
Citation: Padwal, M.K.; Basu, S.;

Basu, B. Application of Machine

Learning in Predicting Hepatic

Metastasis or Primary Site in

Gastroenteropancreatic

Neuroendocrine Tumors. Curr. Oncol.

2023, 30, 9244–9261.

https://doi.org/10.3390/

curroncol30100668

Received: 5 September 2023

Revised: 16 October 2023

Accepted: 16 October 2023

Published: 19 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Application of Machine Learning in Predicting Hepatic
Metastasis or Primary Site in Gastroenteropancreatic
Neuroendocrine Tumors
Mahesh Kumar Padwal 1,2 , Sandip Basu 2,3 and Bhakti Basu 1,2,*

1 Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; mkpadwal@barc.gov.in
2 Homi Bhabha National Institute, Mumbai 400094, India; drsanb@yahoo.com
3 Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe,

Mumbai 400012, India
* Correspondence: bbasu@barc.gov.in

Abstract: Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) account for 80% of gastroen-
teropancreatic neuroendocrine neoplasms (GEP-NENs). GEP-NETs are well-differentiated tumors,
highly heterogeneous in biology and origin, and are often diagnosed at the metastatic stage. Diagno-
sis is commonly through clinical symptoms, histopathology, and PET-CT imaging, while molecular
markers for metastasis and the primary site are unknown. Here, we report the identification of multi-
gene signatures for hepatic metastasis and primary sites through analyses on RNA-SEQ datasets
of pancreatic and small intestinal NETs tissue samples. Relevant gene features, identified from
the normalized RNA-SEQ data using the mRMRe algorithm, were used to develop seven Machine
Learning models (LDA, RF, CART, k-NN, SVM, XGBOOST, GBM). Two multi-gene random forest (RF)
models classified primary and metastatic samples with 100% accuracy in training and test cohorts
and >90% accuracy in an independent validation cohort. Similarly, three multi-gene RF models
identified the pancreas or small intestine as the primary site with 100% accuracy in training and test
cohorts, and >95% accuracy in an independent cohort. Multi-label models for concurrent prediction
of hepatic metastasis and primary site returned >98.42% and >87.42% accuracies on training and test
cohorts, respectively. A robust molecular signature to predict liver metastasis or the primary site for
GEP-NETs is reported for the first time and could complement the clinical management of GEP-NETs.

Keywords: machine learning; gene features; RNA-SEQ; neuroendocrine tumors; hepatic metastasis;
primary site; random forest

1. Introduction

Neuroendocrine tumors constitute a well-differentiated group within the highly het-
erogeneous tumors originating from the diffuse neuroendocrine system, comprised of cells
with neuronal and endocrine functions [1]. GEP-NETs account for approximately 2% of all
gastrointestinal tumors, with pancreatic NETs (pNETs) and small intestinal NETs (siNETs)
representing about 80% of GEP-NETs [2]. Recent Surveillance, Epidemiology, and End
Results (SEER) data have indicated a rising incidence of GEP-NETs at 6.98 per 100,000 [3].
Often diagnosed at the metastatic stage due to their indolent and slow-growing nature,
GEP-NETs present vague symptoms resembling common abdominal conditions, thus con-
tributing to diagnostic delays [4]. Determinants for treatment regimens and overall survival
include the primary site, tumor grade, and metastasis. Presently, immunohistological mark-
ers such as Chromogranin A, synaptophysin (for neuroendocrine origin), lineage-specific
transcription factors (e.g., TTF-1, ISL, PDX-1 for the primary site), and cytokeratin (for
epithelial origin) are used [5]. However, primary sites remain unconfirmed in approxi-
mately 20% of cases termed as CUP-NETs (Cancer of Unknown Primary–Neuroendocrine
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Tumors) [6]. Tissue-based molecular diagnostics for metastasis detection or primary site
confirmation remain unexplored.

Leveraging RNA-SEQ-generated large-scale gene expression data has proven effective
in identifying biomarkers for cancer detection, metastasis prediction, cancer sub-type
classification, and prognosis [7,8]. For instance, microRNA panels have facilitated reliable
classification and grading of GEP-NETs [9]. Integrated RNA and DNA sequencing was
useful to establish the drivers of metastatic breast cancer [10]. Machine learning algorithms
are a popular choice in cancer research as they aid in sifting through extensive datasets to
identify pertinent genes while eliminating unrelated technical variations [11,12]. They have
been reliably applied for the classification of tumors [10], identification of carcinogenesis-
related genes [13], determination of the primary sites [14], early cancer diagnosis [15],
and identification of prognostic genes [16]. However, gene signatures for diagnosing or
predicting the primary site or metastasis for GEP-NETs remain enigmatic. The aim of this
study was to utilize gene expression data of the primary and metastatic NET tissues [7,17]
to delineate gene signatures to accurately predict liver metastasis and primary sites of
GEP-NETs.

2. Material and Methods
2.1. RNA-SEQ Datasets and Processing

RNA-SEQ datasets of NET tissues (n = 214) used in this study are listed in Table 1. Raw
SRA files were converted to fastq files [https://github.com/rvalieris/parallel-fastq-dump,
accessed on 5 April 2022], and read quality was checked with FASTQC [18]. Low-quality
reads were removed with Trimmomatic in a single-end mode (parameters: LEADING: 10,
TRAILING: 10, SLIDING WINDOW: 4:15, MINILEN: 35) [19]. Filtered reads were aligned
to the human genome (hg38 p. 12, Ensemble GTF (Version 101) using a splice-aware
alignment tool STAR (Version 2.7.2) [20]. Gene counting was carried out using the STAR.

