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Abstract: Non-clear cell renal cell carcinoma (nccRCC) is an entity comprised of a heterogeneous
constellation of RCC subtypes. Genomic profiling has broadened our understanding of molecular
pathogenic mechanisms unique to individual nccRCC subtypes. To date, clinical trials evaluating
the use of immunotherapies and targeted therapies have predominantly been conducted in patients
with clear cell histology. A comprehensive review of the literature has been undertaken in order
to describe molecular pathogenic mechanisms pertaining to each nccRCC subtype, and concisely
summarise findings from therapeutic trials conducted in the nccRCC space.
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1. Introduction

Renal cell carcinoma (RCC) is the seventh-most common malignancy globally [1],
representing 5% of adult malignancies in males and 3% in females [2]. Recognised risk
factors include cigarette smoking, obesity and hypertension. Underlying disorders such as
von Hippel-Lindau (VHL) syndrome, end stage renal failure, acquired renal cystic disease,
dialysis dependence and prior renal transplant predispose to development of RCC [3].
Clear cell RCC (ccRCC) constitutes approximately 80% of all RCC, whilst the less common
non-clear cell RCC (nccRCC) can be further stratified by subtype [4]. The World Health
Organisation (WHO) has updated the classification system of RCC in 2022, distinguishing
subtypes on the basis of both morphological appearance as well as underlying molecular
aberrations (e.g., TFE3 and ALK-rearranged RCC, SMARCB1-deficient medullary-like
RCC), thus offering an integrated approach to characterizing tumour subtypes [5].

The majority of advanced RCC clinical trials are targeted to patients with ccRCC. Man-
agement paradigms within this space have historically consisted of cytokine therapy (such
as interferon-alpha and IL-2) and oral targeted therapies (tyrosine kinase inhibitors, such
as sunitinib); however, immunotherapy (IO) has recently emerged as a mainstay of initial
treatment of metastatic ccRCC [6]. This shift has occurred due to improvements in survival
with immunotherapy in large randomized clinical trials (CheckMate-214, KEYNOTE-426,
CheckMate-9ER, CLEAR and JAVELIN-101) [7–11]. Notably, only patients with a clear
cell component of RCC were included in these practice-informing trials. Comparatively,
nccRCC- a heterogeneous group of malignancies with diverse clinical and molecular
features- has been less well studied. Much of the treatment evidence for advanced nccRCC
arises from smaller, non-randomised or retrospective studies and expert-level evidence only.
Moreover, there remains a dearth of established treatments and clinical trials specifically
designed for this patient population. Herein, we provide an overview of nccRCC with a
focus on evidence for systemic therapy of advanced disease.
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2. Pathological, Molecular and Clinical Features of nccRCC Subtypes

Certain subtypes of metastatic nccRCC are associated with more aggressive disease
behaviour and poorer survival outcomes compared to ccRCC. Within nccRCC, subtypes
exhibit different clinical courses. The incidence of morphological subtypes of nccRCC are
listed in Table 1. Recent genomic sequencing studies of nccRCC have revealed molecular
aberrations amongst different nccRCC subtypes that parallel different patterns of clinical
behavior, therapy response and prognosis. Herein, we discuss nccRCC subtypes with
unique histological and molecular features in further detail.

Table 1. Incidence of RCC subtypes [12].

Subtype % of all RCC

Papillary RCC (Types 1 and 2) 10–15
Chromophobe RCC 5
Collecting duct RCC 1

MiT family translocation RCC 1
Multilocular cystic renal neoplasm of low

malignant potential 1

Medullary RCC <1%
Tubulocystic RCC <1%

Acquired cystic kidney disease-associated RCC <1%
Hereditary leiomyomatosis with RCC <1%

Succinate dehydrogenase deficient RCC <1%
Unclassified <1%

2.1. Papillary

Papillary RCC is denoted histologically by the presence of basophilic cells arranged
in a papillary fashion [13]. Papillary RCC can be further divided into two types, each
demonstrating a unique biological basis and clinical phenotype. Type 1 papillary RCC is
typically characterized by papillae with shallower layers of columnar epithelial cells that
possess minimal cytoplasm and small ovoid nuclei. Additional features include presence of
foamy macrophages and psammoma bodies [13]. In contrast, type 2 papillary RCC exhibits
more aggressive histological features such as pleomorphic irregular nuclei with nucleoli
and eosinophilic cytoplasm-containing large cells [14]. Tumour stage and grade at time of
diagnosis are consequently higher with type 2 papillary RCC [13]. This translates into the
clinical setting, with type 1 papillary RCC conferring a better prognosis than ccRCC and
type 2 papillary RCC. It is known to have a more indolent clinical course and is less likely
to metastasise than type 2 papillary RCC [14].

