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Abstract: Melanoma is the fifth most common cancer in the United States and the deadliest of all
skin cancers. Even with recent advancements in treatment, there is still a 13% two-year recurrence
rate, with approximately 30% of recurrences being distant metastases. Identifying patients at high
risk for recurrence or advanced disease is critical for optimal clinical decision-making. Currently,
there is substantial variability in the selection of screening tests and imaging, with most modalities
characterized by relatively low accuracy. In the current study, we built upon a preliminary exami-
nation of differential scanning calorimetry (DSC) in the melanoma setting to examine its utility for
diagnostic and prognostic assessment. Using regression analysis, we found that selected DSC profile
(thermogram) parameters were useful for differentiation between melanoma patients and healthy
controls, with more complex models distinguishing melanoma patients with no evidence of disease
from patients with active disease. Thermogram features contributing to the third principal component
(PC3) were useful for differentiation between controls and melanoma patients, and Cox proportional
hazards regression analysis indicated that PC3 was useful for predicting the overall survival of active
melanoma patients. With the further development and optimization of the classification method,
DSC could complement current diagnostic strategies to improve screening, diagnosis, and prognosis
of melanoma patients.

Keywords: differential scanning calorimetry (DSC); thermogram; melanoma; diagnosis; overall
survival (OS); no evidence of disease (NED)

1. Introduction

Staging and recurrence risk is heavily dependent on the initial presentation of melanoma
(i.e., tumor thickness, distant metastasis, lymph node involvement). The American Joint
Committee on Cancer (AJCC) and National Comprehensive Cancer Network (NCCN)
guidelines provide a framework in which linear clinical decision-making can be performed.
Yet, there is discrepancy within each stage, and there is substantial variability in the timing
and selection of follow-up laboratory tests and imaging [1,2]. Dinnes et al. conducted a
meta-analysis on imaging studies for prognostication and recurrence [3]. They employed
stringent exclusion criteria but found that for initial staging, while the specificities of ultra-
sound, CT, and PET-CT were relatively high (80–90%), the sensitivity of these techniques
was low (23–42%). For re-staging, PET-CT had both high sensitivity and specificity (>89%
for both) which contributed to higher clinical suspicion for recurrent disease [3].

Several biomarkers or techniques detecting specific chromosomal sequence abnormal-
ities have been proposed for melanoma susceptibility, prognosis, and recurrence. These
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include SNPs of metabolic pathway genes [4], CD28/CTL4/ICOS genes [5], the Tyrosinase
gene [6], VDR genes [7], and PI3K genes [8]. This has allowed the definition of several SNP
signatures for melanoma prognosis [9,10]. Another is the preferentially expressed antigen
in melanoma (PRAME) that was found to be expressed in 87–92% of metastatic melanomas,
but, as a qualitative biomarker, it requires expert interpretation [10].

Some genomic abnormalities detected using fluorescent in situ hybridization (FISH)
and comparative genome hybridization (CGH) methods have also been evaluated [10]. Out
of two sets of four specific chromosome sequences (6p23, 6p25, 11q13, and centromere 6
or 9p21, 6p25, 11q13, and 8q24), the second set of sequences resulted in sensitivity and
specificity of 94% and 98%, respectively, but there is concern that the detection technique
(FISH) is expensive and requires specific tools and equipment that not all hospitals can
accommodate [10]. DNA copy number changes, evaluated using CGH, seem to be promis-
ing in classifying melanocytic tumors, as the technique has shown relative sensitivity and
specificity of 96% and 87%, respectively, but the method not only requires large amounts of
tissue for analyses but also specific clinical gestalt by dermatopathologists that can lead to
significant variability in the interpretation of results [11]. More recently, the Myriad my-
Path quantitative gene expression panel (GEP; evaluating 23 genes) and scoring algorithm
were reported to have favorable test characteristics (sensitivity of 90% and specificity of
91%) [12,13]; however, additional studies with long-term follow-ups of clinical outcomes
are needed to determine the utility of this test in clinical practice.

Several biomarkers have also been investigated for the diagnosis of pigmented lesions,
mostly assessing the levels of specific proteins, such as Ki-67, p16, and HMB45 [14], or
specifically modified DNA, such as 5-hydroxymethylcytosine (5-hmC) [15]. While high
sensitivity and specificity (>95%) have been reported, the results require verification on
larger cohorts, as well as the standardization of the results of stain scoring used in the
test procedure, which is notoriously subjective. Ultimately, further studies need to be
conducted to validate the current analytical techniques [14,15].

BRAF mutations, MEK mutations, and programmed cell death protein-1 (PD-1) are
specific gene or protein receptor targets that have significantly changed the overall survival
(OS) of patients with advanced-stage melanoma. Approximately 50% of melanoma patients
have an activating mutation in the BRAF gene [16]. Although these mutations have been
associated with poorer prognosis and OS in the past [17], the advent of effective BRAF
and MEK inhibitors has resulted in marked improvement in OS [17]. Also, PD-1 inhibitors
have demonstrated a robust response in patients that have PD-L1 expression [18]. Yet,
these targeted therapies have faced some challenges and difficulties. For example, 15% of
patients undergoing BRAF therapy do not respond to treatment and about 50% develop
acquired resistance to therapy in 6–8 months from initiation [19]. Interestingly, although
the assessment of BRAF mutations nowadays is essential in clinical oncology practice,
per the most recent AJCC and NCCN guidelines, only lactate dehydrogenase (LDH) is
currently used for staging and prognostication, but the results can only be interpreted
in advanced-stage melanoma due to LDH being a general marker of inflammation [20].
Therefore, developing a technique or biomarker to assist in the staging and early detection
of recurrence is desirable to serve as a measure for treatment failure or resistance.