Table 1. RNA-SEQ datasets used in this study.

GEO Accession pNETs siNETs Purpose Reference

GSE98894 n = 113 n = 69 Training and
Test sets [7]

GSE118014 n = 32 n = 0 Independent
validation set [17]

The raw counts were processed using the DaMiRseq pipeline, described earlier [21]. In
brief, raw counts were imported into the Rstudio (version 2022.04.0-7) for the initial filtering.
The genes with noisy low expression (mean raw counts <10 in more than 10% of samples)
were filtered out. The datasets were normalized using variance stabilization transformation
(VST), as described previously [22], and samples with a Spearman correlation coefficient
<0.7 were filtered out. Surrogate variable analysis (SVA) was carried out and expression
data were adjusted for surrogate variables (SVs) unrelated to the hepatic metastasis or
primary site of tumors.

2.2. Feature Selection, Model Building, and Performance Evaluation

RNA-SEQ dataset (GSM2626909, n = 182), comprising primary (n = 126) and liver
metastasis (n = 56) samples, was randomly split into the training (70%) and test (30%)
sets using the Caret package (version 6.0.90) [23], to ensure sufficient sample size for the
training of the hepatic metastasis model. Feature selection was performed on the training
dataset, using the minimum redundancy maximum relevance (mRMRe) package in R [24].
We independently executed mRMRe multiple times (n = 500) with 20 features as a target in
each execution of feature selection, using default parameters. The gene features selected in
all the executions (n = 500) were considered for the hepatic metastasis model. To enhance
accuracy, we generated feature combination sets (n = 503) by varying the number of features
from a minimum of 2 to a maximum of 9. A similar approach was employed to identify

https://github.com/rvalieris/parallel-fastq-dump
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important features to discriminate between the primary sites of NETs, using only liver
metastasis samples of the pNETs (n = 30) and siNETs (n = 26).

2.3. Machine Learning Models and Performance Evaluation

Seven machine learning algorithms, viz., Linear Discriminant Analysis [LDA], Ran-
dom Forest [RF], Classification and Regression Tree [CART], Support Vector Machine [SVM],
k-Nearest Neighbor [k-NN], Extreme Gradient Boosting [XGB], and Gradient Boosting
Machine [GBM] were selected based on their utility for gene expression-based classifica-
tions [25,26]. All analyses were carried out in R using the CARET package [23]. We used
the “repeated-cv” method with 6-fold and 100 repeats with grid search parameters and
ROC as an accuracy metric to train the model. For XGB and GBM models, TuneGrid was
used for model parameter optimization. Further accuracy, sensitivity, and specificity were
calculated using the confusion matrix command of the caret package [23]. After training the
model, its performance was evaluated on the test dataset. A similar approach was used to
identify important features to discriminate between the primary sites of the samples. Only
liver metastasis samples of the pNETs and siNETs were used for the primary site prediction.
For simultaneous prediction of the hepatic metastasis and the primary site, multi-label RF
models were built in the Python package sci-kit learn [27]. For multi-label classification,
mRMRe-derived gene features (liver metastasis = 9 features; primary site = 12 features)
and all the samples (n = 182) were used for training, testing, and validation purposes.

2.4. Differential Expression Analyses

Differential expression analysis for the primary versus liver metastasis samples was
carried out using the DESeq2 package [28].

2.5. Statistical Software and Figures

R statistical programming language (v4.0.2) was used for all calculations and statistical
analysis. All the graphs were generated with the R package ggplot2 [29].

2.6. Weighted Gene Expression Network Analysis (WGCNA) Construction

Tutorial RScript provided with the R package WGCNA (Ver 1.7.0) [30] was used for
step-wise WGCNA network construction. First, the outlier samples were checked and soft
power threshold analyses were carried out to find the soft power threshold. The adjacency
matrix was calculated using all 24,123 genes and 182 samples, with network type as signed
network and bicor selected as network cor functions. The TOM matrix was calculated from
the adjacency matrix and converted into the dissimilarity matrix by subtracting the TOM
matrix from 1 [31]. Dissimilarity TOM matrix was then used for hierarchical clustering and
module detection. Branches were cut at the threshold of 0.75 and a minimum of 30 genes
for each module. Module–trait relationship, module membership, and gene significance
were calculated as described in the tutorial script. Finally, gene-features associated scores
for module membership, gene significance, and module–trait correlation were extracted for
further analyses.

3. Results
3.1. Alignment of RNA-SEQ Profiles with the Human Genome, Gene Quantification and
Count Normalization

The RNA-SEQ datasets (n = 182) comprised of primary tumors (pNETs, n = 83 and
siNETs, n = 43) and liver metastases (pNETs, n = 30 and siNETs, n = 26) samples had an
average of 32 million reads. RNA-SEQ datasets were processed as described in Figure 1.
After removing low-quality reads, around 90% of all the reads aligned to the human genome
(hg38 p. 12, Ensemble GTF (Version 101), and all the samples had 60,671 gene features.
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analyses. All samples exhibited a minimum correlation of 0.7 (Supplementary Figure 
S1A), following VST normalization of the gene counts. Batch effects related to the 
sequencing data were removed by SVA, which identified 14 surrogate variables 
(Supplementary Figure S1B). Three SVs, namely 1, 9, and 12, displayed significant 
correlations with known biological variables, specifically the sample classes (primary 
tumors and liver metastases) and primary sites (pNETs and siNETs) (Supplementary 
Figure S1C). The gene counts were adjusted for the remaining 11 surrogate variables 
with no significant correlations with either the sample classes or the primary sites. 

