
Citation: Verma, S.; Breadner, D.;

Raphael, J. ‘Targeting’ Improved

Outcomes with Antibody-Drug

Conjugates in Non-Small Cell Lung

Cancer—An Updated Review. Curr.

Oncol. 2023, 30, 4329–4350. https://

doi.org/10.3390/curroncol30040330

Received: 16 March 2023

Revised: 14 April 2023

Accepted: 18 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

‘Targeting’ Improved Outcomes with Antibody-Drug
Conjugates in Non-Small Cell Lung
Cancer—An Updated Review
Saurav Verma 1,2, Daniel Breadner 1,2 and Jacques Raphael 1,2,*

1 Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry,
Western University, London, ON N6A 5C1, Canada; saurav.verma@lhsc.on.ca (S.V.);
daniel.breadner@lhsc.on.ca (D.B.)

2 London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
* Correspondence: jacques.raphael@lhsc.on.ca; Tel.: +1-(519)-685-8500 (ext. 53415)

Abstract: Antibody-Drug conjugates (ADCs) are a relatively new class of drugs with a promise to
improve the outcomes in specific cancers. By delivering the cytotoxic agent to tumor cells expressing
specific antigens, ADCs achieve a better therapeutic index and more potency. ADCs have been
approved for several hematological and solid malignancies, including breast, urothelial and gastric
carcinoma. Recently, trastuzumab deruxtecan (TDXd) was the first ADC approved for previously
treated metastatic HER2-mutant non-small cell lung cancer (NSCLC). Many promising ADCs are in
the pipeline for clinical development in non-small cell lung cancer, including sacituzumab govitecan,
patritumab deruxtecan, datopotamab deruxtecan and tusamitamab ravtansine. There is a hope that
these drugs would cater to the unmet need of specific patient populations, including patients with
currently untargetable mutations. We hope these drugs, e.g., TROP2 targeted ADCs, will also give
more options for therapy in NSCLC to improve outcomes for patients. In this comprehensive review,
we will be discussing the recent evidence including targets, efficacy and the safety of newer ADC
candidates in NSCLC. We will also briefly discuss the specific toxicities, novel biomarkers, overcoming
resistance mechanisms, challenges and the way forward, as these new ADCs and combinations find a
way into the clinical practice.
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1. Introduction

Lung cancer is the second most common cancer worldwide and the leading cause of
cancer-related deaths [1]. Non-small cell lung cancer (NSCLC) accounts for approximately
85% of all new lung cancer cases and more than two-thirds are advanced/metastatic at
the initial diagnosis. With the continuing advancements in the genomic underpinnings of
lung cancer, it is now at the helm of personalized therapy. The current systemic therapeutic
arsenal of non-small cell lung cancer comprises chiefly immune checkpoint inhibitors (ICIs),
targeted therapy and chemotherapy. Although these therapies have significantly improved
outcomes, there is hope for better options for specific populations lacking targetable driver
mutations and those with the progression of disease on first-line chemo-immunotherapy,
which represent the largest unmet need in advanced/metastatic NSCLC with limited
therapeutic options and poor prognosis.

Antibody-Drug conjugates are a rapidly evolving class of biotherapeutics combining
cytotoxic drugs and targeted antibodies. Combining these two moieties with a ‘linker’
delivers a biotherapeutic that can deliver the drug selectively to cells harboring the target
(antigen) for antibodies, thereby, increasing safety and consolidating efficacy. There has
been a rapid development of ADCs in lung cancer over recent years. Recently, in August
2022, trastuzumab deruxtecan was approved by Food and Drug Administration (FDA)
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for previously treated human epidermal growth factor receptor 2 (HER2) mutant NSCLC,
based on a phase 2 study showing improved outcomes. Besides trying to improve outcomes
in patients with specific patient populations with a targetable mutation, trials are evaluat-
ing ADCs in combination with ICIs, tyrosine kinase inhibitors (TKIs) and chemotherapy
to improve outcomes in first- and subsequent-line settings. The focus has also been to
increase therapeutic index/window of ADCs by approaches such as more selective targets,
increased drug–antibody ratio (DAR), payload-linker optimization and more potent cyto-
toxic moieties. This review focuses on ADCs in recent clinical and preclinical development
for NSCLC.

2. ADCs—Structure and Mechanism of Action
2.1. Structure

ADCs consist of a targeted antibody which is attached to a potent cytotoxic agent
called ‘payload’ via a chemical ‘linker’ [2] (Figure 1).
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2.1.1. Antibody

The antibody, mostly immunoglobulin G, is designed to target a specific antigen or
receptor which is usually highly expressed on the target/cancer cell. This selectivity for
the antigen on cancer cells is what makes the ADCs highly selective to tumors and thereby
minimizing systemic exposures. The binding affinity between the antibody and the surface
antigen defines the efficiency of internalization. With high binding affinity to the target
antigen and efficient internalization, an ideal antibody moiety should also exhibit low
immunogenicity and a long plasma half-life [3]. Currently, fully humanized antibodies
with significantly reduced immunogenicity are increasingly used compared to murine and
chimeric antibodies.

2.1.2. Payload

Potent cytotoxic agents such as tubulin inhibitors, DNA damaging agents and im-
munomodulators are the ‘payloads’ of ADC. These possess favorable physicochemical
properties, including acceptable hydrophilic/hydrophobic balance, cellular permeability
and good stability [4]. Presently, the majority of ADCs use the auristatins (i.e., monomethyl
auristatin E (MMAE), monomethyl auristatin F (MMAF)), maytansines (e.g., DM1, DM4),
calicheamicins and duocarmycin derivatives.

2.1.3. Linker

The linker binds the antibody to the cytotoxic payload. It defines several characteristics
of ADC, such as stability, payload release and therapeutic index. An ideal linker should
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not induce ADC aggregation, and it is expected to limit premature release of payloads in
plasma [2]. These linkers can be cleavable or non-cleavable. The conjugation method, such
as stochastic and site-specific conjugation, which connects the linker and payload to the
antibody also modulates the characteristics of an ADC.

2.2. Mechanism of Action

The ideal ADC selectively finds out its target, destroys it and has minimal ‘off target’
effects. The ADCs’ mechanism of action display antibody-mediated receptor binding on
the surface of the cancer cell. This is followed by internalization of the ADC through
receptor-mediated endocytosis with the formation of a clathrin-coated early endosome
containing the ADC–antigen complex. Inside the lysosome, degradation of ADC occurs by
lysosomal cleavage. This results in the release of free potent payload leading to apoptosis
or cell death depending on the cytotoxic mechanism of payload [5] (Figure 2). Various
ADCs differ based on the type of target antigens, antibody, payload, linker and conjugation
platform (Table 1).
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Table 1. Antibody-Drug conjugates (ADCs) in non-small cell lung cancer, their targets and components.

