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Abstract: Deep inspiration breath-hold (DIBH) is an excellent technique to reduce the incidental
radiation received by the heart during radiotherapy in patients with breast cancer. However, DIBH
is costly and time-consuming for patients and radiotherapy staff. In Asian countries, the use of
DIBH is restricted due to the limited number of patients with a high mean heart dose (MHD) and the
shortage of radiotherapy personnel and equipment compared to that in the USA. This study aimed to
develop, evaluate, and compare the performance of ten machine learning algorithms for predicting
MHD using a patient’s body mass index and single-slice CT parameters to identify patients who
may not require DIBH. Machine learning models were built and tested using a dataset containing
207 patients with left-sided breast cancer who were treated with field-in-field radiotherapy with free
breathing. The average MHD was 251 cGy. Stratified repeated four-fold cross-validation was used
to build models using 165 training data. The models were compared internally using their average
performance metrics: F2 score, AUC, recall, accuracy, Cohen’s kappa, and Matthews correlation
coefficient. The final performance evaluation for each model was further externally analyzed using
42 unseen test data. The performance of each model was evaluated as a binary classifier by setting
the cut-off value of MHD ≥ 300 cGy. The deep neural network (DNN) achieved the highest F2 score
(78.9%). Most models successfully classified all patients with high MHD as true positive. This study
indicates that the ten models, especially the DNN, might have the potential to identify patients who
may not require DIBH.

Keywords: breast cancer; radiotherapy; heart dose; machine learning; deep neural network; deep
inspiration breath-hold technique; computed tomography

1. Introduction

Radiotherapy (RT) plays an important role in the treatment of breast cancer [1,2].
However, RT has late adverse effects on the heart, which can significantly influence patient
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survival rates [3,4]. Generally, it has been found that these late effects can be detected
within 10 years after RT [1]. Previous cardiac toxicity studies analyzed radiation exposure
to the whole heart using dosimetric variables such as mean heart dose (MHD) [4–6]. These
historical studies have assessed the MHD as a significant measure of radiation exposure.
Therefore, researchers are now aiming to minimize MHD in order to improve the overall
survival rate.

Deep inspiration breath-hold (DIBH) is a technique for reducing MHD in patients with
left-sided breast cancer and is commonly used worldwide [7–9]. In this technique, patients
are instructed to take a deep breath before treatment and hold it throughout the delivery of
radiation; consequently, the lungs fill with air, and the heart is displaced from the treatment
area, resulting in a lower radiation dose to the heart compared to the free-breathing (FB)
technique. However, the DIBH technique is costly and time-consuming for patients and RT
staff [10].

In Asian countries, the shortage of RT personnel and equipment, as well as the
limitations of the health insurance system, reduce the utilization of the DIBH technique
in comparison to the USA [11,12]. In general, the breast volume of Asian patients is much
lower than that of American or European patients, and as MHD is greatly affected by
breast volume, the use of DIBH may be preferable for Asian patients with large breast
volumes [13]. Furthermore, it has been reported that the number of Asian patients who
received high MHD was much lower than those who received low MHD, which indicates
that not all Asian patients require DIBH [13]. Thus, it is desirable to select Asian patients
who may not require DIBH before RT planning for left-sided breast cancer. Thus, time and
cost can be saved for most Asian patients by avoiding the need for double planning for FB
and DIBH radiotherapies.

Recently, artificial intelligence (AI) and machine learning (ML) techniques have been
frequently implemented in the field of RT [14–16]. However, there are limited studies on
utilizing ML to predict MHD using clinical and radiographic parameters. It is important
to note that AI-based techniques can be proved or disproved using some performance
metrics or formal verification methods, including safety, fault tolerance, fairness, robustness,
and correctness [17]. To the best of our knowledge, no previous study has evaluated the
potential role of ML algorithms in the selection of patients that may not need DIBH.

This study aimed to develop various ML models for predicting MHD and identifying
patients with left-sided breast cancer who may not need DIBH in Asian countries.