MET-activating mutations were initially found in the hereditary papillary RCC set-
ting [15]. The pathogenicity of these mutations was subsequently demonstrated in both
hereditary and sporadic forms of the disease in further studies reported in the Cancer
Genome Atlas (TCGA) profiling [16]. A total of 81% of type 1 papillary RCC demonstrates
alteration of MET or increased copy number of chromosome 7, the long arm of which
contains the MET proto-oncogene [16]. In contrast, type 2 papillary RCC has a more hetero-
geneous molecular profile. Recurrent genomic alterations described in this subtype include
CDKN2A mutation/promoter hypermethylation, NRF2-ARE overexpression, TFE3 fusions
and SETD2 mutations [16].

2.2. Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC)

HLRCC is a rare subset of nccRCC with an autosomal dominant pattern of inheritance
that predisposes to the development of cutaneous and uterine leiomyomas in addition to
RCC [17]. Historically, HLRCC was classified as type 2 papillary RCC. It is now recognised
as a distinct entity [5], as it is pathogenically driven by germline mutations in the fumarate
hydratase (FH) gene. FH is responsible for the formation of L-malate from fumarate as part
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of the tricarboxylic acid (TCA) cycle. Mutations in FH lead to enhancement of hypoxia-
inducible factor 1-alpha (HIF-1α) and downstream factors such as erythropoietin (EPO)
and vascular endothelial growth factor (VEGF), in turn leading to tumorigenesis [18].

2.3. Chromophobe

Chromophobe RCC originates from the intercalated cells of the renal collecting
duct [19]. Loss of whole chromosomes is a hallmark of chromophobe RCC. A higher
frequency of mutations in the tumour suppressor genes TP53 and PTEN have been shown
in this subset of nccRCC. TERT rearrangements may also play a role in tumorigenesis of
chromophobe RCC [20]. Genetic syndromes associated with chromophobe RCC include the
following: tuberous sclerosis, Cowden syndrome, Birt-Hogg-Dube syndrome, hereditary
paraganglioma/phaeochromocytoma and BAP1 tumour predisposition syndromes [21].
Clinically, chromophobe RCC is more likely to arise in young female patients and has an
indolent clinical course. Fewer than 5% of patients present with advanced disease, and
prognosis is more favourable compared with ccRCC [22].

2.4. Medullary

Medullary RCC is a rare form of RCC that is associated with poorer survival. It occurs
more frequently in young African males with sickle cell trait [23]. Molecular pathogenesis
is similar to urothelial carcinoma, with loss of SMARCB1, NOTCH2 amplifications and
deletions of NOTCH1/NOTCH3 commonly seen [24]. Medullary RCC tends to be resistant
to both cytokine and chemotherapy [23].

2.5. Collecting Duct

Collecting duct/Bellini duct RCC arises from the principal cells of renal medullary
collecting ducts [25]. Histologically it is characterized by desmoplastic stroma, tubular or
tubule-papillary infiltration of the renal parenchyma and high-grade nuclear features [26].
Collecting duct tumours are associated with a poor prognosis, and therefore early his-
tological identification is imperative [27]. Next generation sequencing in a small group
of patients with collecting duct RCC has revealed molecular abnormalities in SETD2,
CDKN2A, SMARCB1 and HF2 [28].

2.6. Sarcomatoid and Rhabdoid Dedifferentiation

Though not categorized as subtypes of nccRCC, note should be made of the phe-
nomena of sarcomatoid and rhabdoid dedifferentiation, which can be seen in approx-
imately 10–15% of RCC, often co-existing with other RCC histologies (e.g., clear cell,
papillary, etc.) [29]. Morphologically, sarcomatoid dedifferentiation arises from the process
of epithelial-mesenchymal transition. Sarcomatoid RCC therefore contains both carcinoma
and sarcomatoid-type histological features [30]. Rhabdoid dedifferentiation is characterized
by clusters of large epithelioid cells with vesicular nuclei, prominent nucleoli and paranu-
clear intracytoplasmic hyaline inclusions [31]. Sarcomatoid and rhabdoid dedifferentiation
can occur either concomitantly or independently of each other [32]. These tumours are
known to be biologically aggressive and therefore confer a poor prognosis [33,34].