ADCs in Clinical Development

ADC Target Antibody Linker Payload DAR

Trastuzumab Deruxtecan (T-DXd) [6]

HER2

Trastuzumab Cleavable Deruxtecan 8

Ado-trastuzumab Emtansine (T-DM1) [7] Trastuzumab Non-cleavable Emtansine (DM1) 3.5

Zanidatamab Zovodotin (ZW49) [8] ZW25 Cleavable Novel Auristatin
toxin 2

Patritumab Deruxtecan (HER3-DXd) [9] HER3 Patritumab Cleavable Deruxtecan 8

Sacituzumab Govitecan (SG) [10]
Trop-2

Sacituzumab Cleavable SN-38 7.6

Datopotamab Deruxtecan (Dato-DXd) [11] Datopotamab Cleavable Deruxtecan 4

Telisotuzumab Vedotin (Teliso-V) [12] MET ABT-700 Cleavable Monomethyl
auristatin E (MMAE) 3.1

Tusamitamab ravtansine [13] CEACAM5 Anti-CEACAM5 Cleavable DM4 3.8

DS-7300 [14] B7-H3 Deruxtecan 4
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Table 1. Cont.

ADCs in Clinical Development

ADC Target Antibody Linker Payload DAR

Enapotamab vedotin (EnaV) [15] AXL AXL-specific IgG1
kappa Cleavable MMAE 4

Brentuximab vedotin [16] CD30 IgG1 kappa Cleavable MMAE 4

Enfortumab vedotin [17,18] Nectin-4 IgG1 kappa Cleavable MMAE 3.8

Anetumab ravtansine (BAY 94-9343) [19] Mesothelin IgG1 lambda reducible SPDB
linker DM4 3.2

ADCs in preclinical development

ADC Target Payload

REGN5093-M114 [20] MET maytansinoid payload

XB002 [21] Tissue Factor Zymelink Auristatin

LY3076226 Fibroblast growth factor receptor 3
(FGFR3) DM4

ABBV-221 [22] EGFR MMAE

AVID100 [23] EGFR DM1

MGC018 [24] B7-H3 Duocarmycin

SGN-STNV [25] STn MMAE

DLYE5953A [26] LYSE MMAE

SAR566658 [27] CA6 DM4

The ‘bystander effect’ is a specific characteristic of an ADC. This involves either
the release of payload from the target tumor or from extracellular space in the vicinity
of target cells. The drug is then taken up by the bystander cells which may lack the
target. This enhances the killing efficiency of ADCs as the target-negative cells are also
killed thereby extending efficacy to heterogenous tumors or cancers with homogenous but
low target expression [28,29]. This potent bystander effect is observed with trastuzumab
deruxtecan due to its highly membrane-permeable payload, and explains its efficacy in
treating tumors with HER2 heterogeneity, resulting in approval in patients with previously
treated unresectable or metastatic ‘HER2-low’ breast cancer [30,31].

The ADCs have evolved over time from the first generation, characterized by chimeric
antibodies, unstable linkers, low/uncontrolled DARs and high immunogenicity to the
present fully humanized, stable, highly potent, third-generation ADCs having better conju-
gation methods yielding better efficacy and therapeutic windows.

2.3. Antigenic Targets

The selection of target antigens is the first step in the development of an ADC. The
target antigen should be exclusively or predominantly present on tumor cells, preferably
extracellular, internalizable and non-secretory. The target antigen determines the mecha-
nism (e.g., endocytosis) for the delivery of cytotoxic payloads into cancer cells. HER2 is a
target antigen which is more expressed in tumor cells than normal cells by the order of 102.
The various target antigens for ADCs in NSCLC are highlighted in Table 1.

3. ADCs in NSCLC

There are several ADCs being studied in NSCLC (Table 2). Various strategies are
being used, including combination with chemotherapy or ICIs in various lines of treatment
(Table 3).
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Table 2. Current Clinical Data on use of Antibody Drug Conjugates (ADC’s) in Non-Small Cell Lung Cancer (NSCLC).

ADC Study (Phase) Sample Size
(n) Population Intervention

Overall
Response Rate

(ORR)

Disease
Control Rate

Median
Progression-

Free Survival
in Months

(mPFS)
(95% CI)

Median
Overall

Survival in
Months (mOS)

(95% CI)

Median
Duration of
Response in

Months
(mDOR)
(95% CI)

Common Grade
Adverse Events (%)

HER-2 or ERBB2

Ado-Trastuzumab
Emtansine/TDM-1

Iwama et al.,
2021

Phase 2 [32]
22

Previously treated
HER2 exon-20 insertion

mutations

T-DM1
(3.6 mg/kg)

intravenously
every 21 days

38.1%
(23.0–55.9)

52.4%
(35.2–69%) 2.8 (1.4–4.4) 8.1 (3.5–13.2) 3.5 (2.7–6.5)

Thrombocytopenia (63.6%)
Transaminitis (AST—45.5%,

ALT—40.9%)
ILD (13.6%, no grade 3/4)

Peters et al.,
2019 [33]

49 (29, IHC
2+, 20 IHC

3+)

Previously treated
HER2-overexpressing

(OE) advanced NSCLC

T-DM1
(3.6 mg/kg)

intravenously
every 21 days

IHC 2+, 0%; IHC
3+, 20% (5.7–43.7) IHC 3+: 40%

IHC 2+, 2.6
(1.4–2.8); IHC

3+, 2.7
(1.4–8.3)

IHC 2+, 12.2
(3.8–23.3); IHC

3+, 15.3
(4.1-NE)

-

Hypersensitivity
Peripheral neuropathy

Thrombocytopenia
Hepatotoxicity

ZW49 Jhaveri et al. [8],
2022 1

Previously treated
locally

advanced/metastatic
solid malignant tumors

ZW49 28% 72% - - -
Keratitis (42%)
Alopecia (25%)
Diarrhea (21%)

Trastuzumab
Deruxtecan/T-
DXd/DS-8201

Li et al.,
2022

DESTINY-Lung01
Phase 2 [34,35]