2. Materials and Methods
2.1. Dataset and Study Setting

This study included 207 females with early-stage left-sided breast cancer who received
radiation therapy with FB at Okayama University Hospital between 2009 and 2016. The
patients had breast cancer with stages of 0–II according to the tumor–node–metastasis-
based staging of breast cancers (8th ed.) by the Union for International Cancer Control.
A total of 38 patients had stage 0, 118 patients had stage I, and 51 patients had stage II
breast cancer. The patients had a mean age of 55.3 ± 11.1 years (age range: 31–78 years).
All patients were irradiated for whole breast with 200 cGy per fraction, 25 fractions, for a
total of 5000 cGy, after partial breast resection. Patients were treated in our hospital using
either the conventional field-in-field (FIF) with one reference point (FIF-1RP) method or
a new FIF with two reference points (FIF-2RP) method [18]. Eighty-eight patients were
irradiated with an additional 1000–1600 cGy boost on the tumor bed. The heart dose during
the 5000 cGy irradiation was the subject of this study [13].

Patients provided written informed consent for undergoing RT and using their anony-
mous data for scientific studies. This study was conducted in accordance with the Declara-
tion of Helsinki, as revised in 2013. The Ethical Review Board of our institute approved the
use of anonymous post-radiation therapy data for this study (approval no. 2103-024).

In March 2021, the following data were retrospectively collected from the radiation
treatment planning system after CT simulation: breast separation (SEP), chest wall thickness
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(CWT), and MHD. The SEP and CWT were measured for each patient using single-slice CT
obtained at the nipple level, as shown in Figure 1. SEP was defined as the distance along
the posterior edge of the tangent fields, while CWT was defined as the distance from the
nipple surface to the lung on a perpendicular line of the SEP. Additionally, the following
data were collected from the clinical records of each patient: age, body mass index (BMI),
tumor site, and radiation treatment method. The dataset was analyzed using the statistical
software SPSS version 27 (IBM Corp., Armonk, NY, USA) to test the correlation between
the collected data and MHD, with the statistical methods used being the Spearman and Eta
correlation coefficients. The correlation coefficient values and the p-values for statistical
significance are shown in Table 1. The variables that had a significant correlation with
MHD were identified and considered as independent variables for ML. Three variables
were ultimately selected as independent variables for ML: BMI, CWT, and SEP. MHD was
considered a dependent variable.

Curr. Oncol. 2023, 30, FOR PEER REVIEW  3 
 

 

new FIF with two reference points (FIF-2RP) method [18]. Eighty-eight patients were irra-
diated with an additional 1000–1600 cGy boost on the tumor bed. The heart dose during 
the 5000 cGy irradiation was the subject of this study [13].  

Patients provided written informed consent for undergoing RT and using their anon-
ymous data for scientific studies. This study was conducted in accordance with the Dec-
laration of Helsinki, as revised in 2013. The Ethical Review Board of our institute approved 
the use of anonymous post-radiation therapy data for this study (approval no. 2103-024). 

In March 2021, the following data were retrospectively collected from the radiation 
treatment planning system after CT simulation: breast separation (SEP), chest wall thick-
ness (CWT), and MHD. The SEP and CWT were measured for each patient using single-
slice CT obtained at the nipple level, as shown in Figure 1. SEP was defined as the distance 
along the posterior edge of the tangent fields, while CWT was defined as the distance from 
the nipple surface to the lung on a perpendicular line of the SEP. Additionally, the follow-
ing data were collected from the clinical records of each patient: age, body mass index 
(BMI), tumor site, and radiation treatment method. The dataset was analyzed using the 
statistical software SPSS version 27 (IBM Corp., Armonk, NY, USA) to test the correlation 
between the collected data and MHD, with the statistical methods used being the Spear-
man and Eta correlation coefficients. The correlation coefficient values and the p-values 
for statistical significance are shown in Table 1. The variables that had a significant corre-
lation with MHD were identified and considered as independent variables for ML. Three 
variables were ultimately selected as independent variables for ML: BMI, CWT, and SEP. 
MHD was considered a dependent variable. 

 
Figure 1. Single-slice CT parameters. Separation was defined as the distance along the posterior 
edge of the tangent fields at the nipple level. Chest wall thickness was defined as the distance from 
the nipple surface to the lung on a perpendicular line of breast separation. CWT—chest wall thick-
ness; SEP—breast separation. 

Table 1. Patient characteristics. 