Differential scanning calorimetry (DSC) is a biophysical technique that directly mea-
sures the thermodynamic properties associated with temperature-induced macromolecular
conformational transitions. The clinical utility of DSC has been intensely studied over the
last ~15 years across many diverse diseases. The growing body of work suggests the ability
to differentiate between the health statuses of patients based upon the thermodynamic
properties of biofluid proteomes [21–32]. DSC provides an exquisitely sensitive way to
monitor the disease state changes that affect protein thermal stability (e.g., differences
in the concentration of proteins, post-translational modification of proteins, formation of
biomarker–protein interactions, alterations in protein–protein networks). The composite
effects of these disease-related changes on the global thermal stability profile of the biofluid
proteome are captured by DSC profiles (thermograms). It is important to note that the DSC
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thermogram is distinct from the similarly named thermography technique. Thermography
uses infrared imaging to detect differences in the surface temperature of breast tissue and
is based on the principle of higher metabolic activity and vascular circulation associated
with cancerous tumor development [33]. We are not aware of the use of thermography
in melanoma. Conversely, a thermogram utilizes DSC to detect temperature-induced
conformational changes of proteins in biofluid specimens. In the melanoma setting, three
previous studies evaluated DSC as an analytical tool to delineate healthy controls and
patients with active disease [22–24]. These studies demonstrated a proof of concept for the
application of DSC for the diagnosis and monitoring of melanoma patients. However, the
three studies were small pilot studies; the studies from the Lőrinczy group [23,24] analyzed
five healthy controls and 15 patient samples in one study and 10 healthy controls and
35 patients in the second study, with an observation of changes in thermogram appearance
according to melanoma stage (Clark’s level and Breslow’s depth) and metastasis. In our
previous work [22], there was also a low number of patients (10 patients), but the study
was expanded to include the longitudinal analysis of patients (63 total plasma samples
from 10 patients). Although multiple thermogram parameters were evaluated, a single
value calculated from the combination of three thermogram parameters, the so-called “d-
value”, was used as a diagnostic parameter for the longitudinal study, with comparison to
radiological and clinical assessment [22]. When analyzing longitudinal changes in d-values
for the melanoma patients under surveillance, the values were generally concordant with
the clinical assessment of the disease. However, the limitations of this study were the eval-
uation of a small number of patients and the fact that the majority of the analyzed samples
were collected during treatment, which could have had an impact on thermograms.

In this manuscript, we build upon the findings of our previous work [22] by examining
23 thermogram parameters in plasma samples obtained from a larger cohort of participants
who were divided into three subgroups (healthy control subjects, melanoma patients with
no evidence of disease (NED), and melanoma patients with active disease). The study
aimed to: (1) validate the utility of thermograms for screening and follow-up of melanoma
patients, and (2) identify which of the thermogram parameters performed best and may
potentially be useful for assessing prognosis. We envisioned that DSC may complement
established diagnostic techniques such as radiological imaging and may improve follow-
up and prognostic evaluation of patients. We hypothesize that DSC may provide earlier
detection of circulating biomarkers related to melanoma metastasis/progression before
changes are observed via radiological imaging. Moreover, since DSC only requires a blood
draw, it would be less invasive and more cost-effective than imaging modalities. This may
allow more frequent patient testing which could potentially result in earlier detection of
changes in clinical status and improved patient management.

2. Materials and Methods

This manuscript describes a baseline study that evaluated the potential utility of
thermograms in the diagnostic and prognostic assessment of melanoma among patients
attending University of Louisville clinics that were not actively receiving treatment. To
test the efficacy of DSC analysis, clinical reference data were compared to the thermogram
parameter data. Each plasma sample was obtained at a specific clinical visit and had an
accompanying clinical designation of NED or active status. Some of these designations
had accompanying status determinations (e.g., radiological findings) that validated the
status designations. Assumptions were made that if a patient had a recurrence, subsequent
plasma samples were designated as active unless further imaging or clinical reasoning
designated otherwise.

Only samples that fulfilled the following inclusion and exclusion criteria were ana-
lyzed: (i) only one sample per subject was included (where more than one sample was
available, the earliest chronological sample was selected as long as it fulfilled the other
inclusion criteria), (ii) for melanoma patients in the active group, specimens were collected
either before any treatment began (chemo/radio/immunotherapy) or at least 28 days after
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the last treatment cycle ended, (iii) for NED melanoma patients, specimens were collected
at least 28 days after treatment finished and were included if no recurrences were recorded
for at least 180 days after specimen collection, (iv) control subjects could not have active
malignancies; also, subjects with any past history (when available) of melanoma were
excluded. After applying the sample inclusion and exclusion criteria, 107 of the 108 plasma
samples were from melanoma patients with White ethnicity and one sample was from a
patient with non-White ethnicity. The single non-White patient sample was excluded from
analysis, as ethnicity was found to affect thermograms in our previous study [26]. The
ethnicity of the control group was matched to the ethnicity of melanoma patients.

