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Abstract: Proton therapy is a promising therapeutic modality with unique physical properties
that allow for abrupt dose fall-off distal to the target of interest, thereby sparing nearby organs at
risk. A number of studies have identified the utility of proton radiation in mitigating treatment
related sequelae for patients with locally advanced breast cancers. Thus, in the following review,
we highlight clinical and technical considerations for proton radiotherapy delivery in patients with
locally advanced breast cancer.

Keywords: breast cancer; proton therapy; radiotherapy

1. Background

Oncologic outcomes have improved globally due to major strides across the range of
surgery, systemic therapy, radiotherapy and immunotherapy. Radiotherapy continues to
be a fundamental part of cancer care, with nearly 50% of patients undergoing radiation at
some point in their cancer journey [1]. Traditional radiotherapy approaches utilize X-ray
beams, directing photons to the target site. The precision of photon radiation has improved
considerably over recent decades due to various technological advances including intensity
modulated radiation therapy (IMRT) and stereotactic and image guided radiation therapy.
However, unintentional dose deposition to surrounding organs continues to be a treatment-
limiting factor.

Proton therapy holds promise in addressing this limitation, due its unique physical
properties. The characteristic behaviour of a proton entails the deposition of the treatment
dose at a known depth with a subsequent, rapid dose-fall off. This property, termed the
“Bragg peak”, has been utilized to treat a variety of precariously located tumours while
sparing low doses to normal surrounding tissue (Figure 1) [2,3]. The enthusiasm surround-
ing proton therapy stems from this ability to elicit abrupt dose fall-off distal to the target of
interest, thereby sparing low doses of radiation to nearby organs at risk. The therapeutic
use of protons was first proposed in 1946 by Harvard physicist Robert R. Wilson [3]. The
first patients were subsequently treated in 1954 at the Lawrence Berkeley Laboratory in
Berkeley, California [4]. The MIT-based Harvard Cyclotron Laboratory began treating
patients in 1973 with a focus on uveal melanomas, chordomas and chondrosarcomas in-
volving the skull base and cervical spine [5]. These milestones paved the way for the first
hospital-based clinical proton treatment centre, which opened its doors in 1990 at the Loma
Linda University Medical Centre [6]. Since that time, the favourable outcomes seen with
the use of proton therapy has led to a significant increase in uptake worldwide. Accord-
ing to a recent report from the Particle Therapy Cooperative Group, there are currently
121 proton facilities in operation globally, spanning 21 countries (Figure 2, Table 1). In
addition to this, there are another 34 facilities under construction worldwide [7]. This
has led to an estimated 280,000 patients that have been treated with proton therapy as of
2021 [7]. However, as we enter this revolutionary new era of radiotherapy, we must ensure
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that comprehensive clinical expertise, technical fluency and the accompanying biological
considerations for particle therapy remain at pace with rapid global implementation.
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Table 1. Particle therapy facilities in clinical operation as of October 2022.

Region Number of Facilities in Current Operation

North America 25

Europe/UK 38

Asia 40

South America 0

Africa 0

Oceana 0

Breast cancer is the most commonly diagnosed cancer globally with over 2.3 million
new cases in 2020. This number is expected to increase by 40% by 2040 [8]. Nearly 65%
of patients diagnosed with breast cancer will be treated with radiation [8]. The benefit
of adjuvant radiation in patients diagnosed with a breast malignancy has been shown in
a number of studies. The Early Breast Cancer Trialists’ Collaborative Group meta-analysis
looked at over 10,000 women in 17 clinical trials with the conclusion that radiotherapy after
breast conserving surgery results in a 50% reduction in local recurrence and reduces the
breast cancer death rate by about one sixth in comparison to women treated with breast
conserving surgery alone [9]. Breast radiotherapy for early-stage breast cancer has been
well-optimized in recent years to limit normal tissue injury and enhance patient quality-of-
life using accelerated partial breast irradiation, deep inspiration breathhold techniques and
ultrahypofractionated treatment regimens [10–12].