Transcriptomic analyses have demonstrated the role of MYC overexpression, BAP1
mutations and CDKN2A deletions in the pathogenesis and aggressive course of sarco-
matoid and rhabdoid dedifferentiated RCC [29]. These tumours are known to have an
‘immune-inflamed phenotype’, typified by immune activation, higher PD-L1 expression,
upregulation of antigen presenting machinery genes and enhanced infiltration of cytotoxic
immune cells [29]. This translates into the clinical setting, as demonstrated through the
responsiveness of these tumours to IO, with response rates of 47–61% and overall survival
benefit over sunitinib seen in subgroup analyses of Phase III ccRCC trials [35–37].
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3. Systemic Therapy

A greater understanding of the molecular biology and pathogenesis of nccRCC has
led to a growing number of trials exploring therapeutic agents in this context. Mirroring
the trials being conducted in the ccRCC space, both immune checkpoint inhibition and
targeted therapy are being investigated. Of note, local therapies such as surgery and
ablative techniques (e.g., radiofrequency, microwave and cryoablation) can be utilized in the
management of early stage nccRCC [38]. However, it is unclear if differences exist between
outcomes in ccRCC and nccRCC managed with local therapies, as comparative studies
have not been conducted. As such, systemic therapy will be the focus of this discussion.

Retrospective studies have demonstrated efficacy of IO (ORR 10–35%), and targeted
therapies (ORR 15–30%) in nccRCC, although it must be recognised that sample sizes are
small and study populations are heterogeneous in these analyses (Table 2).

Table 2. Selected retrospective studies of targeted and immunotherapy in nccRCC [39–51].

Trial Year Treatment Sample Size
Results

mOS (mths) mPFS (mths) ORR Other
Endpoints

Colomba
et al. [39] 2017

VEGF/mTORi
VEGFi: 82%
mTORi: 18%

n = 61

VEGFi: 22.9
(95% CI

17.8–49.2)
mTORi: 3.2

(95% CI 2.3–NE)

N/A VEGFi: 28.9%
mTORi: 0%

mTTF
VEGFi: 8.0mths
(95% CI 4.1–13.6)
mTORi: 2.3mths
(95% CI 0.7–8.0)

Buti et al. [40] 2017 Pazopanib

n = 37
Papillary: 51%

Chromophobe: 24%
Unclassified: 21%

17.3
(95% CI

11.5–23.0)

15.9
(95% CI 5.9–25.8)

Overall: 27%
Papillary: 21%

Chromophobe: 44%
DCR: 81%

Campbell
et al. [41] 2018 Cabozantinib n = 30

25.4
(95% CI

15.5–35.4)

8.6
(95% CI 6.1–14.7) 14.3% DCR: 78.6%

Agarwala
et al. [42] 2018

VEGF/mTORi
Sorafenib: 35%

Sunitinib: 22.5%
Pazopanib: 20%

Everolimus: 17.5%

n = 40
Papillary: 62.5%

Sarcomatoid: 15%
Chromophobe: 12.5%

11.7 N/A N/A mEFS: 6.1mths

Chanza et al. [43] 2019 Cabozantinib

n = 112
Papillary: 59%

Translocation: 15%
Unclassified: 13%

Chromophobe: 9%

12.0
(95% CI 9.2–17.0)

7.0
(95% CI 5.7–9.0)

Overall: 27%
Papillary: 27%

Chromophobe: 30%
Collecting duct: 50%

Unclassified: 13%

mTTF: 6.7mths

Kim et al. [44] 2019 VEGFi vs. mTORi

n = 156
Papillary: 59.6%

Chromophobe: 12.8%
Collecting duct:

11.5%
Unclassified: 10.3%

N/A 10.0 vs. 5.0 (p =
0.0275) N/A

mCSS:
27.0 vs. 16.0
(p = 0.1706)

Choudhary
et al. [45] 2020

VEGFi
Sorafenib: 39.2%
Sunitinib: 27.4%

Pazopanib: 21.6%

n = 139
Papillary: 76.2%

Chromophobe: 7.9%
Sarcomatoid: 6.5%
Unclassified: 1.4%

11.9
(95% CI 5.4–18.4)

