this purpose
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and potentially also for targeted cancer immunotherapy [7–9]. Even now, the sole approved
fluorophore, indocyanine green (ICG), is being assessed for its usefulness in cancer marking
in surgery for different subtypes (ICG trapping within malignant tissue has been attributed
to enhanced vascular leakage, involving inflammatory mediators, increased tumour vascu-
larity and clathrin-mediated endocytosis) and is showing promise as a means by which to
characterize endoscopic cancer using computer vision and artificial intelligence methods to
exploit dynamic inflow/outflow comparative perfusion/diffusion differentials between
areas of neoplasia and adjacent normal tissues [10–13]. However, underlying molecular
mechanisms of tumour–dye interactions (as opposed to cancer cell–dye pharmacokinet-
ics) in humans, are poorly described. Here we examine the geo-temporal localization of
ICG, the prototypical fluorophore, through initial in vivo tumoral delivery, to later tumour
dispersion and then up to a timepoint of eight hours after injection to better understand
tumoral distribution actors and actions and inform further studies regarding the use of
fluorescence-guided cancer targeting. All patient participants had consented for recruit-
ment into prospective clinical trials, including intraoperative ICG macroscopic tumour
assessment of areas of luminal neoplasia, as well as tissue sampling for advanced basic
science microscopy, in order to longitudinally compare ICG appearances with standard
clinical histopathological appearances.

2. Methods

Fifty consenting patients with suspected/confirmed colorectal cancer undergoing ther-
anostic procedures for primary disease in the rectum at two university hospitals provided
combinations of intraoperative dynamic perfusion angiograms from their endoscopically
directly observed tumours (n = 26, 13 cancers), fluorescence photographs of resected
neoplastic specimens (n = 13 cancers) or tissue samples for microscopic analysis (n = 14,
13 cancers) as part of a larger prospective observational study (NCT04220242, approval
reference number 1/378/2092).

2.1. Macroscopic ICG Profiling

High definition, 30-frames-per-second tumour videos were recorded following intra-
operative intravenous ICG administration (0.25 mg/kg) using a near-infrared imaging
system (Pinpoint, Novadaq, Stryker Corp., Kalamazoo, MI, USA) while the lesions were
under direct endoscopic observation using a transanal access platform. Perfusion–diffusion
profile maps of tumours were created through video stabilization (negating camera and
tissue movement) extracting fluorescence values on a pixel-by-pixel basis at seven frames
per second (FPS) across the full image. The image was then re-displayed in a 2D format
using piecewise constant approximation of the profiles and unsupervised clustering as well
as centre of mass (COM, representing the weighted average of fluorescence intensity over
time with both ICG inflow and outflow rates incorporated within a single value) and out-
flow slopes (previously identified as a useful discriminator of malignant vs. benign tissue
and therefore also included for depiction via 2D mapping) by a yellow-green-blue/viridis
scale [11].

Delayed COM values (further to the right on the x-axis) within fluorescence curves
are depicted in yellow with an earlier COM depicted in blue. ICG decay slopes are
assessed between the timepoints “peak fluorescence plus 10 s” and “peak fluorescence plus
70 s”, with red indicating a negative slope and blue a positive slope upon 2D recreation.
Quantitative assessment using ImageJ v1.54f (National Institutes of Health, Bethesda, MD,
USA) was performed on the perfusion profiles by assessing the standard deviation and
kurtosis of pixel intensity within lesions (with standard deviation of pixel brightness in an
area being taken as a measure of heterogeneity of perfusion pattern within the same area),
after conversion to greyscale, and comparing these by group (cancer vs. benign) using
Mann–Whitney U testing (Supplementary Figure S1).

Late macroscopic appearances of malignancy (n = 13) were assessed using fluorescence
photographs of resected neoplastic specimens and processed using ImageJ in a similar
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fashion. Malignant lesions were annotated, and fluorescence intensity properties (including
mean intensity, maximum and minimum intensities, standard deviation, skew and kurtosis)
extracted and compared with adjacent healthy tissue using Mann–Whitney U testing.
Statistical analysis was performed using SPSS Statistics V.26 (IBM, Armonk, NY, USA).