2.1. Patient Population

The study was reviewed and approved by the Institutional Review Board at the
University of Louisville (IRB# 08.0388, 10.0144, 14.0517) in compliance with the Declaration
of Helsinki. De-identified plasma samples and associated patient data were obtained from
the Clinical Trials Office Biorepository of the James Graham Brown Cancer Center. For
each sample, information about patient status (control, active melanoma, NED melanoma),
clinical data, and demographic status were provided and used for analysis. Healthy control
samples were either obtained from a commercial source (8 specimens; Innovative Research,
Novi, MI, USA) or were collected from patients with clinically confirmed benign lung
nodules attending the surgical oncology, thoracic oncology, and pulmonology clinics at the
University of Louisville who were verified as having no active cancers.

2.2. Collection and Storage of Plasma Samples

Plasma specimens were obtained by collecting blood into 5 mL green-top vacutainers
containing sodium heparin. Vacutainers were immediately processed as follows: (1) gently
mixed via inversion 8–10 times, (2) centrifuged at 1163× g for 10 min, (3) the upper plasma
phase was carefully aspirated to avoid hemolysis or contamination of the separated blood
phases, and (4) plasma was aliquoted and immediately stored at −80 ◦C until analyzed
via DSC. We have previously evaluated the effect of plasma sample storage conditions
on DSC results and found no significant effect on thermograms for various storage times,
temperatures, and freeze–thaw cycles, with the exception of storage of more than two weeks
at 4 ◦C [34]. Patient characteristics represent those of the patient populations attending
University of Louisville clinics.

2.3. DSC Sample Preparation and Thermogram Collection

The processing of plasma samples was performed as previously described [22,31].
Briefly, all samples were dialyzed for 25 h at 4 ◦C against a buffer consisting of 1.7 mM
KH2PO4, 8.3 mM K2HPO4, 150 mM NaCl, 15 mM sodium citrate, pH 7.5, followed by filtra-
tion through 0.45 µm filters (Pall Corporation, New York, NY, USA). Before DSC analysis,
samples were diluted 1:25 using filtered buffer (0.2 µm, Pall Corporation, New York, NY,
USA) from the last step of dialysis. The same buffer was also used as a reference solution
for DSC analysis. The exact protein concentration of plasma samples was determined using
the bicinchoninic acid protein assay kit following the microplate protocol (Pierce, Rockford,
IL, USA) and a Tecan Safire plate reader (Tecan U.S., Research Triangle Park, NC, USA).

DSC data were collected as previously described [22] using a Nano DSC Autosampler
System (TA Instruments, New Castle, DE, USA). The instrument was serviced and interim
performance was evaluated, following manufacturer protocols. Samples and dialysis buffer
were loaded into 96-well plates and placed in the DSC instrument autosampler at 4 ◦C until
analysis. The analysis of each sample involved a pre-scan equilibration step of 15 min at
20 ◦C, followed by data collection during sample heating at a scan rate of 1 ◦C/min over a
temperature range of 20 ◦C to 110 ◦C. Duplicate DSC scans were collected for all samples.

DSC data were post-processed using Origin 7 (OriginLab Corporation, Northampton,
MA, USA), as previously described [22]. The process involves subtracting a buffer reference
scan from the raw sample scan, normalization for total protein concentration, and correction
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for non-zero sample baselines by applying a linear baseline fit. All data are presented as
the average of duplicate DSC scans and plotted as excess specific heat capacity (cal/◦C.g)
versus temperature (◦C), with final analysis performed in a temperature range of 45 to
90 ◦C at a step of 0.1 ◦C. Thermogram data for all patient samples included in this study
can be found in Table S1 to encourage use by other researchers; these data are also available
through GitHub via the link provided in the Section 2.4.

2.4. Statistical Analysis

Thermograms were evaluated in the temperature range of 45–90 ◦C. All statistical
analyses were performed using R software [35]. R functions were developed to calculate
thermogram summary metrics, including the following: thermogram peak width at half
height (Width), total area under the thermogram (Area), maximum peak height (Max),
median heat capacity (Median), temperature of the peak maximum (TMax), maximum excess
specific heat capacity (Cp

ex) of the first peak in the region 60–66.9 ◦C (Peak 1), maximum
Cp

ex of the second peak in the region 67–72.9 ◦C (Peak 2), maximum Cp
ex of the third