6.0
(95% CI 2.4-9.6) 16.6% DCR: 54.1%

McKay et al. [46] 2018 PD-1/PD-L1
inhibitors

n = 43
Papillary: 33%

Chromophobe: 23%
Unclassified: 21%
Sarcomatoid: 16%
Translocation: 7%

12.9
(95% CI 7.4–NR) N/A

Overall: 19%
Papillary: 29%

Chromophobe: 0%
Translocation: 33%
Unclassified: 0%

mTTF: 4.0mths
(95% CI 2.8–5.5)

Gupta et al. [47] 2020 Ipilimumab/
Nivolumab n = 18 N/A 7.1

Overall: 33.3%
Chromophobe: 20%

Medullary: 0%
Papillary T2: 50%
Translocation: 0%

Unclassified: 33.3%

N/A

Chahoud
et al. [48] 2020 Nivolumab

n = 40
Papillary: 30%

Unclassified: 27.5%
Chromophobe: 12.5%
Translocation: 7.5%

21.7
(95% CI

7.83–NR)

4.9
(95% CI

3.53–10.27)

Overall: 21.6%
Papillary T1: 25%
Papillary T2: 0%

Chromophobe: 0%
Translocation: 0%

Unclassified: 44.4%

DCR: 53.4%
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Table 2. Cont.

Trial Year Treatment Sample Size
Results

mOS (mths) mPFS (mths) ORR Other
Endpoints

Koshkin
et al. [49] 2018 Nivolumab

n = 41
Papillary: 39%

Unclassified: 34%
Chromophobe: 12%
Collecting duct: 10%

NR 3.5
(95% CI 1.9–5.0)

Overall: 20%
Papillary: 14%

Chromophobe: 0%
Collecting duct: 25%

Translocation: 0%
Unclassified: 36%

10mth OS: 68%

Schwartzmann
et al. [50] 2020

Nivolumab: 46%
Ipilimumab/

nivolumab: 54%

n = 28
Unclassified: 42.9%

Papillary: 28.6%
Chromophobe: 10.7%

HLRCC: 10.7%

15.9
(95% CI 5.9–25.9) N/A 10.7% mTNT: 4.9

(95% CI 1.7–8.1)

ORACLE [51] 2021

IO/VEGF
(Pembrolizumab/

axitinib,
atezolizumab/
bevacizumab,

avelumab/
axitinib)

n = 19 24.7 16.8 21% mDOR: 23.6mths
DCR: 69%

IO/IO
(ipilimumab/
nivolumab)

n = 40 19.2 13.6 19% mDOR: 13.6mths
DCR: 46%

VEGF/mTORi
(lenvatinib/
everolimus)

n = 7 23.1 NR 0% mDOR: NR
DCR: 72%

mOS: median overall survival, mPFS: median progression free survival, ORR: objective response rate, mEFS:
median event free survival, DCR: disease control rate, mTTF: median time to treatment failure, mCSS: median
cancer specific survival, mTNT: median time to next treatment, mDOR: median duration of response.

These data do not demonstrate major differences between survival outcomes with
use of targeted therapies vs. IO. Of note, poor outcomes were seen with mTOR inhibitors.
Additionally, chromophobe tumours responded poorly to IO, although higher response
rates were observed with combination ipilimumab/nivolumab in this subgroup. Results
must be interpreted with caution, however, due to the heterogeneity of trial populations,
small sample sizes and the retrospective nature of these studies.

3.1. Immunotherapy

To date, other than sarcomatoid and rhabdoid dedifferentiation, no biomarkers have
been able to reliably predict response to IO in renal cell carcinoma. PD-L1 expression was
shown to vary between nccRCC subtype in a series that demonstrated PD-L1 positivity of
5.6% in chromophobe RCC, 10% in papillary RCC, 20% in Xp11.2 translocation RCC and
20% in collecting duct carcinoma [52]. Broadly speaking, RCC is a tumour with low tumour
mutational burden (TMB), with a median of 1.1 mutations/Mb. Of RCC subtypes, lowest
TMB is seen with chromophobe RCC (<1 mutation/Mb) [53]. As such, chromophobe RCC
is thought to exhibit an immunologically ‘cold’ phenotype. Interestingly, however, both
chromophobe and papillary RCC were shown to have the highest insertion deletion (indel)
rates proportional to TMB in a pan-cancer whole-exome sequencing analysis of nineteen
solid tumour types [54]. Indels are known to generate neoantigenic peptides, and therefore
hypothesised to correlate with antitumour response to IO [54].