Figure 1. Flowchart of the step-wise procedure describing data acquisition, pre-processing of RNA-
SEQ datasets, selection of the important features, building of machine learning models, and perfor-
mance evaluation for classification of primary versus liver metastasis samples.

After expression-based filtering, 24,123 gene features were retained for subsequent
analyses. All samples exhibited a minimum correlation of 0.7 (Supplementary Figure S1A),
following VST normalization of the gene counts. Batch effects related to the sequencing data
were removed by SVA, which identified 14 surrogate variables (Supplementary Figure S1B).
Three SVs, namely 1, 9, and 12, displayed significant correlations with known biological
variables, specifically the sample classes (primary tumors and liver metastases) and primary
sites (pNETs and siNETs) (Supplementary Figure S1C). The gene counts were adjusted for
the remaining 11 surrogate variables with no significant correlations with either the sample
classes or the primary sites.

3.2. Hepatic Metastasis Model
3.2.1. Identification of Gene Features Relevant to Hepatic Metastasis

The RNA-SEQ dataset (n = 182) was randomly divided into training (70%) and
test (30%) sets based on the tumor type (primary versus liver metastasis). The mRMRe
algorithm identified nine gene features important for hepatic metastasis classification
(Tables 2 and S1) from the training set samples’ VST-normalized and SV-adjusted counts
(24,123 genes).
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Table 2. Hepatic metastasis model: Top gene features identified by mRMRe algorithm.

Sr. No. Symbol Description
LOG2FC
(Primary/Liver
mets)

Padj

1. SFRP2 Secreted frizzled
related protein 2 5.51 8.35 × 10−34

2. NKX2-3 NK2 homeobox 3 4.33 1.36 × 10−33

3. PRRX2 Paired related
homeobox 2 1.94 1.74 × 10−7

4. LMO3 LIM domain only 3 1.86 2.95 × 10−5

5. RBP4 Retinol binding
protein 4 −2.83 4.17 × 10−6

6. TBX20 T-box transcription
factor 20 −3.8 2.53 × 10−15

7. BMP10 Bone morphogenetic
protein 10 −8.09 2.36 × 10−43

8. ALB Albumin −10.06 7.71 × 10−106

9. HP Haptoglobin −10.28 4.69 × 10−87

3.2.2. Development of Machine Learning Models and Importance of the Identified Features

Next, the efficacy of the nine gene features for distinguishing primary tumors from
hepatic metastases was assessed with seven distinct ML algorithms: LDA, SVM, CART,
RF, k-NN, XGB, and GBM. Across both training and test sets, all seven models achieved
>90% accuracy (Figure 1). In the test set, LDA and k-NN attained the highest accuracy of
96.23% (Figure 1). Feature importance analysis revealed Haptoglobin as the key feature in
RF, k-NN, SVM, and LDA (Figure 2A). For GBM, XGB, and CART models, TBX20, BMP10,
and RBP4, respectively, played pivotal roles in achieving classification accuracy (Figure 2A).
Albumin [ALB] was also recognized as the second most important feature in k-NN, SVM,
XGB, and LDA (Figure 2A). Importantly, all nine genes demonstrated differential expression
between primary tumor and liver metastasis samples (Figure 2B; Table 2).

3.2.3. Concise Gene Signatures Improve Classification Accuracy of the Hepatic
Metastasis Model

Given the distinct significance of each gene feature on individual model prediction
accuracy (Figure 2A), we explored whether a reduced number of features and unique
feature combinations could enhance classification accuracy. We generated a comprehen-
sive set of 502 distinct feature combinations, encompassing 2 to 9 gene features in each
combination (Supplementary Table S2). We evaluated all the feature combination sets for
classification accuracy using seven ML algorithms [RF, LDA, k-NN, GBM, SVM, GBM,
XGB]. Sensitivity, specificity, and accuracy metrics for all 502 gene feature sets are detailed
in Supplementary Table S3. Intriguingly, two RF models, each composed of a 5-gene feature
set, demonstrated the highest classification accuracy. Specifically, both models achieved
100% accuracy, sensitivity, and specificity in differentiating primary and metastatic samples,
both in the training and test datasets (Tables 3 and S3).
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Figure 2. (A) Feature importance plots for the gene relevant to hepatic metastasis of NETs. X axis 
represents relative feature importance. For abbreviations of the models, please see Figure 1. (B) 
Box plots show expression levels of the 9 genes, in the primary and liver metastasis samples. The 
middle horizontal line represents the median of the VST counts for each sample. 

Table 3. Hepatic metastasis model: Performance evaluation on training and test sets. 
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HM-RF1: ALB, SFRP2, PRRX2, LMO3, NKX2-3 100% 100% 100% 
HM-RF2: ALB, SFRP2, PRRX2, LMO3, TBX20 100% 100% 100% 

Further, two aforementioned RF models were tested on an independent dataset 
(GSE118014), encompassing primary (n = 25) and liver metastasis (n = 7) samples (Table 
1). Both RF models displayed accuracy exceeding 90% in accurately classifying the 
samples (Table 4). Notably, both models achieved higher predicted accuracy compared 
to the No Information Rate (NIR) (p-value < 0.0182). 