Variable Characteristics Correlation Coefficient p-Value 
Body mass index (median (IQR)) 22.2 (20.2–25.2) 0.408 a <0.001 

Chest wall thickness (median (IQR), cm) 6 (5.1–6.8) 0.335 a <0.001 
Separation (median (IQR), cm) 19 (17.1–20.2) 0.290 a <0.001 

Tumor site (%)  0.134 b 0.456 
Upper-inner quadrant 27.1%   
Lower-inner quadrant 9.2%   
Upper-outer quadrant  51.7%   
Lower-outer quadrant 4.8%   

Central portion 7.2%   
Radiation method; n  0.054 b 0.452 

FIF-1RP 70   

Figure 1. Single-slice CT parameters. Separation was defined as the distance along the posterior edge
of the tangent fields at the nipple level. Chest wall thickness was defined as the distance from the
nipple surface to the lung on a perpendicular line of breast separation. CWT—chest wall thickness;
SEP—breast separation.

Table 1. Patient characteristics.

Variable Characteristics Correlation Coefficient p-Value

Body mass index (median (IQR)) 22.2 (20.2–25.2) 0.408 a <0.001
Chest wall thickness (median

(IQR), cm) 6 (5.1–6.8) 0.335 a <0.001

Separation (median (IQR), cm) 19 (17.1–20.2) 0.290 a <0.001
Tumor site (%) 0.134 b 0.456

Upper-inner quadrant 27.1%
Lower-inner quadrant 9.2%
Upper-outer quadrant 51.7%
Lower-outer quadrant 4.8%

Central portion 7.2%
Radiation method; n 0.054 b 0.452

FIF-1RP 70
FIF-2RP 137

Age (median (IQR), years) 56 (46–64) 0.006 a 0.926
IQR: interquartile range. Correlation coefficient and its p-value between mean heart dose and each variable were
calculated using a Spearman’s correlation coefficient (rs) and b Eta correlation ratio (η). Body mass index was
calculated as weight (kg)/height2 (m). Chest wall thickness (cm) was defined as the distance from the skin surface
to the lung at the nipple level. Separation (cm) was defined as the distance along the posterior edge of the tangent
fields at the nipple level. Tumor site was defined according to the International Classification of Diseases for
Oncology (third edition). Radiation method (n) was the number of patients treated using either field-in-field with
one reference point or field-in-field with two reference points.
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In this study, Anaconda Python version 3.9 and Python libraries (Python Software
Foundation, Wilmington, Delaware, USA) were utilized for building, developing, and
experimenting with our ML models. We used an imbalanced dataset that consisted of
207 breast cancer patients, with 165 patients of low MHD (<300 cGy) and 42 patients of high
MHD (≥300 cGy) [6,13,18]. The average MHD was 251 cGy. Furthermore, we utilized the
synthetic minority over-sampling technique (SMOTE) along with the ‘imblearn’ pipeline to
increase the number of high-MHD patients in the training dataset [19].

2.2. ML Algorithms

ML algorithms are procedures that are implemented in code and run on data. In this
study, we utilized ten supervised ML algorithms to accurately classify patients into low or
high MHD. These ML algorithms were used to model the relationships and dependencies
between MHD and the three selected variables, enabling us to predict whether MHD is
low or high for new data based on the relationships learned from our previous dataset.

The ML algorithms used in this study were logistic regression (LR), decision tree (DT),
K-nearest neighbors (KNN), naïve Bayes (NB), ridge classifier (RC), support vector machine
(SVM), bagging, gradient boosting (GB), random forest (RF), and deep neural network
(DNN).

2.3. Models Building

Every ML algorithm generates its unique ML model. A general overview of the
building model criteria is shown in Figure 2. The initial step was to randomly split the
dataset into training and test datasets using a ratio of 80:20. Considering that we used
a highly imbalanced dataset, it was necessary to split the dataset using a stratified train–
test split. This method was well-suited to the nature of our dataset and split it in a way
that preserved the same proportions of patients in each class (low MHD, high MHD) as
observed in the original dataset, with 80% of each class in the training dataset and 20% of
each class in the test dataset [20].
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The second step was to use a training dataset to select the best parameters for each
model in a process called hyperparameter tuning. In this study, our objective was to
accurately predict the patients who might not need DIBH, with a focus on minimizing false
negatives (false low MHD). Therefore, the models were trained using the F2 score with a
grid search cross-validation (GridSearchCV). The F2 score was determined as the primary
metric to compare the performance of the models.