91 Previously treated
HER2 mutant NSCLC

T-DXd
(6.4 mg/kg)

intravenously
every 21 days

54.9%
(44.2–65.4) 92% (85–97) 8.2 (6–11.9) 18.6 (13.8–25.8) 10.6 (5.8–17.7)

Nausea (73%)
Fatigue (53%)

Neutropenia (35%)
Anemia (33%)

Diarrhoea (32%)

Smit et al.,
2022

DESTINY-Lung01
[36]

Cohort
1—49 patients

Cohort 1a—
41 patients

Previously treated
HER2-OE NSCLC

Cohort 1—T-DXd
6.4 mg/kg

Cohort 1a—T-DXd
5.4 mg/kg

Cohort 1—26.5%
(15–41.1)

Cohort 1a—34.1
(20.1–50.6)

Cohort 1—69.4%
(54.6-81.8)

Cohort 1a—78.0%
(62.4–89.4)

- -
Cohort 1—5.8

(4.3-NE); Cohort
2—6.2 (4.2–9.8)

Cohort 1 vs. 1a Nausea
(59.2% and 73.2%)

Decreased appetite (44.9%
and 46.3%)

Fatigue (32.7% and 51.2%)
ILD (20.4–4.9%)

DESTINY-Lung02
2022

NCT04644237
[37,38]

101
(6.4 mg/kg

arm)
50 (5.4 mg/kg

arm)

Previously treated
HER2 mutant NSCLC

T-DXd (6.4 vs.
5.4 mg/kg)

intravenously
every 21 days

6.4 mg/kg: 42.9%
(24.5–62.8); 5.4
mg/kg: 53.8%

(39.5–67.8)

6.4 mg/kg: 92.9%
(76.5–99.1); 5.4
mg/kg: 90.4%

(79–96.8)

- -

6.4 mg/kg: 5.9
(2.8-NE);

5.4 mg/kg: NE
(4.2-NE)

-

HER-3

Patrizumab
Deruxtecan/HER3-

DXd/U3-1402

Janne et al.,
2021

Phase 1 [39]
NCT03260491

57

Previously treated
EGFR inhibitor-resistant,

EGFR-mutated
(EGFRm) NSCLC cohort

HER3-DXd
5.6 mg/kg IV

Q3W
39% (26–52.4) 72% (58.5–83) 8.2 (4.4–8.3) - -

Grade ≥ 3 AEs
Thrombocytopenia (30%)

Neutropenia (19%)
Fatigue (14%)

ILD (all grade: 7%)

Steuer et al.,
2021

Phase 1 [40]
NCT03260491

47

Previously treated
EGFR-unmutated

(EGFR wild-type (WT))
NSCLC cohort

HER3-DXd
5.6 mg/kg IV

Q3W
- 28% (16–43) 5.4 (3.9–12.7) - 5.7 (3.7–10.7)

Grade ≥ 3 AEs
Thrombocytopenia (15%)

Neutropenia (26%)
Fatigue (15%)

ILD (all grade: 9%)
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Table 2. Cont.

ADC Study (Phase) Sample Size
(n) Population Intervention

Overall
Response Rate

(ORR)

Disease
Control Rate

Median
Progression-

Free Survival
in Months

(mPFS)
(95% CI)

Median
Overall

Survival in
Months (mOS)

(95% CI)

Median
Duration of
Response in

Months
(mDOR)
(95% CI)

Common Grade
Adverse Events (%)

TROP2

Datopotamab
Deruxtecan/Dato-

DXd/DS-1062

Levy et al.,
2022

TROPION-Lung02
Phase 1b [41]

60

Previously treated
(cohort 1-2) and
treatment naïve

(cohort 3-6)
advanced/metastatic

NSCLC

Cohort 1-2:
Doublet

(Dato-DXd +
Pembrolizumab)

Cohort 3-6: Triplet
(Dato-DXd +

Pembrolizumab +
Platinum)

39%
Doublet—62%
Triplet—50%

82.6%
Doublet—100%

Triplet—90%
- - -

Stomatitis (42%)
Nausea (38%)
Fatigue (27%)

Garon et al.,
2021

TROPION-
PanTumor01

Phase 1
NCT03401385

[42–44]

180
Previously treated

advanced/metastatic
NSCLC

Dato-DXD
8 mg/kg
6 mg/kg
4 mg/kg

24%
26%
24%

- 8.2 (1.5–11.8)
mg et al. - -

Nausea (52%)
Stomatitis (48%)
Alopecia (39%)
Fatigue (32%)

Neutropenia (6%)
ILD (11%)

Sacituzumab
Govitecan

(IMMU-132)

Heist et al.,
2017

Phase 1/2 [45,46]
54

Previously treated
advanced/metastatic

NSCLC

IMMU-132
8 or 10 mg/kg
were given on
days 1 and 8 of
21-day cycles

19% 68% 5.2 (3.2–7.1) 9.5 (5.9–16.7) 6 (4.8–8.3)

Neutropenia (37%)
Diarrhea (61%) Nausea

(80%)
Fatigue (46%)

Pneumonia (13%)

MET

Telisotuzumab
vedotin (Teliso-V)

Camidge et al.,
2022

Phase 2
LUMINOSITY
(M14-239) [47]

136

Previously treated
c-Met–OE

advanced/metastatic
NSCLC

Teliso-V
1.9 mg/kg IV

Q2W
NSQ EGFR WT

cohort
SQ EGFR WT

cohort

c-Met OE NSQ
EGFR WT—36.5%.

52.2% in c-Met
high group

- - -

c-Met OE NSQ
EGFR WT—6.9

(4.1–NE);
c-Met high–6.9

(2.4–NE)

Peripheral sensory
neuropathy (25.0%)

Nausea (22.1%)
Hypoalbuminemia (20.6%)

CEACAM5

Tusamitamab
ravtansine

(SAR408701)

Gazzah et al.,
2022

Phase 1 [48]
31

Previously treated
locally

advanced/metastatic
solid malignant tumors

Tusamitamab
ravtansine

ranging from 5 to
150 mg/m2

9.7% 45.2% - - -

Asthenia (28%)
Decreased appetite (28%)

Keratopathy (28%)
Nausea (28%)

B7-H3

DS-7300
Doi et al.,

2022
[49]

All
cancers–127

SQ NSCLC–5

Previously treated
locally

advanced/metastatic
solid malignant tumors

DS-7300 40%; sq NSCLC 80%; sq
NSCLC - - -

Nausea (61%)
Infusion-related reaction

(35%)
Vomiting (31%)
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Table 2. Cont.