2.2. Fluorescence Microscopy: Tissue Preparation and Analysis

Tissue samples were taken from fourteen patients for microscopic examination and for
correlation with macroscopic appearances observed intraprocedurally while maintaining
standard operating clinical and histopathological protocols. Tissue obtained through biopsy
within 15 min of ICG administration, and during the time of direct ICG–NIR visualisation
with the endoscopic NIR system, formed the ‘early’ sample group. ‘Late’ samples (>2 h post
administration) were obtained from colorectal samples after radical oncological resection
had been performed and the specimen extracted. Samples were obtained from both tumour
and surrounding healthy mucosa, mounted in OCT, flash frozen using Lamb’s freezing
aerosol and serial specimens cut using a cryotome to a thickness of 5 micrometres. One
sequential sample per patient was stained with haematoxylin and eosin (H&E) to maximise
contrast under white light examination and for comparison with the obtained fluorescence
images. Samples for fluorescence examination were unstained as H&E has previously been
shown to significantly reduce fluorescence intensity [14].

Fluorescence intensity values in slides were first assessed using a LI-COR Odyssey
DLx near-infrared fluorescence imaging system. Slides with tissue samples (cancerous
and healthy) were placed face down and scanned, without focus offset, at a resolution of
21 microns. Once scanned, an unstained control slide was assigned as ‘background’, each
specimen was digitally outlined to obtain a ‘total intensity’ and a final signal intensity cal-
culated (total intensity minus background). Finally, as sample sizes varied, signal intensity
was divided by sample area to allow for comparison across samples. Mann–Whitney U
testing was performed to compare average healthy tissue fluorescence values with cancer
(where >1 sample existed per patient, values were averaged prior to analysis). Higher reso-
lution assessment using a Nikon Eclipse Ti2 inverted research microscope was performed
in twelve patient samples varying between 10×–40× magnification, and with 770 nm and
800 nm excitation and emission wavelengths, respectively. Slides were annotated by an
expert pathologist’s judgement of the geographical distribution of ICG. Random fluores-
cence intensity sampling of specimens was also performed with eight intensity readings of
“stromal intensity”, “healthy gland” and “malignant tissue” obtained per patient. Readings
were divided into ‘early’ and ‘late’ samples and compared between tissue locations using
Kruskal–Wallis and pairwise post-hoc analysis with Bonferroni correction.

3. Results
3.1. Macroscopic ICG Tumour Perfusion Profiling

Indicative examples of the 2D representations generated from dynamic perfusion
profiles, including using unsupervised clustering, are shown in Figure 1 (with further
images being presented in Supplementary Figures S2 and S3). Clustering, in particular,
demonstrates heterogenous fluorescence dispersion through malignant tumours that have
two different perfusion patterns within the same lesion and have relatively homogenous
intralesional appearances/single clusters in benign lesions, similar to the appearances
of any observable and adjacent normal tissue (Figure 1). The discrimination of created
2D rectal lesions (cancer vs. benign) and the extent of cancer examined through the
assessment of intra-lesional heterogeneity of perfusion patterns (measured via standard
deviation of pixel brightness) were each statistically significant and determined with ImageJ
interrogation (p < 0.001) (see Table 2 and Supplementary Figure S1).
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(b1): White light view of benign rectal polyp. (b2): Pixel-by-pixel dynamic perfusion curves of 
benign rectal polyp represented by a centre of mass heat map demonstrating intra-lesional 
homogeneity. (b3): Three cluster centres created from all tracked pixel data. (b4): Clustering was 
applied to create an image showing intra-lesional homogeneity. 
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102.55 ± 4.91 121.53 ± 11.25 <0.001 * 

Standard deviation 
(g.u.) 

7.85 ± 3.44 18.87 ± 6.91 <0.001 * 
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Median (g.u.) 101.77 ± 3.59 117.38 ± 13.43 <0.001 * 
Skew −0.22 ± 1.90 0.59 ± 0.72 0.281 

Figure 1. Images showing ‘early’ timepoint malignant and benign rectal lesions with white light
imagery and 2D dynamic perfusion profile mapping. The outer grey borders around images represent
regions lost during tracking. X and Y co-ordinates are constant across all images. (a1): White light
view of a malignant rectal polyp. (a2): Pixel-by-pixel dynamic perfusion curves of malignant
rectal polyp represented by a centre of mass heat map demonstrating intra-lesional heterogeneity.
(a3): Graph representations of the two clusters (red and blue) created from assessment of time–
fluorescence curves. (a4): Resulting heatmap following image creation using unsupervised clustering.
Intralesional heterogeneity (red and blue) consistent with malignancy. (b1): White light view of
benign rectal polyp. (b2): Pixel-by-pixel dynamic perfusion curves of benign rectal polyp represented
by a centre of mass heat map demonstrating intra-lesional homogeneity. (b3): Three cluster centres
created from all tracked pixel data. (b4): Clustering was applied to create an image showing intra-
lesional homogeneity.