The third step involved building the models along with the optimal values of the
hyperparameters for each model. To avoid overfitting during the model evaluation process,
we used repeated stratified 4-fold cross-validation (CV). The process of stratified 4-fold
CV is shown in Figure 3. During this process, the training dataset was randomly divided
into 4 folds, each with approximately the same distribution for each class, where 3 folds
were used as the training set to develop the ML models while the remaining fold was
used as the validation set to estimate the performance of the models internally within
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the training dataset. Along with the process of CV, the new synthetic high-MHD patients
resulting from SMOTE were only added in the training folds and not the validation folds
by using the ‘imblearn’ pipeline. This was performed to ensure that our models were
validated using only real data. After 4 iterations and each validation fold was used exactly
once, we repeated the whole CV process 5 times using repeated stratified 4-fold CV, with
a different division of the training dataset each time. Finally, comparisons between the
models were performed internally using the averaged performance metrics generated from
the CV process. The averaged performance metrics were the following: F2 score, AUC,
recall, accuracy, Cohen’s kappa, and Matthews correlation coefficient (MCC).
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Figure 3. The process of stratified 4-fold cross-validation. The dataset is randomly split into 4 stratified
folds. Each fold is used as a validation set once (the shaded area), while the other folds are temporarily
combined to form a training set for model generation. Performance metrics on the validation set are
calculated and stored, and the process is repeated for 4 iterations. This process of stratified 4-fold
cross-validation is repeated 5 times. T—training fold; V—validation fold.

2.4. Models Performance Testing

Although CV is intended to prevent overfitting when developing predictive models,
external validation through a reserved testing dataset is necessary to evaluate their predic-
tion performance [16]. Therefore, the model performance was further evaluated externally
using data from 42 patients who were not used for training or building the models. The
average MHD of the testing dataset was 250 cGy and contained 9 patients of high MHD
and 33 patients of low MHD. The classification cut-off value was set as MHD ≥ 300 cGy.
Each model’s performance was computed using the following performance metrics: F2
score, AUC, recall, accuracy, Cohen’s kappa, and MCC. In this study, the classification
success index was not computed because of the use of an imbalanced dataset.

The supplementary file (File S1) provides further information on what these metrics
represent.

3. Results
3.1. Hyperparameter Tuning

Table 2 shows the results of the hyperparameter tuning process, which selects the
optimal values for each hyperparameter in our model. These values were used for building
and training each ML model.

3.2. Internal Comparison between Models

The internally averaged predictive performance of each ML model within the CV
process is listed in Table 3. Two models, KNN (66.5%) and GB (65.5%), achieved slightly
higher F2 score values than the others. For the AUC, GB and KNN again achieved higher
score values than the other models (72.4% and 72.2%, respectively).
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Table 2. Hyperparameter tuning results.

Machine Learning Algorithm Hyperparameter Name Best Value

Deep Neural Network

batch_size 32
dropout 0.1
epoch 10

optimizer “adam”
activation “relu”, “sigmoid”

init “uniform”
dense_nparams 256

Random Forest

max_depth 2
max_features “sqrt”

min_samples_split 2
n_estimators 5

K-Nearest Neighbors
metric “euclidean”

n_neighbors 37
weights “uniform”

Bagging max_samples 0.1
n_estimators 37

Gradient Boosting

learning_rate 0.001
max_depth 2

n_estimators 15
subsample 0.1

Support Vector Machine
C 0.11

gamma “scale”
kernel “rbf”

Decision Tree
max_depth 1

min_samples_split 2

Naïve Bayes alpha 0.081

Ridge Classifier var_smoothing 0.001

Logistic Regression
C 0.01

Penalty “l2”
solver “liblinear”

Table 3. Averaged internal cross-validation results.

Classifier F2 Score AUC Recall Accuracy Cohen’s Kappa MCC

Deep Neural Network 0.600 0.607 0.677 0.617 0.199 0.251
Random Forest 0.606 0.681 0.760 0.636 0.250 0.297

K-Nearest Neighbors 0.665 0.722 0.850 0.648 0.298 0.364
Bagging 0.619 0.709 0.732 0.696 0.320 0.352

Gradient Boosting 0.654 0.724 0.791 0.685 0.342 0.382
Support Vector Machine 0.621 0.687 0.795 0.624 0.235 0.282

Decision Tree 0.584 0.648 0.763 0.581 0.193 0.241
Naïve Bayes 0.580 0.671 0.701 0.654 0.255 0.285

Ridge Classifier 0.504 0.634 0.590 0.660 0.208 0.227
Logistic Regression 0.587 0.679 0.701 0.666 0.274 0.301

AUC: area under receiver operating characteristic curve. MCC: Matthews correlation coefficient.