ADC Study (Phase) Sample Size
(n) Population Intervention

Overall
Response Rate

(ORR)

Disease
Control Rate

Median
Progression-

Free Survival
in Months

(mPFS)
(95% CI)

Median
Overall

Survival in
Months (mOS)

(95% CI)

Median
Duration of
Response in

Months
(mDOR)
(95% CI)

Common Grade
Adverse Events (%)

AXL

Enapotamab
vedotin (EnaV)

Ramalingam et al.,
2019 [50]
Phase 1

26

Previously treated
advanced/metastatic

NSCLC; EGFR
WT/ALK- cohort

EnaV 2.2 mg/kg
Q3W 19% 50% - - - GI toxicities

Table 3. Currently active trials assessing Antibody-Drug Conjugates (ADC’s) in Non-Small Cell Lung Cancer (NSCLC).

Drug Study Phase Population Intervention Primary Endpoint

HER-2 or ERBB2

Trastuzumab
Deruxtecan/T-DXd/
DS-8201

DESTINY-Lung04
NCT05048797 [51] 3 Locally advanced/metastatic NSCLC with

HER2 mutation T-DXd vs. SOC PFS

DESTINY-Lung03
NCT04686305 [52] 1 Advanced/metastatic HER2 + NSQ NSCLC T-DXd and Durvalumab with Chemotherapy Frequency of AEs and SAE

NCT04042701 [53] 1 Locally advanced/metastatic HER2+ Breast
or HER2+ or HER2m NSCLC T-DXd with pembrolizumab DLTs and ORR

HER 3

Patritumab
Deruxtecan/U3-1402

HERTHENA-Lung02
NCT05338970 [54,55] 3 Previously treated advanced/metastatic

EGFR-mutated NSCLC
HER3-DXd versus platinum-based
chemotherapy PFS

NCT04676477 [56] 1 EGFR-mutated advanced/metastatic NSCLC HER3-DXd with Osimertinib DLTs

NCT03260491 [57] 1
Locally advanced/metastatic EGFRm NSCLC
progressing after EGFR TKI therapy and
≥1 line of platinum-based chemotherapy

HER3-DXd Pharmacokinetics, efficacy and safety

HERTHENA-Lung01 [58,59] 2 Previously treated metastatic EGFR-mutated
NSCLC HER3-DXd ORR
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Table 3. Cont.

Drug Study Phase Population Intervention Primary Endpoint

Trop 2

Datopotamab Deruxtecan/
Dato-DXd/DS-1062

TROPION-LUNG01
NCT04656652 [60] 3 Previously treated EGFR-mutated locally

advanced/metastatic NSCLC Dato-DXD vs. Docetaxel PFS, OS

TROPION-LUNG08
NCT05215340 [61] 3 First-line treatment for advanced/metastatic

NSCLC
Dato-DXD plus pembrolizumab vs.
pembrolizumab PFS, OS

TROPION-LUNG04
NCT04612751 [62] 1 Advanced/metastatic NSCLC Dato-DXD plus Durvalumab with/without

carboplatin
Number of Participants with DLTs and
Treatment-emergent AEs

Sacituzumab govitecan

EVOKE-01 [63,64]
Garassino et al. 3 Previously treated advanced/metastatic

NSCLC SG vs. Docetaxel OS

EVOKE 02 [65] 2 Advanced/metastatic NSCLC
SG and
Pembrolizumab ± platinum in first-line
metastatic NSCLC

ORR, DLTs

Morpheus Lung [66]
NCT03337698 1/2 Previously treated/untreated metastatic

NSCLC Atezolizumab with SG % Of patients with objective response

CAECAM5

Tusamitamab ravtansine
(SAR408701)

CARMEN-LC03 [67]
NCT04154956 3 Previously treated CAECAM5-positive

metastatic NSCLC SAR408701 vs. Docetaxel PFS, OS

CARMEN-LC06 [68,69]
(NCT05245071) 3

Previously treated patients with negative or
moderate CEACAM5-expressing NSQ
NSCLC tumors and high circulating CEA
levels

SAR408701 ORR

c-MET

Telisotuzumab vedotin
(Teliso-V)/ABBV-399

NCT04928846 [70] 3 Previously treated c-Met OE, EGFR WT
metastatic NSQ-NSCLC Teliso-V vs. Docetaxel PFS, OS

NCT02099058 [71] 1 Previously treated c-Met OE/EGFRm
metastatic NSCLC

ABBV-399 as monotherapy and in
combination with Osimertinib, erlotinib, and
nivolumab

Number of patients with AEs and RPTD

EGFR

ABBV-637 NCT04721015 [72] 1 Relapsed and refractory solid tumors ABBV-399 as monotherapy and in
combination with osimertinib or docetaxel DLTs, RPTD

Mesothelin

Anetumab ravtansine Adjei et al. [73] 1b Relapsed and refractory solid tumors,
Mesothelin expressing Anetumab ravtansine at 6.5 mg/kg IV Q3W ORR
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3.1. Trastuzumab Deruxtecan

Trastuzumab deruxtecan (TDXd; DS-8201) is an ADC consisting of a humanized anti-
HER2 monoclonal antibody (trastuzumab) linked to a topoisomerase I inhibitor payload
(Deruxtecan or DX-8951, an exatecan derivative) by an enzymatically cleavable tetrapeptide-
based linker [6]. Despite being conjugated to eight molecules of a potent cytotoxic payload,
it has high stability in plasma with a steady delivery. The preclinical studies also showed
that it has a highly membrane-permeable payload with a potent bystander effect, which may
be beneficial in treating HER2 heterogenous tumors [30]. It has been previously approved
for metastatic HER2-positive breast and gastric cancer based on DESTINY-Breast01 and
DESTINY-Gastric01 trials [74,75].