peak in the region 73–78 ◦C (Peak 3), minimum (valley) between Peak 1 and 2 (V1.2), the
position of Peak 1 (TPeak 1), Peak 2 (TPeak 2), Peak 3 (TPeak 3), and V1.2 (TV1.2), as well as the
Peak 1/Peak 2 ratio (Peak 1/2), Peak 1/Peak 3 ratio (Peak 1/3), Peak 2/Peak 3 ratio (Peak
2/3), V1.2/Peak1 ratio (V1.2/Peak 1), V1.2/Peak2 ratio (V1.2/Peak 2), V1.2/Peak3 ratio
(V1.2/Peak 3), and the first moment temperature (TFM), which are depicted in Figure S1.
Two methods were implemented for identifying peaks. The first method evaluated peaks
using the findpeaks function from the R package pracma [36], which identifies regions of
monotonic behavior with a change point. Thermogram regions where excess heat capacity
increased at three or more temperature steps, followed by three or more decreases, were
identified as peaks. The second method for peak identification was to set a pre-defined
temperature region (indicated above), of which the maximum value of the interval was
identified as the peak position. Valleys were identified by finding the minimum value
between any two peaks. Both peak-finding procedures resulted in identical positions
and amplitudes of Peaks 1 and 2, with small differences in the choice of Peak 3. Because
TPeak 3 was identical for the majority of samples, this parameter was not included in the
statistical analyses. The agreement between these two methods, along with prior use in
other publications [37,38], confirmed the proper identification of Peaks 1 and 2. Although
the peak-finding functions did not identify peaks that present as shoulders, functions
are continuing to be improved for the robust identification of important thermogram
features. R functions for generating summary information from plasma thermograms are
available at https://github.com/BuscagliaR/tlbparam (deposited on 14 December 2022).
Additionally, to use the full information from the thermogram, principal components
(PCs) were calculated from the primary thermogram data. PCs were calculated using the
standard R function prcomp, using all thermogram readings from 45 to 90 ◦C. The first
5 PCs explained 97.7% of the variation in the thermogram measurements.

GraphPad Prism 9 software (GraphPad, La Jolla, CA, USA) was used for data visual-
ization using boxplots with whiskers indicating 5th and 95th percentiles, and points falling
outside of this range were labeled as dots. All remaining graphs were prepared using R
software. Statistical modeling was performed to evaluate differences in the mean (or me-
dian) thermogram summary metric/PC values depending on patient status. Modeling was
performed for each summary metric/PC using patient status and sex as covariates. Model
selection procedures were implemented to reduce complexity based on partial F-tests,
starting from an interaction model of sex and status and reducing until significant models
were obtained. The normality of the residual distribution of each summary metric/PC and
the homogeneity of variance were visually assessed using quantile–quantile plots and plots
of residual versus fitted value, respectively. Any chosen models that did not pass normality
assumptions were re-evaluated using quantile regression implemented via the rq function
in the quantreg package [39]. Patients’ sex was included as a covariate given the known
sex differences related to melanoma development, progression, and response to therapy.

https://github.com/BuscagliaR/tlbparam
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To determine the significance of the linear models, overall regression was evaluated using
ANOVA testing. Overall regression p-values were adjusted for multiple comparison by
applying the false discovery rate (FDR) method, using the p.adjust function in R. Final
models with p.adj. < 0.05 were selected for pairwise comparisons between status groups
dependent on sex (when included in the final model), using the estimated marginal means
method (emmeans package [40] in R) with Tukey correction.

To differentiate between active and NED groups, logistic regression was implemented
using the glm function in base R. Classification was performed using the status variable as
a binary response, subdivided into NED and active groups (control patients were omitted
from the logistic analysis). To improve the performance and interpretability of the mod-
els, variance inflation factors (VIFs) were calculated to reduce the multicollinearity to be
no more than a VIF of 5, corresponding to no more than 80% multicollinearity between
predictors. Stepwise model strategies were incorporated based on the Akaike information
criterion (AIC) and Bayesian information criterion (BIC). Forward and backward step-
wise models were estimated using a mixture of patient demographics and VIF reduced
thermogram parameters. Selected models were validated using 25 repeats of 5-fold cross-
validation. Stratified folds were used to ensure the proper representation of NED versus
active populations (33 versus 74 samples, respectively). Cross-validation of the logistic
regression models was based on receiver operating characteristic area under the curve
(ROC-AUC) analysis [41], with the mean AUC value reported from cross-validation.

Cox proportional hazards regression analysis was used to evaluate the association of
thermogram summary metrics/PCs with patient survival. Multivariable model selection
was performed via backward stepwise elimination using the BIC model criterion. Kaplan–
Meier survival curves were used to visualize patient survival data dichotomized based on
the median value of PC3. Restricted mean survival was calculated using the survRM2 R
package [42] with the Greenwood plug-in estimator to calculate the asymptotic variance.

3. Results

In total, this study evaluated 49 healthy control subjects, 33 NED melanoma patients,
and 74 active melanoma patients. Detailed demographic and clinical factors of the three
clinical groups included in the study are shown in Table 1. Stage classification used the
AJCC staging system at the time of diagnosis.

To compare and contrast thermograms between the control, NED, and active groups,
we calculated 23 parameters, 19 summary metrics, and four PCs to capture the specific
features of the global protein denaturation behavior contained within each thermogram.
Figure 1A shows the median thermograms and empirical 5th/95th percentiles for each of
the patient status groups. The loadings for the PCs and the amount of variance explained
by them are shown in Figure 1B,C. The correlation between the thermogram summary
metrics and PCs is given in Figure 1D. The correlation plot (Figure 1D) provides the linear
correlation estimates between each of the 23 parameters investigated. Larger filled squares
indicate stronger linear relationships, with the heatmap scale given at the bottom of the
image. Of note, the thermogram PCs are strongly correlated with multiple thermogram
summary metrics, indicating that they represent a concise way to capture multiple ther-
mogram features. Next, we examined multiple subgroup analyses (i.e., clinical status,
cancer location, the number of affected organs, and stage) and determined the statistical
performance of the 23 parameters within each subgroup. Further analysis entailed exam-
ining multiple regression models and examining various clinical variables or statistically
significant parameters, as discussed below.
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Table 1. Demographic and clinical characteristics of control subjects and melanoma patients included
in the DSC analysis.