Figure 2. (A) Feature importance plots for the gene relevant to hepatic metastasis of NETs. X axis
represents relative feature importance. For abbreviations of the models, please see Figure 1. (B) Box
plots show expression levels of the 9 genes, in the primary and liver metastasis samples. The middle
horizontal line represents the median of the VST counts for each sample.

Table 3. Hepatic metastasis model: Performance evaluation on training and test sets.

Gene Sets Accuracy Specificity Sensitivity

HM-RF1: ALB, SFRP2, PRRX2, LMO3, NKX2-3 100% 100% 100%
HM-RF2: ALB, SFRP2, PRRX2, LMO3, TBX20 100% 100% 100%

Further, two aforementioned RF models were tested on an independent dataset (GSE118014),
encompassing primary (n = 25) and liver metastasis (n = 7) samples (Table 1). Both RF models
displayed accuracy exceeding 90% in accurately classifying the samples (Table 4). Notably,
both models achieved higher predicted accuracy compared to the No Information Rate (NIR)
(p-value < 0.0182).
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Table 4. Hepatic metastasis model: Performance validation on independent set.

Models Accuracy Sensitivity Specificity 95% Confidence Interval

HM-RF1 93.75% 71.43% 100% 0.7567–0.9923
HM-RF2 90.91% 62.5% 100% 0.7567–0.9808

3.3. Primary Site Model
3.3.1. Identification of Gene Features Relevant to the Primary Site

Precise determination of the primary site holds significant clinical implications for
management and prognosis. To identify gene features specifically relevant to the primary
site (pancreas or small intestine), we focused our approach on utilizing liver metastasis
samples. This strategy emulates cancers of unknown primary (CUP), aiming to uncover
gene features pertinent to the primary tumor site by examining metastatic sites. Liver
metastasis samples from pNETs (n = 30) and siNETs (n = 26) from GSM2626909 were
randomly split into training (70%) and test (30%) sets using the Caret package (Figure 3).
A set of 12 genes was consistently selected across all 500 feature selection rounds of the
mRMRe algorithm (Tables 5 and S4).
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Table 5. Primary site model: Top gene features identified by mRMRe algorithm.

Sr. No. Symbol Description Log2FC
(siNET/pNET) padj

1. SYT16 Synaptotagmin 16 3.01 9.88 × 10−6

2. FAR2 Fatty acyl-CoA reductase 2 1.78 1.62 × 10−8

3. SIDT1 SID1 transmembrane family
member 1 1.48 1.34 × 10−5

4. GABBR2 Gamma-amino butyric acid type B
receptor subunit 2 1.32 0.02

5. OGG1 8-oxoguanine DNA glycosylase 1.02 2.85 × 10−9

6. TAF1A-AS1 TAF1A antisense RNA 1 0.79 0
7. ENSG00000259081 lncRNA −0.59 0.02

8. SGPP1 Sphingosine-1-phosphate
phosphatase 1 −0.67 3.09 × 105

9. C19orf12 Chromosome 19 open reading
frame 12 −0.69 0

10. DRAM1 DNA damage-regulated autophagy
modulator 1 −0.78 2.94 × 10−6

11. LOC100129434 Uncharacterized LOC100129434 −2.01 4.66 × 10−9

12. DPP6 Dipeptidyl peptidase like 6 −3.63 1.29 × 10−7

3.3.2. Development of Machine Learning Models and Importance of the Identified Features

As detailed in the earlier section, ML models were developed using 12 mRMRe-
identified gene features, and the classification efficiency of all seven models was evaluated.
RF, LDA, XGB, and SVM models returned a similar performance with 100% accuracy in the
training set and 81.25% accuracy in the test set (Figure 3). SYT16 gene was identified as the
most important feature in KNN, SVM and LDA models, and the second most important
feature in the RF model (Figure 4A). FAR2 was identified as the most important feature in
RF and GBM models, and as a second most important feature in k-NN and SVM models
(Figure 4A). All 12 genes were differentially expressed between the primary tumor and the
liver metastasis samples (Figure 4B; Table 5).

3.3.3. Concise Gene Signatures Improve the Classification Accuracy of the Primary
Site Model

Similar to the approach used for the hepatic metastasis model, gene combination sets
with features ranging from 2 to 12 genes (resulting in 4083 unique combinations) were
generated (Supplementary Table S5). We trained all seven ML algorithms using these
4083 feature sets with the training dataset and assessed the model performance using
the test dataset (Supplementary Table S6). Among the seven ML algorithms, specifically,
three Random Forest (RF) models, fourteen Gradient Boosting Machine (GBM) models,
and five Extreme Gradient Boosting (XGB) models were generated using the 21 unique
feature sets, and they could classify both the training and test datasets with 100% accuracy
(Table 6). Of note, all 12 gene features identified by the mRMRe algorithm are represented
in different models. The models’ performance was evaluated on an independent dataset of
pNETs, consisting of 32 cases (25 primary and 7 liver metastasis). In this evaluation, two RF
models, eight GBM models, and three XGB models achieved 100% classification accuracy
in predicting the primary site (Table 7).
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Table 6. Primary site model: Performance evaluation on training and test datasets. The models listed
below showed 100% accuracy, specificity, and sensitivity.