Table 1. Intra-tumoral comparisons of ‘early’ fluorescence intensity values between malignant and
benign tumours followed by ‘late’ comparison of malignant and healthy tissue. (g.u. = greyscale
units). * denotes statistical significance.

Early Macroscopic
Profiling Mean Values ± Std Dev Mann–Whitney U

Testing
(p < 0.05)Variable Benign Tumours

(n = 13)
Cancerous Lesions

(n = 13)

Mean pixel intensity
(g.u.) 102.55 ± 4.91 121.53 ± 11.25 <0.001 *

Standard deviation
(g.u.) 7.85 ± 3.44 18.87 ± 6.91 <0.001 *

Mode (g.u.) 101.85 ± 3.85 135.08 ± 33.53 <0.001 *

Min (g.u.) 61.23 ± 14.74 54.46 ± 12.48 0.053

Max (g.u.) 153.31 ± 20.39 171.62 ± 7.48 0.017 *

Median (g.u.) 101.77 ± 3.59 117.38 ± 13.43 <0.001 *

Skew −0.22 ± 1.90 0.59 ± 0.72 0.281

Kurtosis 10.61 ± 14.95 1.92 ± 3.49 0.010 *
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Table 2. Cont.

Late Macroscopic
Profiling Mean Values ± Std Dev

Mann–Whitney U
Testing

(p < 0.05)Variable
Healthy Tissue

Regions
(n = 13)

Cancerous Tissue
(n = 13)

Mean pixel intensity
(g.u.) 29.70 ± 20.04 40.59 ± 22.18 0.153

Standard deviation
(g.u.) 10.15 ± 4.31 10.82 ± 3.21 0.448

Mode (g.u.) 27.92 ± 23.31 40.15 ± 25.43 0.186

Min (g.u.) 0 ± 0 1.15 ± 3.09 0.336

Max (g.u.) 168.31 ± 78.67 164.85 ± 48.79 0.724

Median (g.u.) 29.07 ± 20.99 40.62 ± 22.59 0.139

Skew 1.62 ± 2.06 0.61 ± 1.58 0.101

Kurtosis 22.52 ± 41.29 9.63 ± 20.04 0.264

The results of ‘late’ macroscopic cancer assessment are also shown in Table 2, with
single timepoint heatmapping of two sample lesions shown in Figure 2. Though mean
fluorescence intensity values were higher in malignant tissue compared with healthy
regions, this did not reach statistical significance (p 0.153). Unlike in the ‘early’ dynamic
analysis, ‘late’ analysis of intralesional heterogeneity (represented by standard deviation,
skew and kurtosis) did not differ significantly from non-malignant tissue.
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Figure 2. Images depicting macroscopic appearances of ‘late’ timepoint malignant lesions. White
light images of malignancy are shown in (a1,b1). Fire colourmaps of fluorescence intensity show a
relatively homogenous lesion demarcated from surrounding healthy tissue in (a2) with a less clearly
demarcated lesion shown in (b2). (Fire colourmaps were created by converting the NIR images to
8-bit greyscale followed by application of a “fire” heatmap using a lookup table (LUT) in ImageJ).
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3.2. Fluorescence Microscopy: Tissue Analysis

The described tissue preparation methodology generated analysable tissue samples
in all cases, with only minimal tissue folding and ‘freeze artefact’. The serial sectioning
technique that was employed permitted easy identification and cross referencing of identical
landmarks/tissue areas from the unstained samples to the H&E slides.

LI–COR slide scanning demonstrated a higher mean fluorescence/area score for
cancer versus healthy tissue (4.593 fluorescence intensity units/area vs. 7.267), but the
distribution of fluorescence between the two groups did not reach statistical significance
with Mann–Whitney U testing (p = 0.436). A Kruskal–Wallis test showed significantly
higher fluorescence intensities in the stroma compared with benign and malignant glands
at ‘early’ timepoints (p < 0.001). At ‘later’ timepoints there were significant fluorescence
intensity differences between malignant and benign glands (<0.001) and benign glands vs.
stroma (p = 0.014), but not between malignant glands and stroma (p = 0.297).