Control Active Melanoma NED Melanoma

N 49 74 33

Age at diagnosis:
median (range) 59 (25–93) 62 (26–93) 53 (23–79)

Sex:
Female 32 (65.3%) 27 (36.5%) 13 (39.4%)
Male 17 (34.7%) 47 (63.5%) 20 (60.6%)

Ethnicity:
White 49 (100%) 74 (100%) 33 (100%)

Melanoma cancer classification

Stage:
1 0 (0%) 0 (0%)
2 1 (1.4%) 12 (36.4%)
3 18 (24.3%) 21 (63.6%)
4 55 (74.3%) 0 (0%)

Number of affected
organs/tissues:

1 33 (44.6%)
2 19 (25.7%)
≥3 22 (29.7%)

Cancer location:
Localized 33 (44.6%)

Distant 41 (55.4%)

3.1. Linear Modeling of Thermogram Parameters Using Sex and Clinical Status

The adjusted and unadjusted p-values for testing the association between the thermo-
gram parameters and clinical status while accounting for sex are given in Table S2. The
boxplots in Figure 2 present significant pairwise comparisons found for various parameters
and the clinical status of models, including an interaction term between clinical status
and sex. Significant differences in the mean values of Peak 2, V1.2, TPeak 2, TV1.2, and PC2
were observed. Post hoc analysis indicated that for women, but not for men, the estimated
measures of the center of Peak 2, V1.2, TV1.2, and PC2 were statistically different between
the controls and patients with active disease. For TPeak 2, there were significant differences
in parameter means when comparing the control to NED groups and NED to active groups;
however, again, this was only observed for female patients.

Five parameters were significant for models without an interaction between sex and
clinical status (Figure 3). It was observed that PC4 was significantly different between the
control and active patients for both females and males. Moreover, the Area, TPeak 1, PC3,
and Median parameters demonstrate significant mean parameter differences between the
control and melanoma patients with NED or active disease, again for both sexes. This
suggests that these four parameters could be used for differentiation between control
subjects and melanoma patients when used for patient classification.
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the use of this larger mixture of parameters could improve NED versus active classifica-
tion. 

Table 2. Summary of model selection parameters used for classification of NED and active mela-
noma patients. The mean AUC is reported based on 25 repeats of fivefold stratified cross-validation. 

Model Model Variables Selection Method Mean AUC 
1 Status ~ age BIC 0.6563 
2 Status ~ age + TPeak 2 Forward AIC 0.6629 
3 Status ~ TPeak 2  Hand-selected 0.6306 

Figure 3. The potential utility of thermogram parameters to differentiate between controls, active,
and NED melanoma patients using models with sex as a covariate and evaluating clinical status
and sex as the main effects. Boxplots demonstrate results of a pairwise comparison for significant
thermogram parameters and clinical status performed separately for each sex.
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3.2. Model Development for Classification of NED and Active Melanoma Patients

When treating melanoma patients, stringent surveillance and early detection of disease
recurrence are critical in providing the most efficacious treatment plan. Therefore, we
focused our attention on the development of a logistic regression model, allowing us to
classify melanoma patients with active disease against NED. Logistic regression model
selection returned four distinct models based on the AIC and BIC selection rules. The set
of models chosen from stepwise selection are presented in Table 2. BIC selection enforces
parsimonious modeling, accomplishing a desired level of prediction with as few predictor
variables as possible. BIC-based selection favored highly reduced parameter selection,
returning the model including only the patient age variable (model 1). Although age is an
important predictor in many situations, more flexible models were sought out that focused
on the use of thermogram parameters. AIC selection is less strict and forward selection
resulted in the inclusion of TPeak 2. This parameter was selected together with age (model
2), and to evaluate the impact of using just the thermogram parameters, a secondary model
using only TPeak 2 was investigated (model 3). Backward AIC stepwise selection produced
a flexible model including age mixed with five thermogram parameters: Width, TPeak 1,
TPeak 2, Peak 2/3, and PC4. This flexible model (model 4) was validated to see whether the
use of this larger mixture of parameters could improve NED versus active classification.

Table 2. Summary of model selection parameters used for classification of NED and active melanoma
patients. The mean AUC is reported based on 25 repeats of fivefold stratified cross-validation.

Model Model Variables Selection Method Mean AUC

1 Status ~ age BIC 0.6563
2 Status ~ age + TPeak 2 Forward AIC 0.6629
3 Status ~ TPeak 2 Hand-selected 0.6306

4
Status ~ age + Width
+ TPeak 1 + TPeak 2 +

Peak 2/3 + PC4
Backward AIC 0.6381

Model validation indicates that the age variable is a key predictor of NED versus
active status. The inclusion of TPeak 2 improved the AUC results slightly, indicating that this
variable does have the ability to improve differentiation between patient status, but has a
relatively low effect size based on the results presented within this work. The evaluation of
the model using only TPeak 2 suggests that this variable does indeed differentiate between
the two status types, but does so with less of an impact than when the age variable
is included as a covariate. The increased flexibility model (model 4) that uses several
thermogram parameters in tandem with age was comparatively worse when validated
than using the covariates age and TPeak 2.