Sr. No. Model *: Gene Features

1 PS-RF1: DPP6, GABBR2, SYT16, SGPP1
2 PS-RF2: DPP6, GABBR2, SYT16, SGPP1, TAF1A-AS1
3 PS-RF3: DPP6, GABBR2, SYT16, SGPP1, LOC100129434
4 PS-GBM1: GABBR2, FAR2
5 PS-GBM2: SYT16, SGPP1, C19orf12
6 PS-GBM3: TAF1A-AS1, GABBR2, FAR2, SYT16
7 PS-GBM4: TAF1A-AS1, GABBR2, FAR2, SGPP1
8 PS-GBM5: LOC100129434, GABBR2, SGPP1, C19orf12
9 PS-GBM6: LOC100129434, SYT16, SGPP1, C19orf12
10 PS-GBM7: SIDT1, DPP6, DRAM1, SYT16
11 PS-GBM8: GABBR2, FAR2, SYT16, SGPP1
12 PS-GBM9: GABBR2, SYT16, SGPP1, C19orf12
13 PS-GBM10: TAF1A-AS1, GABBR2, SYT16, SGPP1, C19orf12
14 PS-GBM11: LOC100129434, OCG1, GABBR2, SYT16, SGPP1, C19orf12
15 PS-GBM12: LOC100129434, DPP6, GABBR2, SYT16, SGPP1, C19orf12
16 PS-GBM13: LOC100129434, GABBR2, SYT16, SGPP1, ENSG00000259081, C19orf12
17 PS- XGB1: SIDT1, DPP6, SYT16, SGPP1
18 PS-XGB2: LOC100129434, DPP6, GABBR2, SYT16, ENSG00000259081
19 PS- XGB3: DPP6, DRAM1, SYT16, SGPP1, C19orf12
20 PS- XGB4: DPP6, GABBR2, SYT16, SGPP1, ENSG00000259081, C19orf12

21 PS- XGB5: TAF1A-AS1, SIDT1, DPP6, GABBR2, FAR2, DRAM1, SYT16, SGPP1,
ENSG00000259081

* PS = primary site.

Table 7. Primary site model: Performance validation on independent datasets.

Sr.
No. Models Accuracy Sensitivity Specificity

1 PS-RF1: DPP6, GABBR2, SYT16,
SGPP1 100% 100% 100%

2 PS-RF3: DPP6, GABBR2, SYT16,
SGPP1, LOC100129434 100% 100% 100%

3 PS-GBM2: SYT16, SGPP1, C19orf12 100% 100% 100%

4 PS-GBM5: LOC100129434,
GABBR2, SGPP1, C19orf12 100% 100% 100%

5 PS-GBM6: LOC100129434, SYT16,
SGPP1, C19orf12 100% 100% 100%

6 PS-GBM9: GABBR2, SYT16, SGPP1,
C19orf12 100% 100% 100%

7 PS-GBM10: TAF1A-AS1, GABBR2,
SYT16, SGPP1, C19orf12 100% 100% 100%

8 PS-GBM11: LOC100129434, OCG1,
GABBR2, SYT16, SGPP1, C19orf12 100% 100% 100%

9 PS-GBM12: LOC100129434, DPP6,
GABBR2, SYT16, SGPP1, C19orf12 100% 100% 100%

10
PS-GBM13: LOC100129434,
GABBR2, SYT16, SGPP1,
ENSG00000259081, C19orf12

100% 100% 100%

11
PS- XGB2: LOC100129434, DPP6,
GABBR2, SYT16,
ENSG00000259081

100% 100% 100%

12 PS- XGB3: DPP6, DRAM1, SYT16,
SGPP1, C19orf12 100% 100% 100%

13
PS- XGB4: DPP6, GABBR2, SYT16,
SGPP1, ENSG00000259081,
C19orf12

100% 100% 100%



Curr. Oncol. 2023, 30 9254

3.4. A Multi-Label Model to Predict the Primary Site and Hepatic Metastasis of NETs

We further determined whether a single model could predict hepatic metastasis and the
primary site. We constructed a single multi-label ensemble Random Forest model using the
21 mRMRe-derived features, consisting of 9 hepatic metastasis prediction gene features and
12 primary site prediction gene features. This model achieved 100% accuracy with the training
dataset, comparable to the individual prediction models for hepatic metastasis or primary site.
However, the multi-label model outperformed the individual models with the test dataset.
Specifically, the multi-label model achieved 96.36% accuracy in predicting hepatic metastases,
whereas the individual RF model achieved 92.45% accuracy (Figure 1). Similarly, the multi-label
model achieved 90.9% accuracy for primary site prediction, surpassing the 81.25% accuracy of
the individual RF model (Figure 3). Thus, the performance of the multi-label model, with all
21 gene features, was superior to that of the individual prediction models for hepatic metastasis
or the primary site. Furthermore, we investigated whether concise feature sets could enhance
the prediction accuracy of the multi-label model. We generated 42 sets of feature combinations,
comprising 2 feature sets (Table 2) and 21 feature sets (Table 5), to train 42 multi-label RF models
(Supplementary Table S7). Among these models, 24 achieved 100% accuracy in the training
dataset for hepatic metastasis classification. In the test dataset, the highest accuracy of 94.55%
was observed for 3 models (Multi-Label 13, 16, and 36) for hepatic metastasis classification
(Supplementary Table S7). For predicting the primary site, 24 models achieved 100% accuracy in
the training set. In contrast, in the test set 3 models (Multi-Label 15, 18, and 31) achieved 90.91%
accuracy (Supplementary Table S7). We also validated the performance of the multi-label models
on an independent dataset (Supplementary Table S7). For the prediction of hepatic metastasis,
the accuracy ranged from 84.38% to 100% (Supplementary Table S7). However, for the prediction
of the primary site, the accuracy ranged from 21.88% to 100% (Supplementary Table S7). It is
important to note that no single multi-label model achieved 100% accuracy for both hepatic
metastasis and primary site predictions in the training, test, and independent datasets. In total,
14 multi-label models achieved 100% accuracy in the training datasets for predicting hepatic
metastasis and the primary site (Table 8). Among these, the top-performing 2 models (Multi-
Label 16 and 36) consistently achieved >89.09% accuracy in all the test and independent datasets
for both hepatic metastasis and primary site predictions (Table 8).