A phase-I study showed good antitumor activity in HER-2 mutant NSCLC and ob-
jective response in 72.7% of the patients (n = 11; 95% confidence interval [CI], 39.0 to
94.0), but interstitial lung disease (ILD) emerged as a specific safety signal [76]. Then,
the DESTINY-Lung01, an open-label phase 2 trial, used T-DXd at a dose of 6.4 mg/kg in
treatment-refractory HER2-OE or HER2-mutant NSCLC. In the cohort of 91 patients with
mutant HER2, the objective response rate (ORR) was 55% (95% CI, 44 to 65). The median
duration of response was 9.3 months (95% CI, 5.7 to 14.7). The median progression-free
survival and overall survival were 8.2 months (95% CI, 6.0 to 11.9) and 17.8 months (95%
CI, 13.8 to 22.1), respectively [34,35]. A recent update at ESMO 2022 reported outcomes
on HER2-OE patients, with an ORR of 26.5% and 34.1% at a dose of 6.4 and 5.4 mg/kg,
respectively [36]. Based on DESTINY-Lung01, the National Comprehensive Cancer Net-
work (NCCN) granted a category 2A recommendation (preferred over TDM1) for TDXd
in previously treated HER2-mutant advanced NSCLC. The increased efficacy of TDXd in
HER2-mutant patients compared to HER2-OE patients is explained by preferential internal-
ization of the HER2 receptor ADC complex regardless of HER2 protein expression [77].

The DESTINY-Lung02 evaluated the benefit-risk profile of T-DXd at 5.4 and 6.4 mg/kg
in patients with previously treated HER2-mutant metastatic NSCLC. It showed a durable
response and clinical activity at both doses. However, the dose of 5.4 mg/kg showed a
favorable safety profile [78]. Based on this trial TDXd was approved for patients with
metastatic HER2-mutant NSCLC and who have received prior systemic therapy, at a dose
of 5.4 mg/kg [79].

Grade 3 or higher adverse events occurred in 46% of patients in HER2 mutant patients
in DESTINY-Lung01 trial, with neutropenia (grade 3, 19%) being the most common toxicity.
Other common toxicities included nausea, fatigue, alopecia, vomiting, anemia and diarrhea.
Notably, drug-related ILD occurred in 26% of patients (N = 24; grade 1 in 3 patients, grade
2 in 15 patients, grade 3 in 4 patients and grade 5 in 2 patients). The drug discontinuation
rate following drug-related adverse events was 25%.

In a phase 3 randomized study (DESTINY-Lung04), T-DXd is being tested against
the standard of care (investigator’s choice of cisplatin/carboplatin + pembrolizumab +
pemetrexed) in patients with advanced/metastatic NSCLC harboring a HER2 exon 19 or
20 mutations [51]. DESTINY-Lung03 is a phase 2 study assessing T-DXd with durvalumab
and chemotherapy in advanced/metastatic HER2-OE (immunohistochemistry (IHC) 3+ or
IHC 2+) non-squamous (NSQ) NSCLC [52]. The safety of the combination of T-DXd and
pembrolizumab in locally advanced/metastatic HER2 positive or HER2 mutant NSCLC is
being studied in a phase 1 study [53].

3.2. Ado-Trastuzumab Emtansine (TDM1)

T-DM1 is an ADC with anti-HER2 antibody (trastuzumab) linked to emtansine (DM1),
an antimicrotubule agent, by a non-cleavable thioether linker. It has a DAR of 3.5.

In a phase-2 study consisting of patients with HER2-OE (IHC 3+ or IHC 2+ with FISH
positivity) and HER2 mutations the objective response rate was 6.7% (90% CI: 0.2–32.0).
The median follow-up time was 9.2 months. The median PFS and median OS were 2.0
and 10.9 months, respectively. The most common grade 3 or 4 adverse events were
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thrombocytopenia (40%) and hepatotoxicity (20%). It was concluded that T-DM1 had a
limited efficacy for HER2-OE/mutant NSCLC [80].

Peters et al. analysed T-DM1 in a phase 2 study with HER2-OE (IHC, 2+ and 3+) and
previously treated NSCLC patients and found no treatment responses in IHC 2+ cohort. The
ORR was 20% (95% CI, 5.7–43.7%) in IHC 3+ cohort [33]. In a phase II basket trial, Li et al.
demonstrated an impressive partial response rate of 44% (95% CI, 22% to 69%) in advanced
HER2-mutant lung adenocarcinomas [81]. This led to a category 2A recommendation by
the NCCN for use of TDM1 for advanced and previously treated NSCLC with HER-2
mutation.

Another phase-2 study evaluating TDM1 in previously treated patients with HER2
exon-20 insertion mutations revealed an ORR of 38.1% (90% CI, 23.0–55.9%) and a disease
control rate (DCR) of 52.4%. The median duration of response was disappointingly only
3.5 months, and the median progression-free survival and median overall survival were 2.8
and 8.1 months, respectively [32]. Overall, owing to the limited clinical efficacy of TDM1,
there are no ongoing phase 3 studies of TDM1 in metastatic NSCLC.

3.3. Sacituzumab Govitecan

Sacituzumab govitecan (IMMU-132) is an ADC composed of a Trop-2 IgG1 kappa
antibody coupled to SN-38 (a topoisomerase I inhibitor) hydrolysable linker.

A phase 1/2 IMMU-132-01 basket study (TROPiCS-03) reported clinical activity with
sacituzumab govitecan in patients with multiple tumor types not selected for Trop-2
expression including NSCLC. The ORR in the NSCLC cohort was 17% [82]. Heist et al.
studied sacituzumab govitecan in patients (N = 54) with pretreated metastatic NSCLC. The
ORR was 19%; median response duration, 6.0 months (95% CI, 4.8 to 8.3 months); and
the clinical benefit rate 43%. The mPFS was 5.2 months (95% CI, 3.2 to 7.1 months). The
grade 3 or higher adverse events included neutropenia (28%), diarrhea (7%), nausea (7%),
fatigue (6%) and febrile neutropenia (4%) [46]. Interestingly, more than 90% of 26 assessable
archival tumor specimens were highly positive (2+, 3+) for Trop-2 by IHC, and hence any
conclusion about the predictive role of Trop-2 could not be made due to the paucity of
weakly/negatively stained specimens.

EVOKE-01 is a phase 3 trial evaluating sacituzumab govitecan vs. docetaxel in previ-
ously treated advanced or metastatic NSCLC [63]. In EVOKE-02, a phase 2 trial, investi-
gators are studying sacituzumab govitecan and pembrolizumab ± platinum in first-line
metastatic NSCLC [45]. In a phase I/II study, MORPHEUS-Lung the combination of
atezolizumab with sacituzumab govitecan is being tested for safety and efficacy [66].