A more robust breakdown of the sensitivity and specificity results are presented in
Figures S2 and S3. As classification metrics such as sensitivity and specificity are reliant on a
predicted class probability cutoff, AUC provides an overview of classification performance
by evaluating across all possible cutoffs. Figure S2 presents the mean AUC curve for all
cross-validation iterations and a 95% prediction interval. Figure S3 provides the dispersion
of AUC, accuracy, sensitivity, specificity, and balanced accuracy, calculated at a probability
threshold of 0.5. Figure S2 demonstrates that only small differences were observed in
AUC results, as presented in Table 2. Figure S3 provides the differences in sensitivity
and specificity at a given threshold, with the more parameterized model 4 showing the
highest balanced accuracy. All of the models favor a strong specificity for predicting active
melanoma given that the patient has an active melanoma, but lack in sensitivity, providing
relatively high false positive rates.

The final selected model (model 2) is given in Table 3 along with the estimated
coefficients and resulting interpretations. The model with age and TPeak 2 shows the
strongest AUC cross-validated performance and gives useful insights into how the shift in
the Peak 2 temperature relates to the presence of active melanoma.
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Table 3. Estimated model coefficients, standard errors, and percentage change in odds. The estimated
coefficients are for model 2, including the two covariates age and TPeak 2. The table gives interpre-
tations on the odds scale, indicating that a unit change in age will relate to 4.4% increased odds of
having active melanoma. The TPeak 2 variable shows a large impact on the odds ratio, with a unit
increase (1 ◦C shift in TPeak 2) relating to 65% increased odds of having active melanoma.

Coefficient Estimate Standard Error Odds-Based
Interpretation

Age 0.0427 0.0166 4.4%
TPeak 2 0.5010 0.3001 65.0%

To produce a discussion related to the probability of NED versus active, predictions
were made based on median age and median TPeak 2 values observed in the collected
patient data (median age of 57 and median TPeak 2 value of 70 ◦C). Using these values
within model 2 suggests a probability of 74.1% (95% confidence interval (CI): (64.1, 84.0))
for having active melanoma versus NED. To evaluate the effect of changing age or TPeak 2,
we allow these variables to decrease by one standard deviation, as observed within the
data set. Reducing age by one standard deviation to a value of 43 and keeping TPeak 2
constant at the median value of 70 ◦C suggests a probability of 61.1% (95% CI: (44.2, 76.3))
for having active melanoma versus NED. To put the impact of TPeak 2 into the perspective
of that of age, reducing the TPeak 2 variable by one standard deviation to a value of 69 ◦C
and maintaining age at the median value of 57 gives an estimated probability of 63.4% (95%
CI: (51.0, 75.7)). This shows that one standard deviation changes in age and TPeak 2 have a
similar impact for differentiating between NED and active melanoma.

The large discrepancy between the two variables’ odds-based interpretation is due
to the difference in a unit change in age versus a unit change in TPeak 2. Within the data
set, the TPeak 2 value only ranges from 67.3 to 71.2 ◦C, approximately 4 units of variability
in the extreme observations, while age ranges from 23 to 93. Therefore, a unit change
in age is commonly observed, while a unit change in TPeak 2 would be an extreme effect.
However, when normalized to a standard deviation shift in age or TPeak 2, we see a relatively
equivalent impact on the probability of active melanoma. As such, TPeak 2 seems to be
an important predictor of active status and should be further studied for its utility in
differentiating between NED and active forms of melanoma.

3.3. Mean Thermogram Parameters as Modeled According to Cancer Location, Number of Affected
Organs/Tissues, and Clinical Stage

For patients with active disease, subgroups were made to evaluate the potential linear
relationships between thermogram summary metrics/PCs and cancer location, and the
number of affected organs/tissues and clinical stage, as indicators of disease advancement
and prognosis. Cancer location was divided into localized (skin, lymph nodes, eye) versus
distant metastasis (lungs, liver, pancreas, brain, abdomen, small intestine, head and/or neck,
bones, spleen, adrenal gland, limbs). The number of affected organs/tissues was divided
into groups “1”, “2”, and “greater than 2”. For the clinical stage, the samples were divided
into stage 3 and stage 4, with one sample of stage 2 excluded from the analysis. Statistical
analysis was performed in the same manner as presented for the thermogram parameters
with clinical status (Section 3.1), and we included sex as a covariate. Unfortunately, no
statistically significant differences in the mean thermogram summary metrics/PCs were
found between any of these subgroups; however, for some parameters, unadjusted p-
values below 0.1 were observed: Max, Peak 1, and Peak 1/2 presented different mean
values when modeled against the number of affected organs/tissues, and there were mean
differences in V1.2/Peak 2 when modeled against clinical stage and mean differences in
Max when modeled against cancer location. The findings from this study do not show a
linear relationship between individual thermogram parameters and clinical characteristics
of melanoma, although these results will continue to be validated with increased sampling.
The results of the analysis can be found in Table S3.
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3.4. Thermogram Parameters for Modeling Overall and Progression-Free Survival of
Melanoma Patients