KNN had the highest recall score (85%), followed by SVM (79.5%). In terms of accuracy,
bagging (69.6%) and GB (68.5%) achieved the highest scores.

For Cohen’s kappa, GB and bagging achieved higher score values than the other
models (0.342 and 0.320, respectively). Whereas for MCC, KNN, GB, and bagging achieved
higher score values than the other models (0.382, 0.364, and 0.352, respectively).

Figure 4 shows the loss for training and validation per epoch in the DNN model.
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Figure 4. The influence of the dataset’s characteristics on the credibility of internal cross-validation
results in deep neural network. A dropout layer was used with a rate of 0.1. The optimization
method was Adam. Binary cross-entropy was used as a loss function with a sigmoid activation for
the output layer.

3.3. Final Evaluation of Model Performances

The final predictive performances of our models are presented in Table 4. Each model
was evaluated using an external test dataset (n = 42).

Table 4. Performance of classification models on predicting mean heart dose in patients.

Classifier F2 Score AUC Recall Accuracy Cohen’s Kappa MCC

Deep Neural Network 0.789 0.818 1 0.714 0.428 0.522
Random Forest 0.775 0.803 1 0.690 0.397 0.497

K-Nearest Neighbors 0.775 0.803 1 0.690 0.397 0.497
Bagging 0.775 0.803 1 0.690 0.397 0.497

Gradient Boosting 0.762 0.787 1 0.666 0.367 0.474
Support Vector Machine 0.762 0.787 1 0.666 0.367 0.474

Decision Tree 0.725 0.742 1 0.714 0.287 0.409
Naïve Bayes 0.714 0.762 0.888 0.690 0.363 0.431

Ridge Classifier 0.714 0.762 0.888 0.690 0.363 0.431
Logistic Regression 0.701 0.747 0.888 0.666 0.333 0.406

AUC—area under receiver operating characteristic curve; MCC—Matthews correlation coefficient.

Most of our models correctly predicted all high-MHD patients in the test dataset,
resulting in a recall score of 100% for most models. However, three models misclassified
one high-MHD patient as low MHD: NB, RC, and LR.

DNN achieved the best performance among all models, with an F2 score of 78.9%, an
AUC score value of 81.8%, a recall score of 100%, an accuracy score of 71.4%, a Cohen’s
kappa score of 0.428, and an MCC of 0.522.

Additionally, we sub-analyzed DNN performance in the classification of high-MHD
patients treated by the FIF-2RP method. In this case, the DNN achieved an F2 score of
86.9%, an AUC score of 86.3%, a recall score of 100%, and an accuracy score of 80%. The
prediction summary generated by the DNN is shown as a confusion matrix in Figure 5.
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4. Discussion

In this study, we used ten ML algorithms to develop models for the prediction of
MHD based on patient radiographic and clinical factors to identify those who might not
require DIBH. The predictive performances of the models were evaluated and compared.
Based on their final evaluation results, the DNN algorithm achieved the best performance,
with an F2 score of 78.9% and an AUC score of 81.8%.

MHD is known to have a significant correlation with late cardiac toxicity during breast
RT [3–6]. Therefore, it is strongly recommended to establish methods to reduce MHD [4–6].
The International Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC)
guidelines stated that radiation-induced cardiac death at 10 years is high if MHD is more
than 300 cGy [6]. For that reason, in this study, the classification cut-off value was set as
MHD ≥ 300 cGy. The FIF-2RP method has been shown to significantly reduce skin dose
and slightly reduce MHD in patients with breast cancer [17]. Ishizaka et al. reported that
during FIF RT, MHD is increased by increasing the treated breast volume [13]. Therefore,
to predict MHD in our AI study, we included input variables related to breast volume, such
as SEP and CWT.