Qualitative microscopic analysis demonstrated consistent patterns, which varied by
time from ICG administration to biopsy acquisition. ‘Early’ samples (<15 min post ICG
administration) consistently demonstrated intratumoral fluorescence intensity as a pre-
dominantly intra-stromal phenomenon with similar appearances in both normal/healthy
tissue as well as in more irregular and dysplastic glands. (Figure 3A). In particular, ICG
uptake within the stroma was found to be associated predominantly with plasma cell pres-
ence (white circle Figure 3A). Early presence within lymphatic channels, as well as within
bloods vessels, was also noted (Figure 3B) and in one sample—a low grade, moderately
differentiated, T2 lesion—a higher concentration of ICG was noted surrounding (but not
within) malignant glands, compared with other non-malignant regions within the same
tissue sample (Figure 3C).

‘Late’ samples (>2 h post ICG administration) consistently demonstrated the intra-
cellular cytoplasmic accumulation of fluorescence within malignant tissue in a fashion
not seen at early timepoints but was inconsistent between different malignant glands in
the same sample (Figure 4). In many instances this was accompanied by a relative lack of
fluorescence within the surrounding neoplastic stroma.

Figure 5 displays white light and NIR fluorescence appearances of a poorly differenti-
ated mucinous tumour with a large surrounding inflammatory component. Though some
ICG is demonstrated within the malignant tissue itself, it predominates within the immedi-
ately surrounding inflammatory component both within distinctly abnormal tissue regions
as well as at areas of malignant–healthy tissue interphases (Figure 6). Where larger samples
were obtained with both malignant and non-malignant areas in close proximity, higher
comparative fluorescence intensities were seen within the malignant regions (Figure 7).
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Figure 3. Compound white light and NIR fluorescence microscopy images of ‘early’ phase tissue
samples: (A): 10× magnification image of relative stromal fluorescence concentration with minimal
uptake seen within the glandular tissue at early timepoints. Concentration within plasma cells
marked with white circle (top right). (B): Images taken from a low grade, poorly differentiated
adenocarcinoma demonstrating a small volume of tumour with a surrounding predominantly in-
flammatory component in which ICG is seen to accumulate. (C): Images from a poorly differentiated
adenocarcinoma demonstrating early strong uptake within lymphatics and vascular channels (black
and white circles) but no relative uptake within abnormal glands.
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surrounding inflammatory component. NIR fluorescence image taken from the region marked by
the black rectangle, with malignant regions marked by white outline, and with a concentration of
fluorescence within surrounding inflammatory cells.
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4. Discussion

The target of an oncological surgery is a tumour, which represents a complex tissue
structure comprising living and dead cancer cells within a stroma of induced host reaction
containing an admixture of cellular and matrix elements that favour (e.g., angiogenesis
induced by the cancer) and oppose (e.g., immunoinflammatory host response) cancer
development [15–17]. While fluorophores in development predominantly commence under
laboratory examination regarding cancer cell selectivity, in clinical practice such agents
need adequate permeation of the tumour infrastructure before encountering cancer cell
membranes. ICG, with its excellent safety profile and low cost, remains the sole approved
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fluorophore for human use and it has, despite a lack of a cancer cell targets, demonstrated
effectiveness in localizing cancers (including those affecting the gastrointestinal tract,
gynaecological system, breast, and peritoneum, among others) [18–22]. This indicates that
many malignant tumours demonstrate avidity for circulating substances, irrespective of
cell selectively and such agents can become trapped in tumours whether at stromal or
cellular levels (or a combination of both) with differential appearances happening within
minutes of ICG administration.

Initial efforts involving the administration of ICG, days in advance of tissue interroga-
tion and relying on sufficient signal–background fluorescence ratios to identify areas of ma-
lignancy, have suffered low specificity; however, when ICG persists within non-malignant
areas, such as inflammation, timepoint observation as a method of cancer detection is
frustrated [23]. As a result, more recent efforts have focused on early-phase dynamic
tumour profiling using intraoperatively, intravenously administered ICG with comparative
analysis of fluorescence in healthy and unhealthy tissue over time using computer vision
and artificial intelligence, while other approaches have involved advancing cell targeted
agents (such as folate-receptor targeting and tumour-vessel targeting agents such as nerve
growth factor-tumour necrosis factor (NGR-TGF)) for similar effect [24,25].