When looking specifically at women with node-positive breast cancers, the benefit
of regional nodal irradiation also has been well studied. Level one evidence exists to
support the use of regional nodal irradiation in patients with node positive breast cancer to
improve locoregional control and disease-free survival [13,14]. However, the increasingly
favourable prognosis of this patient population necessitates further care to be taken in
mitigating treatment related sequelae. Thus, in the following review, we highlight both
clinical and technical considerations for proton radiotherapy delivery in patients with
locally advanced breast cancer.

2. Current Challenges in Breast Radiotherapy Delivery

The clinical sequalae of radiation treatment for patients with breast cancer has been
well established and includes (but is not limited to) cardiac and pulmonary toxicities.
In the above-mentioned Early Breast Cancer Trialists collaborative group meta-analysis,
the survival benefit of breast radiotherapy was countered by an increased risk of cardiac
death [9]. The specific impact of excess radiation dose to the heart was further quanti-
fied in a landmark study published by Darby and colleagues which looked at the rates
of post-radiotherapy major coronary events, defined as myocardial infarction, coronary
revascularization, or death from ischemic heart disease. This analysis showed a 7.4% linear
increase in major coronary events with each 1 Gray (Gy) increase in mean heart dose.
Notably, the risk was present at all dose levels, with no threshold below which radiation
did not impact the heart [15]. The absolute increase in major coronary events was 0.3–0.6%
by age 80 depending upon radiation dose exposure, baseline cardiac risk factors, and age
at radiation delivery.

More recent studies utilizing three-dimensional imaging have highlighted the relation-
ship between cardiac substructure dose exposure and subsequent cardiac events, with low
dose to the left ventricle (V5) most associated with subsequent cardiac events [16]. Further
study identified that the mean dose (EQD2) to the left anterior descending artery (LAD)
of 2.8 Gy was a threshold for the development of consequent cardiac toxicity. The impact
of excessive radiation dose to the lungs has also been established and includes the risk of
secondary malignancy as well as radiation pneumonitis. In a population-based, nested
case-controlled study of over 20,000 patients treated with radiotherapy for breast cancer,
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the risk of secondary lung cancers was found to increase linearly with each 8.5 Gy increase
in radiation dose [17]. The risk of radiation pneumonitis was reviewed in a meta-analysis
that suggested the consideration of alternate treatment modalities in settings where the
volume of the ipsilateral lung receiving 20 Gy exceeded 30% or when the mean lung dose
was greater than 15 Gy [18].

It has been noted that these dosimetric thresholds are most often breached in the
setting of locally advanced breast cancers, given the need to treat nodal regions located
adjacent to the cardiac and pulmonary structures [18]. In particular, treatment of the
internal mammary nodes can pose a challenge due to the proximity to the heart and LAD.
Traditional approaches have used a mix of photons and electrons to address this area,
leading to significant dose inhomogeneity. More modern approaches have focused on
incorporating tangential intensity modulated radiotherapy (IMRT) and/or volumetric arc
therapy (VMAT) to provide better dose distributions. However, the use of IMRT or VMAT,
while limiting high doses of radiation to portions of the heart, still leads to an increase in
low dose “splash” throughout the thorax including the heart, contralateral breast and lung,
the latter of which carries a theoretical increased risk of second malignancy [19]. Thus,
despite significant advances in conventional radiotherapy approaches, a need exists to
further optimize radiotherapy delivery in patients with locally advanced breast cancer.