Table 8. Top-performing multi-label models: Performance evaluation on training and test datasets
and performance validation on independent datasets.

Model_Name
Accuracy (%)

Training
Metastasis

Test
Metastasis

Training
Origin

Test
Origin

Independent
Metastasis

Independent
Origin

Multi-label-16 100 94.55 100 89.09 93.75 96.88
Multi-label-36 100 94.55 100 89.09 96.88 93.75
Multi-label-27 100 92.73 100 87.27 84.38 34.38
Multi-label-38 100 92.73 100 87.27 90.63 53.13
Multi-label-40 100 92.73 100 87.27 90.63 78.13
Multi-label-29 100 92.73 100 85.45 90.63 62.50
Multi-label-21 100 92.73 100 83.64 93.75 81.25
Multi-label-18 100 90.91 100 90.91 93.75 62.50
Multi-label-31 100 90.91 100 90.91 90.63 75.00
Multi-label-30 100 90.91 100 89.09 90.63 28.13
Multi-label-32 100 90.91 100 89.09 87.50 100
Multi-label-41 100 90.91 100 89.09 87.50 87.50
Multi-label-17 100 90.91 100 87.27 87.50 59.38
Multi-label-28 100 90.91 100 87.27 90.63 53.13

3.5. Weighted Gene Correlation Network Analysis

Weighted gene correlation network analysis (WGCNA) is a widely used method for
identifying important modules containing highly correlated genes associated with the
clinical attributes of interest [32–34]. We employed WGCNA to investigate the correlation
of the mRMRe-identified gene features, which were utilized in our machine learning
models, with two key aspects of Neuroendocrine Tumors (NETs): tumor class (primary
versus liver metastasis) and primary site (pNETs versus siNETs). The WGCNA network
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was constructed with VST-normalized counts of genes (n = 24,123) from 182 samples
(GSM2626909). Following standard WGCNA network construction guidelines, we initially
screened for outlier samples through hierarchical clustering (Supplementary Figure S2A).
Subsequently, we determined a soft threshold power of 12 (Supplementary Figure S2B) to
calculate the adjacency matrix. We aimed to create a scale-free topology network with a
minimum module size of 30, utilizing bicor as the correlation type and forming a signed
network. The resulting WGCNA network consisted of 24 modules (Figure 5A).
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Figure 5. WGCNA network construction and module identification. (A) Hierarchical cluster den-
drogram showing the identified modules and color assignment of each module. For hierarchical
clustering a dissimilarity measure (1-TOM) was used. Highly interconnected groups of genes are
shown as branches. Modules are represented in the vertical bar as different colors. In total, 24 modules
with the 24,123 genes were detected with WGCNA. (B) Heatmap of correlation between modules,
class, and site of the origin. (Each cell represents the correlation and its associated p-value in a bracket).

To identify modules significantly associated with the tumor class (primary versus liver
metastasis) and primary site (pNETs versus siNETs), we conducted module–trait relationship
analyses. These analyses involved assessing correlations between the module eigengenes and
the tumor class or site of origin. Notably, we identified a total of seven modules that exhibited
significant associations: three positively correlated modules (pink, magenta, and red) and four
negatively correlated modules (dark grey, dark red, green, and green-yellow) with the tumor
class (correlation coefficient |0.4| or higher and p-value < 1 × 10−9) (Figure 5B). Crucially, all
six gene features that effectively discriminated liver-metastasized NETs from primary NETs
were part of these four modules. Additionally, we computed the Gene Module Membership
(GMM) for each gene within these modules by assessing its correlation with the eigengene.
All six gene features displayed high GMM scores (>0.5). Furthermore, we calculated the Gene
Significance Score (GSE) for each gene within these modules by correlating gene expression
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with the tumor class. All six gene features exhibited high and statistically significant GSE scores
(>0.5 and p-value > 1 × 10−9).

In the context of the primary site (pNETs versus siNETs), we identified nine modules
(midnight blue, green-yellow, orange, magenta, turquoise, light green, light cyan, blue,
and dark magenta) that were significantly associated with the primary site (correlation
coefficient |0.4| or higher and p-value < 2 × 10−8) (Figure 5B). Two of these modules
were positively correlated, while seven were negatively correlated with the primary site.
Notably, the six gene features that accurately classified the primary site were found within
four of these modules (Table 9).