In recent years, AI and ML have already been widely implemented in radiation
oncology, particularly in treatment planning, segmentation, radiation physics, quality
assurance, and contouring or image-guided RT [14,16]. However, the use of this technology
by itself, especially in clinical settings, is still limited [14]. Prior studies have predicted
MHD using AI and ML approaches with the aim of selecting patients with a potential risk
for cardiac toxicity [21–24] and reducing it by performing the DIBH technique [21,24]. In
most of these studies, MHD prediction was dependent on CT parameters such as maximum
heart distance or cardiac contact distance [24]. The prediction of MHD in these studies
requires significant time and effort, as it is typically performed after full CT simulation.
Whereas, in this study, the prediction was performed using single-slice CT simulation,
which enables a faster and easier prediction process. In a study of 94 left-sided breast cancer
patients, Koide et al. suggested the potential of using a convolutional neural network
(CNN) to generate affected CT scans by breath-hold, resulting in high performance and
well-visualized prediction of ∆MHD (AUC = 99.5%), which equals the MHD reduction
between the FB and DIBH techniques. However, the prediction is a time-consuming process,
as planning a CT session for DIBH requires an additional 30 min for each patient than
undergoing CT with the FB technique [21]. In contrast, Koide et al. also reported that
non-CT parameters are promising as predictors of MHD in FB technique, as demonstrated
by their use of a CNN based on preoperative chest X-rays of 103 patients with left-sided
breast cancer (AUC = 86.4%) [24]. In both studies, Koide et al. attempted to predict ∆MHD,
rather than MHD, on FB using the CNN; meanwhile, the performance of the models was
evaluated by setting the cut-off value of ∆MHD >100 cGy. In our study, the cut-off value of
the classification was set as MHD ≥ 300 cGy. To the best of our knowledge, no previous
study has evaluated the performance of MHD prediction using the absolute cut-off value
of MHD.



Curr. Oncol. 2023, 30 7420

Few studies have predicted MHD using clinical parameters such as age, BMI, and
pulmonary function tests [9,25,26]. Predictions using clinical parameters may have some
advantages in terms of early availability and reduced patient radiation exposure; however,
these reports do not have a high prediction performance in comparison with using radi-
ologic parameters, such as chest X-rays or CT parameters. Yamauchi et al. suggested a
possible relationship between BMI and the feasibility of DIBH, indicating that the degree
of benefit from DIBH varies with BMI [9]. Therefore, in our study, we combined both
clinical (BMI) and radiographic (single-slice CT parameters) parameters to achieve the best
prediction of MHD, considering the significant role of BMI and the early timing of the
prediction using single-slice CT parameters, which can be acquired more easily than whole
CT slice parameters. To the best of our knowledge, this study is the first to predict MHD
using single-slice CT to select Asian patients who might not require DIBH.

ML utilizes programmed algorithms to analyze input data and make predictions
within an acceptable range. These algorithms learn and improve their predictions by
optimizing themselves based on the data they receive. When new data is introduced, the
algorithms tend to make increasingly precise predictions. ML algorithms can be classified
into three main categories based on their purposes and the method used to teach the
underlying machine: supervised, unsupervised, and semi-supervised. In this study, we
utilized supervised ML algorithms. Supervised ML algorithms start by utilizing a labeled
training dataset to train the underlying algorithm. Subsequently, this trained algorithm is
employed to categorize an unlabeled test dataset into similar groups. Supervised learning
algorithms suit well with classification problems [27].

LR is an established and good method used for supervised classification. However,
as shown by our results, LR was easily outperformed by other algorithms. The major
limitation of LR is the assumption of linearity between the dependent variable and the
independent variables. Non-linear problems, such as our classification problem, cannot be
solved with LR because it has a linear decision surface. Moreover, linearly separable data
is rarely found in real-world scenarios. Thus, it is tough to obtain complex relationships
using LR [27,28].

DT, NB, and RC are simple algorithms that have low computational requirements,
resulting in shorter implementation times and lower performance scores. On the other hand,
RF, KNN, GB, and SVM are more sophisticated algorithms that necessitate a significant
amount of processing time. While these algorithms provide accurate and precise results,
they are not easily interpretable [27,28].