3. Rationale for Proton Therapy

Proton therapy holds promise in addressing issues of dose inhomogeneity, in addition
to decreasing the dose to both cardiac and pulmonary structures. An illustration high-
lighting the expected dose distribution between a photon radiotherapy approaches and
proton therapy plan is shown in Figures 3 and 4, demonstrating the reduction in lung
and heart dose that this modality may provide. Numerous dosimetric comparisons using
diverse patients with locally advanced breast cancer requiring regional nodal irradiation
have highlighted the cardiopulmonary advantages of proton therapy [20–25]. One dose
modelling study involving 41 patients treated with comprehensive nodal irradiation mod-
elled dose deposition with both photon and proton planning. Risks were then estimated
using the model developed by Darby et al., noted above. This modelling study reported
that compared with photon radiotherapy, proton radiation was estimated to decrease the
risk of recurrence by 0.9% and lower the risk of acute coronary events by up to 2.9% [20].
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Figure 4. An illustration highlighting differences in the use of (A) 3D conformal photon radiotherapy
versus (B) Volumetric Modulated Arc Therapy (VMAT) versus (C) proton radiotherapy (Figure
courtesy of Dr. R.B. Jimenez).

While prospective data are limited, early results with proton therapy for locally
advanced breast cancer appear promising. For example, in a phase II study of 69 patients
undergoing regional nodal irradiation using proton radiotherapy, oncologic outcomes
were consistent with photon therapy and importantly, no concerning cardiac changes
were identified using strain echocardiography or cardiac biomarkers within 2 months
of completion of treatment [21]. This stands in contrast to prior studies of early cardiac
changes identified on strain echocardiography and cardiac biomarkers after conventional
radiation [22–24]. Additional prospective data with direct comparison to conventional
radiation, however, are needed [25].

Retrospective dose modelling studies also suggest a benefit of proton therapy in op-
timizing lung doses with a subsequent decrease in second primary lung cancer risk. One
retrospective analysis concluded that the use of proton therapy, using pencil beam scanning
techniques, was associated with a lower risk of secondary lung and contralateral breast cancer
risk in comparison to both conventional and IMRT/VMAT photon approaches [26]. In the
previously mentioned phase II study of 69 patients undergoing regional nodal irradiation
using proton radiotherapy, only one patient was found to develop grade 2 radiation pneu-
monitis. No patients developed grade 3 or 4 radiation pneumonitis [21]. Other reports of
proton therapy for breast cancer support this finding [27,28].

The challenges of radiotherapy in the setting of locally advanced breast cancers can
be further complicated in the setting of breast reconstruction. The rates of postmastec-
tomy reconstruction for breast cancer patients continues to increase [29]. Radiotherapy
delivery in this context involves unique challenges due to the positioning of the prosthesis
and subsequent increase in contralateral breast exposure. This issue is compounded in
situations where the regional nodal beds require treatment. The use of proton therapy in
this setting has been shown to improve dosimetric parameters. One notable clinical study
looked at 51 patients treated with intensity modulated proton therapy after breast recon-
struction at the Mayo clinic. They found that the use of proton therapy led to improved
dosimetric variables and acceptable reconstruction outcomes in comparison to historical
data of photon-based approaches [30]. Other data also lend support for these findings [21].
The above studies highlight the promise of proton therapy in decreasing radiotherapy-
associated toxicity for women with locally advanced breast cancers, particularly those with
breast reconstruction.

4. Areas of Uncertainty in Proton Radiation Implementation

As noted above, the primary potential benefit of proton therapy stems from the ability
to spare radiation dose to critical organs due to the sharp dose fall-off [31]. Considering this
physical property, precise delineation of both targets and organs at risk is required. Care is
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required when extrapolating current contouring guidelines from photons to protons in the
setting of different dose depositions. For example, traditional photon planning of breast
regional nodal regions often results in dose deposition to the posterolateral supraclavicular
fossa, the low (level I) axilla and the skin, despite these areas not being explicitly contoured
in common contouring guidelines. Given that these regions may be potential sites of
residual microscopic disease, uncertainty remains regarding the extrapolation of photon
contouring guidelines [32]. In addition to accurate target coverage, care must be taken
to precisely delineate and avoid organs at risk. For example, breast or chest wall target
volumes should not encompass the intercostal muscles or ribs posteriorly in the absence
of direct tumour extension to ensure dose fall-off anterior to the heart and lungs. The
skin of the chest wall should be separately contoured, and doses carefully considered,
acknowledging the lack of skin sparing with proton therapy, to avoid undue acute toxicity.
Patients presenting with locally advanced disease may also benefit from the fusion of
pre-treatment positron emission tomography imaging to the CT simulation scans to ensure
accurate target coverage. Additionally, given the sharp dose fall-off of proton therapy,
there is a greater potential impact of interfraction and intrafraction changes [33]. As such,
approaches for mitigating these impacts such as image guidance and plan robustness may
be required to account for these uncertainties. The evidence surrounding the translation of
current photon-related practices into proton radiation delivery is complex and continues
to evolve.