Using Cox proportional hazards regression analysis, thermogram summary met-
rics/PCs were evaluated for their use as predictors of progression-free survival (PFS) or OS
of melanoma patients. OS analysis was performed for active melanoma patients with the
time counted from the day of sample collection. The results of Cox survival analysis can
be seen in Figure 4 as well as Tables 4 and S4. Table S4 provides the p-values (unadjusted
and adjusted) for each parameter from the univariate analyses. The most significant result
was for PC3 (unadjusted p-value = 0.007, FDR-adjusted p-value = 0.13). Backward selection
based on the BIC and starting with PC3, sex, and the V1.2/Peak 2 ratio resulted in only
PC3 being retained in the end model. The Cox model parameter estimates for PC3 are
presented in Table 4 (hazard ratio (HR) = 1.74; 95% CI: (1.17, 2.58)). The Kaplan–Meier OS
curve for PC3 was constructed by splitting the data into two groups above and below the
median value for PC3 (Figure 4A). The curve demonstrates lower OS for patients with PC3
values above the median. A restricted mean survival (using a truncation time of 8 years) of
4.1 years (95% CI: (3.0, 5.2)) was obtained for patients above the median PC3 value, with a
restricted mean OS of 5.8 years (95% CI: (4.9, 6.8)) for patients at or below the median PC3
value (difference = 1.7 years, 95% CI: (0.245, 3.2), p = 0.023). Through an inspection of the PC
loading plot (Figure 4B), subjects with higher PC3 values likely had wider secondary peak
tails at >70 ◦C and a deeper valley between Peak 1 and Peak 2. This was corroborated by
the high positive correlation between PC3 and the thermogram summary metrics Median
and Peak 3, and the negative correlation between Peak 2/3 and V1.2/Peak 3 (Figure 1D).
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group and PC3 loadings.

Table 4. Summary of model parameter estimates for PC3 obtained via Cox proportional hazards
regression analysis of active melanoma patient overall survival.

Model Estimates for PC3

Parameter Parameter
Estimate Hazard Ratio 95% Confidence

Interval

PC3 0.553 1.74 (1.17–2.58)

PFS analysis was performed for the NED group only, as many of the active disease
patients had samples collected after an initial recurrence. Of the 32 NED patients with
PFS data, 7 experienced recurrences. Similar to the analysis of OS, time was counted from
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the day of sample collection. Table S5 includes the results of the univariate analysis. No
thermogram summary metrics/PCs had adjusted p-values below 0.1.

4. Discussion

The purpose of the current study was to build upon previous work toward using DSC
as a biomarker for melanoma [22] that could be especially useful for the surveillance of
patients with advanced melanoma, where cancer cells had metastasized to lymph nodes or
other organs. For these patients, existing diagnostic techniques like dermatoscopy or radio-
logical imaging might not be accurate or sensitive enough to detect metastases, and the
use of radiological imaging might be limited by availability, expenses, or radiation burden.
Our previous work in the lung cancer setting concluded that although several thermogram
parameters are correlated with clinical characteristics, more complex thermogram-based
algorithms are required to adequately characterize differences in thermogram parameters
between control and cancer patients [31]. Similar observations were noted by other re-
searchers applying DSC to the classification of lung cancer and pancreatic cyst patients.
These studies found that although individual thermogram parameters exhibited good
performance in distinguishing between lung cancer patients and control subjects with
benign lung nodules, ultimately, a combination of parameters provided superior diagnostic
performance [30,32]. In the current work, linear models were constructed that modeled
changes in thermogram parameters against clinical status. Several thermogram parameters
(Peak 2, TPeak2, V1.2, TV1.2, and PC2) were found to have measures of center that were
significantly different between at least two groups, although pairwise comparisons only
revealed differences in the female subgroups. Other thermogram parameters (Area, TPeak 1,
PC3, Median, and PC4) demonstrated significant differences between at least two clinical
groups for both females and males that could be used to differentiate between the control
and the melanoma (NED and active) patient populations. Yet, NED and active comparisons
within the sex-included models suggested no statistical significance, which prompted us to
evaluate more complex models for thermogram-based clinical differentiation.

Logistic regression analysis focused on the classification of melanoma patients with
NED and active status, and found that the age and TPeak 2 parameters were key predictors
of patient status. As seen in Table 3, odds-based analysis for TPeak 2 and age show only
minor odds changes for age, while TPeak 2 has a 65% increase in the odds of having active
melanoma per a 1 ◦C shift. Although this impact seems very large, when scaled to a one
standard deviation change based on the observed ages and TPeak 2 within the data set,
the relative change in the probability of having active cancer is nearly equivalent. This
demonstrates that TPeak 2 seems to be an important predictor of active status and should be
further studied in a larger cohort to evaluate its efficacy for the classification of NED and
active forms of melanoma and to assess the utility of DSC for the surveillance of melanoma
patients as a complementary technique to radiological imaging.