3.4. Datopotamab Deruxtecan (DS-1062)

Datopotamab Deruxtecan (Dato-DXd) is an ADC consisting of a humanized anti-
trophoblast cell surface protein 2 (Trop-2) IgG1 monoclonal antibody linked to a topoiso-
merase I inhibitor payload (deruxtecan) via a stable tetrapeptide-based cleavable linker.
Trop-2 is overexpressed in various epithelial tumors including NSCLC with relatively
low expression in normal tissues, and is associated with aggressive tumor behavior [11].
The preclinical studies suggested that Dato-DXd has potential efficacy in Trop-2-positive
cancers, and that the anti-tumor activity was proportional to Trop-2 expression.

TROPION-PanTumor01 was a dose-escalation/expansion study evaluating Dato-DXd
in patients with advanced NSCLC (N = 175) in the 8 mg/kg vs. 4 and 6 mg/kg cohorts.
Based on the results of TROPION-PanTumor01 showing a better tolerance and improved
efficacy with a dose of 6 mg/kg, this dose was selected for the TROPION-Lung01 trial, a
randomized, phase 3 trial [42]. An updated analysis from a phase 1b study, TROPION-
Lung02, in previously treated NSCLC (N = 180), showed that a median follow-up was
11.4 months, an ORR of 26% (in 6 mg/kg cohort) and grade ≥ 3 treatment-emergent adverse
events (TEAEs) in 47% of patients across all doses. Drug-related ILD occurred in 4% of
patients in a 6 mg/kg cohort [43].
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The strategy of combining DATO-DXd with pembrolizumab is being evaluated in
TROPION-Lung02, a phase 1b, dose-escalation and expansion study. The median treat-
ment duration was 2.7 months and no drug-related ILD has been seen till now. The
grade ≥ 3 TEAEs occurred in 43% of patients. The ORR and DCR were 39% and 82.6%,
respectively. The ORR and DCR were 69% and 100%, respectively, in treatment-naïve
patients [41]. The combination is being further tested in TROPION-Lung08, a randomized
phase 3 trial evaluating Dato-DXD plus pembrolizumab vs. pembrolizumab as a first-line
treatment for advanced/metastatic NSCLC [61]. The TROPION-Lung04 is a phase 1 study
evaluating the combination of Dato-DXD plus Durvalumab with/without carboplatin as a
first-line treatment for advanced/metastatic NSCLC.

In the above trials, the common toxicities seen with DATO-DXd included stomatitis,
nausea, alopecia, fatigue and uncommonly ILD. Notably, neutropenia and diarrhea, which
may be observed with other TROP2-directed ADCs, were infrequent with Dato-DXd.

There is an unmet need for better outcomes with second- and further-line treatments in
previously treated EGFR-mutated locally advanced/metastatic NSCLC. TROPION-Lung01,
a phase 3 randomized study, is evaluating Dato-DXD vs. docetaxel in previously treated
EGFR-mutated locally advanced/metastatic NSCLC [60].

3.5. Patritumab Deruxtecan (HER3-DXd, U3-1402)

HER3-DXd is a novel HER3-directed ADC consisting of fully human anti-HER3 mAb
(patritumab) which is covalently linked to a topoisomerase I inhibitor payload (deruxtecan)
via a tetrapeptide-based cleavable linker. It shows highly efficient internalization into
tumor cells and induces tumor cell apoptosis through DNA damage via released DXd [9].
It is stable and has a high DAR (=8). HER3 is universally expressed in primary NSCLC
tumors [83].

In a phase 1 trial, patients with locally advanced or metastatic EGFR-mutated NSCLC
with prior EGFR TKI therapy (N = 57) were treated with HER3-DXd 5.6 mg/kg IV Q3W
and the ORR was 39% (95% CI, 26.0–52.4%). The median PFS was 8.2 months (95% CI,
4.4–8.3%). Interestingly, antitumor activity of HER3-DXd was observed across various
mechanisms of EGFR TKI resistance, including EGFR C797S, MET or HER2 amplification,
and BRAF fusion) [39]. The group recently reported safety and efficacy in advanced NSCLC
without EGFR mutations previously treated with platinum-based chemotherapy (PBC)
with or without immunotherapy (N = 47). The ORR was 28% (95% CI, 16–43%) and
median PFS was 5.4 months (95% CI, 3.9–12.7%). The most common grade ≥ 3 toxicities
were neutropenia (26%), thrombocytopenia (15%) and fatigue (15%), and drug-related ILD
occurred in 4 pts (9% grade 1–2; 0 grade ≥ 3) [40].

HERTHENA-Lung01 is a phase 2 study analyzing HER3-DXd in previously treated
metastatic EGFR-mutated NSCLC [59]. In HERTHENA-Lung02, a phase 3 study, it is being
tested against chemotherapy in a similar patient population [54].

Preclinical studies suggest that although EGFR TKI resistance mechanisms do not lead
to alterations in HER3, EGFR inhibition leads to feedback HER3 membrane expression.
Therefore, targeting HER3 might add to the increased efficacy of EGFR TKI [84]. A phase 1
study is HER3-DXd and osimertinib combination in the first-line setting of EGFR mutated
NSCLC [56].

3.6. Tusamitamab Ravtansine (SAR408701)

Tusamitamab ravtansine (SAR408701) is an ADC with an antibody against carci-
noembryonic antigen-related cell adhesion molecule-5 (CEACAM5) linked to a cytotoxic
maytansinoid (DM4).

In a recent phase 1 study, tusamitamab ravtansine was studied in a previously treated
locally advanced/metastatic solid malignant population. A total of 71% patients experi-
enced ≥ 1 TEAE, with most common TEAEs being asthenia, decreased appetite, keratopa-
thy and nausea, with an ORR and DCR being 9.7% and 45.2%, respectively [48].
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It is being pitted against docetaxel in previously treated CAECAM5-positive metastatic
NSCLC in the phase 3 CARMEN-LC03 trial [67]. A phase 2 study is evaluating the efficacy
and safety of tusamitamab ravtansine in non-squamous NSCLC patients with negative or
moderate CEACAM5 expression tumors and high circulating CEA [69].