One important example of this involves linear energy transfer (LET) with proton
therapy. While protons are considered to have a low LET similar to photons and therefore,
comparable biologic effects, the use of proton therapy in breast cancer has provided valuable
insights regarding the clinical impact of LET variability at the end of range. The relative
biological effectiveness (RBE) of protons is defined as the ratio of the dose of a photon
reference beam required to produce a specific biological effect to the dose of a proton
beam required to produce that same effect. Convention has dictated a generic value of 1.1.
However, recent studies suggest that this assumption may be inaccurate. Specifically, data
from multiple studies and across multiple centres suggest that the RBE may be closer to
1.2–1.4 at the Bragg peak and distal beam edge where the LET is greatest [34]. The clinical
impact of this discrepancy was highlighted in a prospective study of patients treated with
proton radiotherapy which reported a rib fracture rate of nearly 7%, which far exceeds
rates seen in traditional photon radiation. This rate was even higher, 21%, among patients
who received proton therapy for inflammatory carcinoma [27]. Subsequent evaluation of
patients treated on the prospective trial was suggestive of an increased RBE at the distal
edge of the proton beams accounting for the fracture rate [35]. The incorporation of LET
weighted biological dose among women receiving proton therapy for breast cancer in other
studies also supported an enhanced biological dose, exceeding 1.1, not only for the ribs,
but also to the heart and brachial plexus [36]. This finding is sobering as it suggests that
the potential for cardiac sparing as well as other normal tissue sparing with proton therapy
could be at least partly mitigated if LET is not appropriately incorporated. Additional
study is needed to further optimize our understanding of RBE modelling and optimize the
therapeutic ratio for patients [37].

5. Ongoing Trials

A number of clinical trials are currently underway to further elucidate the benefits
and risks of proton therapy in the setting of locally advanced breast cancer. Amongst
these trials are the RTOG 3510 (RADCOMP) Trial [38], the Danish Breast Cancer Group
phase 3 randomized breast cancer trial [39] and the UK-based ISRCTN14220944 trial [40].
The primary objective of these randomized clinical trials is to compare the effectiveness
of proton beam radiation versus traditional photon therapy in decreasing the risk of
major cardiovascular events in patients diagnosed with breast malignancies. Secondary
outcomes vary per trial and are focused on several aspects of quality of life, disease control
and survival. Eligibility criteria are compared in Table 2, showing the different potential
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information that each trial will provide. In addition to these large-scale randomized studies,
additional endeavours are being undertaken to assess specific aspects of treatment delivery,
such as the use of hypofractionation [41] and specific patient subsets, such as those with
breast reconstruction [42]. Collectively, these studies will help to guide future patient
selection for proton therapy in the setting of breast cancer.

Table 2. A comparison of eligibility criteria between the Pragmatic Randomized Trial of Proton versus
Photon Therapy for Patients With Non-Metastatic Breast Cancer (RADCOMP), The Danish Breast
Cancer Group phase 3 Randomized Breast Cancer Trial (DBCG) and the UK ISRCTN14220944 trial.