To further assess the performance of thermogram parameters, this study evaluated the
utility of DSC to predict the OS and PFS of melanoma patients. Through OS analysis, we
investigated all 23 thermogram parameters using adjusted and unadjusted p-values with
both univariate and multivariate Cox analysis. For the univariate analysis, PC3 was the
most significant parameter with an FDR-adjusted p-value of 0.13. The estimated restricted
mean survival was 1.7 years higher for patients below the median PC3 value. PC3 also
demonstrated significance in differentiating between healthy controls and both NED and
active melanoma patients. This analysis is promising and proposes that PC3 could be
used as a potential biomarker for patients with active melanoma to predict OS. Since the
thermogram PCs are highly correlated with other thermogram summary metrics, they also
provide concise measures to capture multiple features of thermograms which are related to
patient outcomes, without the need to test each summary metric individually. PFS analysis
demonstrated no statistical differences for any of the thermogram parameters in predicting
recurrence in NED melanoma patients. It is interesting to note that prior studies have found
different thermogram parameters as being significant for both OS and PFS. For patients
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with lung cancer, TPeak 2 was significant for OS, with TPeak 1, Peak 2/3, and PC2 having
some association at lower significance levels [31], whereas in glioblastoma, the prediction
of OS was associated with Area [43]. For PFS, TMax was found to be a predictor of PFS in
glioblastoma and lung cancer patients [31,43]. These parameters were not significant in this
current study, which suggests that different thermogram parameters could be significant
for different cancers.

These observations are similar to the reports that the most significant thermogram
parameters for clinical classification are not necessarily retained from one study to an-
other, and ultimately, models utilizing a combination of multiple thermogram parameters
were found to have the highest diagnostic performance [30,32]. Prior studies have inves-
tigated the use of DSC for the detection of recurrence or correlating particular features
of thermograms with response to a specific cancer treatment [22,44,45]. While promising,
these studies were preliminary conducted with small sample sizes and the observations
were never confirmed using larger, independent cohorts of patients. Unfortunately, the
current study examined patients undergoing non-homogenous treatment regimens that
were often changed when progression was detected. Therefore, we were unable to build
a model allowing for the prediction of treatment outcome (response, stable disease, or
progression) or adverse response of patients to treatment using thermogram data. Our
study was also limited by the observational nature of our data and the samples available
in our institution. This prevented differentiation between active and NED melanoma
stratified by subgroups, including cancer stage, sex, ethnicity, and age. Within the past
decade, targeted therapies (e.g., BRAF inhibitors or PD-1 immune checkpoint inhibitors)
have greatly changed the landscape for the treatment of advanced melanoma. Yet, there
are still therapeutic challenges [46]. Given the identification of thermogram parameters
with potential utility for differentiation between clinical status and prediction of OS, we are
interested in examining the use of thermogram parameters to predict treatment outcomes
in a future study with controlled treatment groups, which could be helpful in guiding a
clinician’s decision about initial therapy choice or change in treatment protocol if a patient
is developing acquired resistance.

The continued study of thermograms for disease characterization has demonstrated
ongoing potential utility in differentiating between clinical states. However, the analysis of
thermograms is complex and requires further development to confirm how thermogram
information can improve patient diagnostic and prognostic models. Across the multitude
of studies using DSC as a clinical tool, there are notable differences in how thermograms
are processed and the statistical analysis is employed [28,29,32,47]. This suggests that more
work is needed to evaluate thermogram experimental and statistical methodologies and
ensure the rigorous clinical use of thermograms across studies. The methodology presented
in this paper is consistent with our prior studies [37,38] and uses the interpolation of raw
data to ensure comparable heat capacity measurements on an equivalent temperature mesh.
A consistent statistical/mathematical evaluation of thermograms is also essential in the
objective quantification of the differences between clinical groups, and we provide the R
functions used for the calculation of thermogram summary measures through a publicly
available GitHub repository. Peak and valley identification is an area of limitation with
a need for continued improvement, specifically regarding the identification of inflection
points that often present as shoulders rather than distinct peaks. Estimates of thermogram
peaks and valleys are reinforced through the use of two different approaches, maximum
value in a temperature window and functional derivatives, with each providing consistent
and reproducible estimates for Peak 1 and Peak 2. The peak-finding methods presented
here are unchanged from earlier publication work to ensure consistency across studies. The
ultimate goal is to develop algorithms incorporating thermogram summary measures into
clinical decision tools for patient diagnoses and prognoses.
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5. Conclusions

This study further demonstrates that DSC can be used as an investigational tool for
patients with melanoma. Several thermogram parameters within ANOVA modeling were
found to have significantly different measures of center between the controls and melanoma
patients. Developed classification models elucidate the impact of thermogram parameters
and the potential for generalized linear models to use mixtures of patient meta-information
and thermogram parameters to improve the classification of patient status. Interestingly,
we found that PC3 was specific enough to be used as a single biomarker for the prediction
of OS in active melanoma patients and for differentiation between control individuals and
melanoma patients. Additionally, we used logistic regression to classify NED and active
melanoma patients, which demonstrated that thermograms could be used for the detection
of recurrence during patient surveillance. Logistic regression models found TPeak 2 to be
a significant differentiator of patient status, with increases in TPeak 2 corresponding to
increased odds of having an active status. Further analysis could examine the predictive
accuracy of the thermogram parameters and models discussed in this work. Ultimately,
DSC appears to be a promising complementary technique for disease characterization,
but continued rigor must be given to ensure the replication of clinical DSC results and
continued validation of statistical modeling in larger studies.
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