3.7. Telisotuzumab Vedotin (Teliso-V/ABBV399)

Teliso-V is an ADC with a c-Met antibody (ABT-700) and MMAE, a microtubule
inhibitor. A phase 1/2 M14-239 trial (LUMINOSITY) evaluated Teliso-V in previously
treated NSCLC patients with c-Met over-expression (OE). c-Met OE was defined ≥ 25% 3+
by IHC (high, ≥50% 3+; intermediate, 25 to <50% 3+) for the NSQ cohort as and for the
squamous (SQ) cohort as ≥75% 1+ by IHC. The ORR was 36.5% in the NSQ EGFR wild
type (WT) cohort (52.2% in c-Met high group and 24.1% in c-Met intermediate group) but
was modest in the NSQ EGFR mutant and SQ cohorts. The most common any-grade AEs
were peripheral sensory neuropathy (25.0% any grade, 4% grade ≥ 3), nausea (22.1%) and
hypoalbuminemia (20.6%). Ocular side effects included low-grade blurred vision (17%
any grade 1/2, 1% grade ≥ 3) and keratitis (13% grade 1/2). Two patients died, including
one due to ILD [47]. Based on LUMINOSITY study, U.S. Food and Drug Administration
(FDA) granted Breakthrough Therapy Designation (BTD) to Teliso-V for the treatment of
patients with advanced/metastatic epidermal growth factor receptor (EGFR) (WT), non-
squamous NSCLC with high levels of c-Met-OE whose disease has progressed on or after
platinum-based therapy.

A phase 3 study is evaluating Teliso-V vs. docetaxel in previously treated c-Met-OE,
EGFR (WT) metastatic non-squamous NSCLC [70]. In another phase 1 study, Teliso-V
is being evaluated as monotherapy and in combination with osimertinib or erlotinib or
nivolumab in previously treated c-Met-OE/EGFR mutant metastatic NSCLC [71].

3.8. Zanidatamab Zovodotin (ZW49)

ZW49 is a novel bispecific/biparatopic (targeting two different non-overlapping epi-
topes on ERBB2, on extracellular domains 2 and 4) antibody-targeting HER2 and linked
to an auristatin toxin with a protease-cleavable linker. In a dose-finding phase 1 study
(N = 76), which included patients with NSCLC, ZW49 was found to have a good safety
profile with the most common toxicity being keratitis (42%), alopecia (25%), and diarrhea
(21%). There were no ILD or treatment related deaths. The confirmed ORR across multiple
cancer types was 28% and DCR was 72% [8].

3.9. DS-7300

DS-7300 is an ADC directed at B7-H3, with a topoisomerase I inhibitor payload
(deruxtecan). A phase I/II study shows that in previously treated unselected patients with
B7-H3 expression; the drug was associated with a DCR of 80% [49].

3.10. Enopotamab Vedotin (EnaV)

Enapotamab vedotin is an AXL-specific ADC combining AXL-specific IgG1 with the
microtubule-disrupting agent MMAE via a cleavable valine-citrulline linker [15]. In a phase
1 study with advanced/metastatic NSCLC, patients EnaV showed an ORR of 19% and a
DCR of 50% in EGFR/ALK WT cohort [50].

4. Toxicity

Though ‘targeting’ the payload should make the off-target side-effects minimal, toxici-
ties are one of the challenges that are being faced in the development of clinically beneficial
ADCs. These may affect the quality of life and can lead to morbidity, treatment discon-
tinuation and sometimes mortality. These toxicities may be because of the target being
expressed in normal tissues, or the drug releasing out in the circulation before reaching the
target-expressing cancer cells or leaching out of the drug from target cells. Payload-specific
toxicities such as fatigue, headache, anemia, neutropenia, thrombocytopenia, increased
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liver transaminases, nausea, fatigue, peripheral neuropathy and stomatitis are common [85].
However, two toxicities require consideration, pulmonary and ocular toxicity.

Pulmonary toxicity, including ILD, has been reported with several ADCs, especially
TDXd, TDM1, HER3-DXd and Dato-DXd. In a pooled analysis of nine studies with TDXd,
the incidence of ILD/pneumonitis was 15.4% [86]. The two independent mechanisms in-
volved in drug-induced ILD include direct toxicity due to the payload and indirect, immune-
mediated toxicity [87]. Although the precise mechanism is poorly understood, the toxicity
appears to be dose-dependent and dose-frequency-dependent. A target-independent up-
take of TDXd in pulmonary macrophages followed by the release of free DXd might be
associated with the lung toxicity in monkeys [88]. A careful elucidation of the dose is
required to get the best risk–benefit ratio with these drugs in future trials. The diagnostic
and treatment challenges for ILD are particularly high in pre-treated patients with lung
cancer with lung function compromise due to disease, radiation-associated pneumoni-
tis or IO-associated pneumonitis, making clinical decisions tougher. A multidisciplinary
approach and careful monitoring to pick up asymptomatic or minimally symptomatic
ILD/pneumonitis may allow transient interruption with a rechallenge [89]. However, a
more severe form may add to morbidity, lead to cessation of ADC and rarely mortality.

Ocular adverse effects (AEs) include loss of vision, blurred vision, dry eye, corneal
ulcers and microcyst-like epithelial changes (MECs). Mechanism of corneal epithelial
toxicity may depend on the specific ADC and may be either an on-target effect (HER2 is
expressed in corneal cells) or an off-target toxicity by ‘micropinocytosis-mediated internal-
ization’ of the drug or its metabolite [90]. Dry eye and conjunctivitis have been reported
with TDXd and TDM1. The keratopathy appears to be reversible with treatment cessation,
though long-term data is still evolving. It has been seen with Tusamitamab ravtansine
and Zanidatamab Zovodotin. Careful ocular monitoring is required in patients taking this
drug with a transient interruption for grade 1 or superficial punctate grade 2 keratitis, and
discontinuation for more severe forms.

There is a lack of data regarding the concurrent administration of ADCs with radiation
in NSCLC. The concern is the possible increase in the incidence of pneumonitis with
ADCs given concurrently with chest radiation. In the KATHERINE study on breast cancer,
adjuvant local radiation was given concurrently with TDM1 and trastuzumab. Radiation
pneumonitis was slightly more common with T-DM1 (1.5%) than with trastuzumab (0.7%),
and radiation skin injury was similar (27.6% vs. 25.4%) [91]. Based on this data the
administration of TDM1 with concurrent local radiation is considered safe for breast cancer.
In a retrospective study with 12 patients with breast cancer and brain metastases, radiation
necrosis was observed in 50% of patients who received TDM1 concurrently with radiation
vs. 28.6% in those with sequential treatment [92]. However, such safety data is scarce
in advanced NSCLC. In the DESTINY-Lung01 trial, a washout period of ≥4 weeks after
radiation therapy including palliative stereotactic radiation to the chest was required before
enrollment. The washout period was ≥2 weeks if palliative stereotactic radiation was given
to any other area. Palliative radiotherapy was permitted to known metastatic sites if it did
not affect the assessment of response or interrupt treatment more than the maximum time
specified for dose modification. Until we have more data, the safer approach might be to
avoid ADCs and concurrent radiation to the chest.