INCLUSION CRITERIA RADCOMP DBCG UK

Age range ≥21 years old ≥18 years old ≥18 years old

Gender Females and males Females and males Females and males

Histology Invasive mammary carcinoma Invasive breast cancer or DCIS Histologically proven invasive
breast carcinoma

Stage
Clinical or pathological stage I-III;

stage yp 0-III; loco-regional
recurrence; Non-metastatic (AJCC 7th)

pTis-4, pN0-N3, M0

Surgical treatment

Post lumpectomy or any type of
mastectomy; any axillary surgery;

with or without any type
of reconstruction

Post lumpectomy or any type of
mastectomy; any axillary surgery; with or
without any type of reconstruction (except

metal implants)

wide local excision or mastectomy,
and any type of axillary surgery

Laterality Right, left, and bilateral Right, left, and bilateral

Radiotherapy Undergoes adjuvant loco-regional
radiotherapy including IMN

• Undergoes adjuvant loco-regional
radiotherapy including IMN with a
plan to fulfill a V95% ≥ 95% of
CTVp_breast/chest wall, and if
nodal radiotherapy is indicated
V90% ≥ 95% of CTV_IMN and V90
≥ 95% of CTVn

• Patient is candidate for Dmean heart
of ≥4 Gy with photon radiotherapy
and/or a V20 ipsilateral lung of ≥37%

• For patients <41 years old, the
medial quadrants of the contralateral
breast should be kept <1 Gy

• Breast, chest wall, or nodal boost
is permitted

• Recommended to undergo RT
to the breast/chest wall + IMN
RT; or if pectus excavatum,
recommended to undergo RT to
the breast/chest
wall +/− IMN RT

Days since last history and
physical examination Within 90 days prior to enrollment Not specified

ECOG performance status 0–2 within 90 days prior to enrollment Not specified

Health coverage Any but not through this trial Not specified

Others

• HIV +ve patients are
conditionally eligible

• Patient’s competence
• Patient to provide

study-specific informal consent
prior to study entry

• Connective tissue disease,
post-operative surgical
complications, any breast size and
seromas are permitted

• Adjuvant systemic therapy is
according to DBCG guidelines

• Patient with 5 years or more
remission from previous non-breast
malignancy and low-risk recurrence
can participate

• Life expectancy minimum 10 years

• Estimated lifetime risk of
radiation-induced late cardiac
toxicity ≥2%

EXCLUSION CRITERIA

• Prior radiotherapy to the
ipsilateral
breast/chestwall/thorax

• Definitive clinical or
radiographic evidence of
metastatic disease

• Dermatomyositis with
abnormally elevated CPK level
or with an active skin rash
or scleroderma

• Non-malignant diseases that
would intervene with patient’s
radiotherapy or follow up

• Previous breast cancer or DCIS of
the breast

• Metachronous bilateral breast cancer
• Previous radiotherapy to the

chest region
• Pregnancy or lactation
• Patients with pacemaker
• Conditions indicating that the

patient cannot undergo radiotherapy
• Unknown non tissues implants

upstream of the target volume
• Metal implants in the radiation area

IMN = internal mammary nodes.
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6. Conclusions

Throughout this review, we highlight a subset of the literature to help guide clinician
decision making and facilitate evidence-based discussions regarding the provision of proton
therapy in the setting of locally advanced breast cancer. Patients with locally advanced
breast cancers comprise a growing number of patients globally. This unique subset of
our patient population entails an increased complexity of planning due to the need for
comprehensive nodal coverage and the higher likelihood of breast reconstruction. The
favourable prognosis of this group might benefit from vigilant consideration of modalities
that may mitigate treatment related toxicity, including cardiopulmonary sequelae. The
burgeoning field of proton radiotherapy in this setting holds promise for improving target
coverage and decreasing dose to the organs at risk. The evidence surrounding appropriate
target volumes and planning approaches, taking into account the unique physical properties
of protons, continues to evolve. Further study is needed to appropriately harness this
promising technology in service to our patients.
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