As for the predictive power of algorithms, DNNs and CNNs, a special type of DNN,
are best known for image-related prediction [21,22,24]. However, some authors have
reported that DNN and CNN were not the best when comparing the predictive power of
many algorithms [29,30]. Hou et al. reported that extreme GB was the best among different
algorithms, including DNN, for predicting the incidence of breast cancer in 7127 Chinese
women using 10 breast cancer risk factors, suggesting that this might be due to the use of
a low-dimensional dataset, which means using few independent variables in relation to
the large dataset they used [29]. Deist et al. also reported that RF and elastic net logistic
regression achieved the best predictive performance among DNN and other algorithms in
predicting RT outcomes and toxicity risk among 3496 patients based on clinical, dosimetric,
and blood biomarker features from multiple institutions [30].

Although our results showed a discrepancy between internal CV and external valida-
tion results, previous studies have reported that such discrepancies might occur, especially
when using a small dataset [31,32]. The internal CV process effectively uses limited data,
and the evaluation results might closely approximate the performance of the model on the
test set [31]. However, Bleeker et al. confirmed that for relatively small datasets, internal
validation results are not sufficient to determine the model’s usability for future settings.
Figure 4 shows the loss for training and validation per epoch in the DNN model. In small
imbalanced datasets, a single wrong prediction with confidence will drop performance
metrics slightly, but the loss will still increase. Therefore, a substantial external dataset
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carries greater significance and is commonly regarded as providing a population that is
more comparable [32].

FIF-2RP is a recently developed FIF radiation technique, particularly suitable for pa-
tients with relatively small breast volumes. In such patients, high-dose areas remain in the
irradiation field around the reference point in conventional FIF-1RP, whereas the devel-
opment of the FIF-2RP technique in our institution has improved dosimetric parameters,
which led to a reduction in high-dose ranges and subsequent skin toxicities [18]. Tekiki et al.
reported that the FIF-2RP method decreased the high-dose range V105% of the target to 0%
while maintaining a homogeneous dose distribution across the breast tissue. This decrease
in the high-dose range was in conjunction with a decrease in the occurrence and grade
of skin adverse events. Therefore, the FIF-2RP could be advised as an optimal method in
clinical practice for patients with early-stage breast cancer [18]. In this study, the predictive
power of the DNN using FIF-2RP patients alone was analyzed on an external test dataset,
indicating that this DNN model might be suitable for predicting MHD with the FIF-2RP
technique.

Our study offers a possible clinical application for the models prior to RT planning for
left-sided breast cancer in Asian patients. Figure 6 indicates the role of earlier prediction
of MHD using our model in selecting suitable breast RT planning for patients. As per our
models, if the predicted MHD for a patient is low, it is recommended to consider planning
for FB RT. The oncologist will be prepared to proceed with FB planning. However, if it is
determined that the patient would receive a high MHD with the FB planning, a CT scan
with the DIBH technique should be conducted, and the planning process for DIBH will be
initiated. At this stage, the oncologist will compare the MHD between the FB and DIBH
plans. If there is a significant difference in the MHD between the two plans, DIBH RT
will be chosen. If the difference is not significant, then FB RT will be selected. It should
be emphasized that the majority of Asian patients, over half of them, exhibit low MHD.
Our results demonstrate that the models effectively classify low MHD by reducing the
likelihood of misclassifying high MHD as a false negative. Consequently, these models will
significantly assist oncologists in selecting appropriate planning options at an earlier stage.
As a result, time and cost can be saved for most Asian patients by avoiding the need for
double planning for FB and DIBH radiotherapies.
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This study has several limitations. First, our datasets consisted of a small number
of patients. However, previous studies on the prediction of MHD also used datasets
between 60 and 209 patients [21–24]. Second, we encountered a challenge due to the highly
imbalanced dataset that we used, which only included a few high-MHD patients in both
the training and test datasets. This made it difficult to achieve maximum performance for
our models. Third, our study used a single institutional dataset, similar to most previous
studies on MHD prediction. However, multi-center input data should be used to improve
model generalizability [22]. Therefore, future studies are required to build models using
larger and more balanced datasets from multiple centers to ensure the generalizability of
the models. Fourth, our study was only conducted and limited to those facilities which
routinely use the DIBH technique.

5. Conclusions

In conclusion, our study has shown that all ten ML algorithms achieved good results
in identifying MHD in patients with left-sided breast cancer using clinical and single-slice
CT parameters. The DNN model was the best choice for the prediction of MHD and might
be useful for identifying patients that may not need DIBH. The findings of this study may
contribute to the daily clinical practice of RT for breast cancer treatment.
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