Notably, IO response rates were poorer in chromophobe RCC in comparison with other
nccRCC subtypes in the majority of retrospective analyses listed in Table 2. This may add
weight to the hypothesis that chromophobe tumours are indeed immunologically ‘cold’.

Building upon retrospective data, evidence to support use of either single agent
or doublet IO in this space was further substantiated in prospective single arm studies
(Table 3). Parallel ccRCC cohorts in KEYNOTE-427, Checkmate-374 and HCRN GU16-260
demonstrated superior response rates of immunotherapy in ccRCC when compared with
nccRCC [55–57].
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Table 3. Prospective single arm immunotherapy trials in nccRCC [55–59].

Trial Phase Cohort Treatment Sample Size
Efficacy

mOS (mths) mPFS (mths) ORR

KEYNOTE-427
[55] II

A
(Clear Cell)

Pembrolizumab

n = 110 NR 7.1
(95% CI 5.6–11.0) 36.4%

B
(Non-clear cell)

n = 165
Papillary: 71.5%

Unclassified: 15.8%
Chromophobe: 12.7%

28.9
(95% CI 24.3-NR)

4.2
(95% CI 2.9–5.6)

26.7%
Papillary: 28.8%

Chromophobe: 9.5%
Unclassified: 30.8%

CheckMate-374
[56] III/IV

A
(Clear Cell)

Nivolumab

n = 97 21.8
(95% CI 17.4-NE)

3.6
(95% CI 2.0–5.5) 22.7%

B
(Non-clear cell)

n = 44
Papillary: 54.5%

Chromophobe: 15.9%
Unclassified: 18.2%
Translocation: 5%

Other: 6%

16.3
(95% CI 9.2-NE)

2.2
(95% CI 1.8–5.4) 13.6%

CheckMate-920
[58] III/IV

Cohort 2
(nccRCC with
KPS ≥70%) ˆ

Ipilimumab/
nivolumab >
nivolumab

n = 52
Unclassified: 42.3%

Papillary: 34.6%
Chromophobe: 13.5%
Translocation: 3.8%

Collecting duct: 3.8%
Medullary: 1.9%

21.2
(95% CI 16.6-NE)

3.7 (95% CI
2.7–4.6) 19.6%

HCRN
GU16-260

[57]
II

A
(Clear Cell)

Nivolumab
(Part A) +/−
ipilimumab *

(Part B)

n = 123 N/A 7.4 (95% CI
5.5–10.9)

Part A: 29.3%
Part B: 11%

B
(Non-clear cell)

n = 35
Papillary: 54%

Chromophobe: 17%
Unclassified: 29%

Part B: n = 16

N/A 4.0 (95% CI
2.7–4.3)

Part A: 14.3%
Part B: 6%

UNISoN
(ANZUP 1602)

[59]
II N/A (nccRCC

cohort only)
Nivolumab +/−

ipilimumab ** n = 85

Part 1+2:
24

(95% CI 16–28)
Part 2 (nivo+ipi):
10 (95% CI 6–17)

Part 2: 2.6
(95% CI 2.2–3.8)

Nivo: 17%
Nivo + ipi: 10%

KPS: Karnosfky Performance Score. ˆCheckMate-920 included 4 cohorts: predominantly ccRCC with KPS ≥
70% (cohort 1), nccRCC with KPS≥70% (cohort 2), cc/nccRCC with nonactive brain metastases and KPS≥70%
(cohort 3), cc/nccRCC with KPS 50–60% (cohort 4). * Salvage ipilimumab (1mg/kg) and nivolumab (3mg/kg) was
administered if PD or SD was found 48 weeks after initiation. ** Salvage ipilimumab (1 mg/kg) was administered
in patients refractory to single agent nivolumab at 3 months.