Table 9. WGCNA identified gene significance (GSE), gene significance p-value (GSP), and gene
module membership score (GMM) for the six gene features of hepatic metastasis models.

Ensemble ID Gene Name Module GSE GSP GMM

ENSG00000167157 PRRX2 Midnight blue −0.50 3.67 × 10−13 0.66
ENSG00000163631 ALB Pink 0.75 1.96 × 10−34 0.85
ENSG00000164532 TBX20 Pink 0.68 2.43 × 10−26 0.70
ENSG00000119919 NKX2-3 Dark red −0.70 1.24 × 10−28 0.71
ENSG00000145423 SFRP2 Midnight blue −0.66 6.91 × 10−24 0.47
ENSG00000048540 LMO3 Green-yellow −0.54 2.25 × 10−15 0.46

Through gene significance and module membership analyses, we determined that
three of these gene features were part of the blue module and exhibited high module
membership scores (Score > 0.33). Additionally, all six features displayed a significant
association with the primary site (GSE > 0.25 and p-value > 1.38 × 10−4) (Table 10).

Table 10. WGCNA identified gene significance (GSE), gene-significance p-value (GSP), and gene
module membership score (GMM) of the six gene features of the primary site model.

Ensemble ID Gene Name Module GSE GSP GMM

ENSG00000136928 GABBR2 Blue 0.43 2.13 × 10−9 0.55
ENSG00000139973 SYT16 Blue 0.64 3.40 × 10−22 0.74
ENSG00000126821 SGPP1 Light green −0.45 2.04 × 10−10 0.53
ENSG00000225265 TAF1A-AS1 Blue 0.28 1.38 × 10−4 0.33
ENSG00000233251 LOC100129434 Midnight blue −0.29 5.79 × 10−5 0.41
ENSG00000130226 DPP6 Turquoise −0.63 2.18 × 10−21 0.78

4. Discussion

In general, metastasis is a dynamic process of dissemination of tumor cells to a target
site. This complex process involves molecular reprogramming, the tumor microenviron-
ment, and interactions favoring the target site [35,36]. The liver is a common metastatic
site for pancreatic and gastrointestinal tract tumors [37,38]. Gene expression profiles play a
crucial role in determining the invasive potential of primary tumor cells [35]. Our study
identified nine gene features that accurately differentiated between the primary and the
liver metastasis samples. Five genes encode secretory proteins (ALB, HP, BMP10, RBP4, and
SFRP2), while four genes encode transcription factors (TBX20, NKX2-3, LMO3, and PRRX2).
In primary tumors, SFRP2, NKX2-3, PRRX2, and LMO3 exhibited higher expression levels,
while ALB, HP, BMP10, RBP4, and TBX20 showed lower expression compared to liver
metastasis samples (Figure 2B).

The genes exhibiting higher expression in primary tumors are functionally linked
to metastatic progression. For instance, SFRP2 plays a role in the Wnt signaling path-
way, and its expression is regulated by methylation, influencing cell differentiation and
growth [39]. SFRP2 is a potential prognostic and diagnostic biomarker in breast and prostate
cancers [40,41]. NKX2-3 is down-regulated in the liver metastasis samples of the NETs [42],
which corroborates our findings (Figure 2B). NKX2-3 is a homeodomain transcription factor,
and it regulates the expression of the M cadherin in endothelial cells and, thus, the migration
of leukocytes in tissue [43]. PRRX2 acts as an important transcription factor that regulates
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miRNA expression related to pulmonary large cell neuroendocrine tumors [44]. The pan-
creatic NENs with enhanced PDX1 expression were reportedly enriched with PRRX2 [45].
Thus, higher PRRX2 expression in primary tumors (Figure 2B) is in line with the published
literature. Over-expression of PRRX2 induces epithelial to mesenchymal transition (EMT)
in breast carcinoma [46] and enhances migration and invasiveness in breast cancer [47].
In the primary NETs, up-regulation of PRRX2 may promote EMT. Higher expression of
PRRX2 in primary samples may help tumor metastasis since inhibition of PRRX2 has been
shown to suppress liver metastasis [48]. A Lim-domain-containing transcription factor
LMO3 inhibits the activity of the p53 tumor suppressor [49]. Interaction of LMO3 with
another transcription factor, HEN2, is correlated with poor prognosis of neuroblastoma
and tumor growth [50]. Epigenetic regulation has been discovered to play a significant role
in regulating several crucial genes related to metastasis and overall survival in NETs [51].
Therefore, we investigated the possible regulation of the nine genes related to the hepatic
metastasis model and found that SFRP2, NKX2-3, PRRX2, and LMO3 are regulated by
epigenetic modifications in several cancer types [52–55]. Although there is no direct report
of the regulation of these genes through epigenetic mechanisms in neuroendocrine tumors,
we cannot rule out the possibility of such epigenetic regulation. Expression of ALB and
Haptoglobin (HP) is enriched in the liver. ALB has been identified as one of the liver
metastasis-associated hub genes in colorectal carcinoma [56]. Similarly, higher levels of
blood HP are associated with advanced cancers, distant metastasis, and poor outcomes [57],
while higher expression of RBP4 has been correlated with higher metastatic potential,
increased invasiveness, and clonogenic potential [58]. We observed lower expression of
BMP10 in primary tumors. Low levels of BMP10 were found to be associated with bigger
tumor size, worse TNM stage, earlier recurrence, and poorer survival in hepatocellular car-
cinoma [59]. TBX20 is an important transcription factor involved in heart development and
angiogenesis [60]. Lichtenauer et al. have shown that TBX20 acts via the PROK2-PRKR2
pathway in the angiogenesis in colorectal cancer [61].