There is a focus on strategies to improve the therapeutic index and reduce toxicity [93].
Improved conjugation methods, e.g., site-specific conjugation, allow a more defined control
of DAR and better stability of the payload due to its conjugation to a more stable site. The
advancement in the linker technology which includes chemical trigger, linker–antibody
attachment and linker–payload attachment will improve efficacy and decrease toxicity [94].
Antibody modifications such as probody–drug conjugates, and the development of bispe-
cific antibodies targeting two tumor-associated antigens decrease on-target toxicity [95,96].
Other strategies include modification of the structure of the payload, modification of dosage
regimens and ‘Inverse Targeting Strategy’ [97].
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5. Biomarkers

With the development of multiple ADCs in NSCLC, biomarkers present an opportunity
to personalize the treatment. These include markers for the presence of antibody targets, as
well as markers for response and resistance. The evolving technology of mass spectrometry,
liquid biopsy, development of quantitative bioanalytical assays and quantitative proteomics
are promising.

Conventionally, quantifying target expression on the cancer cells has been a strategy
to screen for potential beneficiaries of a drug; though ironically, they have been imperfect
predictive biomarkers, e.g., HER2 [98]. For example, TDXd showed increased efficacy in
HER2-mutant patients compared to HER2-overexpressing patients. A better insight into
these biological mechanisms of antibody-target dynamics would be needed to select the
most suitable patients for each ADC.

Efforts are underway to develop better assays for quantification of the expression
of the target to select patients. For example, an immunohistochemical assay, CEACAM5
IHC 769, is being validated to evaluate CEACAM5 expression in FFPE tissue for patient
selection in ongoing phase 2 and 3 clinical trials of tusamitamab ravtansine [99]. Calvo et al.
found that the clinical outcomes with ABBV-21 correlated with multiple EGFR pathway
status biomarkers [100]. Thyparambil et al. evaluated ‘payload’ biomarkers for Trop-2
ADCs, besides the target receptor, as these may confer sensitivity or resistance to cytotoxic
and thereby affect clinical response [101].

Circulating tumor DNA (ctDNA) can be a noninvasive method of monitoring longitu-
dinal changes in tumor burden and patients’ mutational profiles, and a useful biomarker to
delineate response [102]. The combination strategy of ADCs and ICIs requires biomark-
ers that can elucidate immune checkpoints, immune responses and tumor microenvi-
ronment. Predictive models with preclinical and pharmacokinetics/pharmacodynamics
variables and modeling tools are being developed and validated to predict the response to
ADCs [103].

6. Resistance Mechanisms

As with any therapy, after a response, tumor cells acquire resistance to ADCs. Some
patients may have de-novo resistance. The dynamic and complex mechanism of action
involving an antibody, linker and the cytotoxic means that resistance mechanisms may
involve a decrease in target receptor/antigen expression or a mutation, an increase in
drug efflux transporters, decreased internalization of ADC, changes in the intracellular
trafficking/processing of ADCs and impaired release of the cytotoxic into the cytosol [104].

For example, decreased antigen expression and tumor heterogeneity after treatment
may contribute to resistance to TDM1 [105]. TDXd is able to overcome this resistance
by its ‘bystander effect’ [30]. Dual antibodies (bispecific ADCs) may also overcome this
type of resistance [106]. Recurrent mutations of the DNA repair gene SLX4 could mediate
secondary resistance to T-DXd [107]. Caveolae-mediated endocytosis resulting in less
efficient ADC processing is another novel mechanism of resistance to TDM1 [108]. The
strategy of co-treatment with irreversible pan-HER inhibitors, and ADC switching to T-DXd
achieved durable responses in a patient with lung cancer and corresponding xenograft
model developing resistance to T-DM1 [109]. Until now the ‘component switch strategy’ of
finding better targets, antibodies, potent payloads and conjugation mechanisms have been
the conventional way of finding improved ADCs. As we better understand the unique
resistance mechanisms of various ADCs, we may be able to realize the full potential of
these drugs. The development of novel ADCs as well as the strategy of combining ADCs
with other chemotherapeutics, targeted therapies or ICIs can lead to improved efficacy.
Multiple clinical trials are ongoing to investigate the safety and efficacy of this synergistic
combination of therapies.
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7. Future

With the advancement in ADC engineering, progress is being made with ‘next genera-
tion ADCs’ in achieving more potent payloads, better selectivity of targets, novel, cleavable
and stable linkers, high DARs and a better bystander effect. The novel ADCs include bispe-
cific ADCs, dual-payload ADCs, radionuclide ADC and ADCs with immune-stimulating
payloads [110,111]. Strategies such as biparatopic antibodies, i.e., direct targeting of two
tumour antigens or two different epitopes on the same antigen, can lead to bipratotic
ADCs with efficacy in heterogenous tumors [112,113]. The novel conjugation methods,
‘site-specific conjugation’, improve the therapeutic index and exhibits superior pharma-
cology and safety [114]. One such method involves developing reactive cysteine residues
at specific sites in antibodies (yielding THIOMABs), allowing drugs to be conjugated
(THIOMAB–drug conjugates) with defined stoichiometry [115].

The paradigm of the target for ADCs is evolving beyond the antigens being expressed
in the tumor. New ADCs are focusing on engineered antibodies, ‘Probody’, which are
activated by proteolytic cleavage in the tumor microenvironment (TME), thus targeting
TME and achieving better precision [116,117].

There are preclinical and clinical studies evaluating the approach of combining ICIs,
targeted therapy and chemotherapy with ADCs. The rationale behind the approach is that
besides achieving direct cell death by the payload cytotoxic, ADCs exert an immunological
response against tumor by engaging immune cells affecting antitumor immunity [118].
Novel combination strategies such as cooperative targeting with AXL-107-MMAE and
MAPK pathway inhibitors to target distinct and resistant populations in heterogeneous
tumors are encouraging [119].

8. Conclusions

The advancements in biochemical engineering coupled with a better insight into the
biological underpinnings NSCLC is enabling the discovery of novel targets and ADCs.
Trastuzumab deruxtecan has been added to the therapeutic arsenal of previously treated
HER2-mutated NSCLC. There are several ADCs in clinical development with encouraging
preliminary data. These are new drugs in the paradigm of precision therapy with specific
challenges and toxicity. They hold a promise of improving outcomes and may become a
standard of care in the near future.
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