‘Early’ phase macroscopic dynamic analysis demonstrated significantly more hetero-
geneity within malignant tissue compared with non-malignant. This dynamic, full field
of view profiling may help explain the false negative biopsy results that undermine endo-
scopic tissue in approximately 20% of cases and is highlighted at a microvascular tissue
level. It also serves as a discriminating target for tissue characterisation by characterising
and analysing these findings in real time [26]. ICG outflow (represented graphically here
by the downslope after peak) has been identified as an important predictor of malignancy
along with curve centre of mass (COM), a function of both inflow and outflow, and both
are used here to graphically represent the differences, not only to the surrounding healthy
tissue, but also within different locations of a malignant lesion [11,14]. Such intra-lesional
heterogeneity is not seen when the same methods are applied to benign pathologies, a
finding that has been utilized to characterise rectal tumours in real time with high accu-
racy [20]. Microscopic interrogation suggests that these distinctions arise from variations
within the neoplastic stroma and are potentially attributable to the absorption by adjacent
lymphocytes. Additionally, this interrogation suggests that these distinctions form as a
consequence of ICG extravasation from the notably permeable blood vessels observed in
malignant tissue, rather than originating from activity at a malignant cellular level [27].

‘Late’ analysis of malignancy did not demonstrate this same level of heterogeneity
macroscopically and, although malignant lesions were more fluorescent on average, this
did not reach significance and is consistent with previous studies where single timepoint in-
terrogation of malignant colorectal lesions has been shown to be of limited utility [28]. ‘Late’
microscopic analysis clearly demonstrated the intracellular uptake of ICG into colorectal
cancer tissue and, to our knowledge, this is the first time that this has been demonstrated,
in vivo, in humans. It is notable, however, that this was not seen ubiquitously across all
cancer specimens and, indeed, that it occurred heterogeneously even within single pa-
tient samples. Inflammation also consistently contributed to fluorophore absorption, with
ICG being observed to become trapped within the peritumoral inflammation, rather than
penetrating into the malignant cells themselves. These findings provide insights into the
intratumoural delivery of labelling and chemotherapeutic agents, with cancer representing
a complex microenvironment that has an interplay between malignant and inflammatory
cells and ICG, which, in this example, is able to represent any non-selective delivery agent
(although even “selective” agents, proposed as potential solutions to this problem, will
undoubtedly suffer from the non-selective extravasation and neoplastic stroma absorption
demonstrated in this study). Further study into the role of inflammation and fluorophore
uptake is warranted based on these findings, given the known association between tumour
inflammation and prognosis [29,30]. The capability of NIR imaging to penetrate beyond
10 mm may allow prognostic factors such as tumour inflammatory components to be
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elucidated in real time and prior to tumour excision, potentially providing prognostic
insights at the time of initial encounter [31].

Limitations to this study include the small number of patients included for micro-
scopic analysis. Ideally ‘early’ and ‘late’ samples would be taken from the same patients;
however, this does not fit with the clinical pathways of patients presenting for either local
tumour assessment or radical excision in a single sitting. The risk of selection bias exists
when randomly selecting tissue regions (stroma, healthy and malignant glands) for micro-
scopic intensity analysis; however, the quantitative findings were in keeping with expert
qualitative assessment prior to any intensity measurements being performed.

This study demonstrates the time course diffusion patterns of ICG through both benign
and malignant tumours in vivo, in human patients at both macroscopic and microscopic
levels, demonstrating the important drivers of geolocalisation and how they differ longitu-
dinally after exposure to ICG. Further in-depth study is needed, building on this work, to
fully characterize fluorophore location in cancer, including encompassing the dynamics of
cell–cell interaction and exploring organoid models.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/curroncol31020063/s1, Figure S1: Analysis of mean and standard
deviation of pixel intensities within lesions; Figure S2: Photographs of three malignant rectal lesions
with 2D center of mass and outflow slope heatmaps demonstrating intra-lesion heterogeneity consistent
with malignancy; Figure S3: Photographs of three benign rectal lesions with 2D center of mass heatmaps
demonstrating intra-lesion homogeneity.
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