Three genes, SFRP2, NKX2-3, and LMO3, identified in this study as important features
associated with liver metastasis of NETs, belong to the metastatic gene signature derived
for pNETs [62]. Similarly, SFRP2, NKX2-3, and ALB were also a part of the machine
learning model for the prediction of liver metastasis in colorectal adenocarcinoma [63].
Thus, these genes may represent a common signature for liver metastases irrespective of the
microenvironments at the primary or the metastatic site. Taken together, hepatic metastasis-
associated gene features reported in this study are potential markers for metastatic NETs
and are worth pursuing for clinical applications.

Primary sites cannot be confirmed in about 20% of NET cases [6]. Such CUP-NET
patients cannot benefit from the therapies designed for specific tissue types. Thus, accurate
determination of the site of primary is an important task. Gene expression signatures
serve as valuable markers for tracing the primary tumor site. This study identified 12 gene
features that accurately differentiated between pNETs and siNETs from liver metastasis
samples. The expression of SYT16, FAR2, SIDT1, GABBR2, OGG1, and TAF1A-AS1 was
higher in siNETs, while the expression of DPP6, DRAM1, SGPP1, LOC100129434, NA
(ENSG00000259081), and C19orf12 was higher in pNETs (Figure 4B).

SYT16 is a calcium-independent synaptogamin involved in membrane trafficking [64].
SYT16 has higher expression in the siNETs than the pNETs (Figure 4B). FAR2, SIDT1, and
OGG1 show higher expression levels in the gastrointestinal tract than in the pancreas
(https://www.proteinatlas.org/, accessed on 22 December 2022). GABBR2 is a part of the
GABAb receptor signaling. GABAb receptors are expressed throughout the small intestine
and are involved in the secretion of the inhibitory neuron. In pancreatic Beta cells, the
expression of GABBR2 is regulated while GABBR1 is constitutively expressed [65]. This
may be why GABBR2 expression is higher in the liver-metastasized siNET samples.

Conversely, DPP6 has approximately 25-fold higher expression in the pancreatic alpha
and beta cells than in the proximal tissue [66]. SGPP1 is a phosphatase involved in sph-
ingolipid metabolism and regulates calcium signaling [67]. Genes that code for antisense

https://www.proteinatlas.org/
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RNA (TAF1A-AS1), lncRNA (ENSG00000259081), and ORF (C19orf12) remain uncharacter-
ized. Given the contrasting expression patterns of DPP6 and SYT16, we explored whether
the ratio of VST counts of DPP6 to SYT16 could facilitate the straightforward discrimination
of pNETs from siNETs. A DPP6/SYT16 ratio greater than one was observed in 100% of
pNET samples, while the ratio was less than one in 81% of siNET samples (Supplementary
Table S8). The ratio DPP6/SYT16 can be useful in distinguishing the pNETs and siNETs
from the liver metastasis samples. We propose that our approach can seamlessly integrate
with existing clinical processes if transcript expression can be confirmed alongside immuno-
histochemistry (IHC) and pathology assessments for neuroendocrine origin confirmation.
This integration not only has the potential to reduce additional costs but also enhances
overall feasibility, making it a practical and valuable option for clinical applications. Fur-
ther, these transcript expressions can also be estimated in blood profiles of NET patients
for easy determination in pNETs or siNETs origin. This underscores the applicability of
our findings in real-world clinical settings, where accurate diagnosis and classification of
neuroendocrine tumors are paramount.

5. Conclusions

With the availability of high-quality RNA-SEQ datasets of cancer tissues in the public
domain, machine learning is poised to dramatically transform diagnosis and therapeutic
management, predictably translating into better prognosis. Machine learning algorithms
pick up subtle changes in the expression data and are suitable for developing a multi-gene
model to distinguish the classifiers confidently. In this communication, we used GEP-NETs
as a test system to evaluate the applicability of machine learning to predict either hepatic
metastasis or the primary site. We conclude that the gene features extracted from the
NET-tissue RNA-SEQ profiles can differentiate the classes under investigation with very
high accuracy. Further, our study also clearly demonstrates that concise gene signatures
perform better. In the future, this stratagem may complement the clinical management of
cancer patients.

6. Limitation of the Study

This study did not investigate how conventional pathology including immunohisto-
chemistry performs in comparison with gene expression algorithms in correctly predicting
the primary site of metastases.
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tumor. (B) Surrogate variable analysis showing a number of the significant variables explaining
95% variance in samples. (C) SVA correlation plot showing the correlation of biological variables
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of WGCNA network. (B) Plot showing soft threshold power cutoff on the scale independent and
network mean connectivity. Table S1: List of mRMRe-identified gene features selected in 500 rounds,
for finding gene relevant to hepatic metastasis.; Table S2: Feature combination sets, comprising
2 to 9 genes in each set, for hepatic metastasis model. Table S3: Sensitivity, Accuracy and specificity
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