3.2. Targeted Therapy

Prospective studies have demonstrated activity of mTOR inhibitors and anti-angiogenic
VEGF tyrosine kinase inhibitors (TKIs) inhibitors against nccRCC (Table 4). Angiogenesis
has been identified as a hallmark of RCC biology [60]. Activation of mTOR is known to lead
to angiogenesis through HIF-1α dependent and independent factors, including modulation
of nitric oxide and angiopoietins [61]. Head-to-head trials have demonstrated superior
outcomes with sunitinib compared with everolimus [62–64], although these findings were
not statistically significant and conclusions must be cautiously interpreted owing to hetero-
geneous trial populations, small cohorts and crossover to the sunitinib arm in the ESPN
trial [63].

Table 4. Prospective targeted therapy trials in nccRCC [62–67].

Trial Phase Treatment Comparator Sample Size
Efficacy

mOS (mths) mPFS (mths) ORR

ASPEN [62] II Sunitinib Everolimus n = 108

31.5 vs. 13.2
HR 1.12

(95% CI 0.7–2.1,
p = 0.60)

8.3 vs. 5.6
HR 1.41

(80% CI 1.03–1.92,
p = 0.16)

18% vs. 9%

ESPN [63] II Sunitinib Everolimus
n = 68

(Crossover
allowed at PD)

16.2 vs. 14.9
(p = 0.18)

1L: 6.1 vs. 4.1 (p = 0.6)
2L: 1.8 vs. 2.8 (p = 0.6)

1L: 9% vs. 3%
2L: 9.5% vs. 8.6%
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Table 4. Cont.

Trial Phase Treatment Comparator Sample Size
Efficacy

mOS (mths) mPFS (mths) ORR

RECORD-3 [64] II 1L everolimus/
2L sunitinib

1L sunitinib/
2L everolimus n = 471

22.4
(95% CI

18.6-33.3)
vs

29.5
(95% CI

22.8–33.1)

21.7
(95% CI 15.1–26.7)

vs
22.2

(95% CI 16.0–29.8)

N/A

RAPTOR [65] II Everolimus N/A n = 92
Papillary: 78%

21.4 (95% CI
15.4–28.4)

T1 Papillary: 7.9 (95%
CI 2.1–11.0)

T2 Papillary: 5.1 (95%
CI 3.3–5.5)

1%

ARCC [66] III Interferon alfa Temsirolimus/Combination
therapy n = 626 7.3 vs. 10.9 vs.

8.4 3.1 vs. 5.5 vs. 4.7 4.8% vs. 8.6% vs.
8.1%

BONSAI [67] II Cabozantinib N/A
n = 23

(Collecting duct
RCC only)

7.0 (95% CI 3–31) 4.0 (95% CI 3–13) 35%
(95% CI 15–57)

The MET proto-oncogene is implicated in the tumorigenesis of papillary RCC, particu-
larly type 1 papillary RCC. Mechanisms of MET overexpression include gene amplification
and fusions, receptor mutations, increased copy number of chromosome 7, and activating
point mutations [16]. Though activity of MET inhibitors has been explored in this space,
results have been disappointing in the unselected population (Table 5). The SAVOIR study
is the only study to date with central confirmation of MET as a driver, demonstrating
superior outcomes with the MET inhibitor savolitinib in comparison with sunitinib in an
exclusively MET-driven population. Central confirmation of MET alteration is also required
in the ongoing SAMETA trial (NCT05043090) [68] which aims to evaluate the efficacy of
immune checkpoint and MET inhibitor as monotherapies or combination therapy in an
exclusively MET-driven population.

Table 5. MET inhibitor trials in papillary RCC [69–73].

Trial Phase Treatment Sample Size
Efficacy

mOS (mths) mPFS (mths) ORR

CREATE
(T1 Papillary RCC)

[69]
II Crizotinib n = 23

(MET-altered: n = 4) N/A N/A

MET positive cohort: 50%
(2/4 patients)

MET negative cohort: 6.3%
(1/16 patients)

NCT00726323 [70] II Foretinib
n = 74

(MET-altered:
n = 36)

NR 9.3

Overall
population: 13.5%

Germline MET mutation
positive: 50% (5/10 patients)

Germline MET mutation
negative: 9% (5/57 patients)

SWOG S1107 [71] II
Tivantinib/erlotinib

vs
Tivantinib

n = 50
Tivantinib/

erlotinib: n = 25
Tivantinib: n = 25

(MET-altered: n = 1)

10.3 vs. 11.3 5.4 vs. 2.0 0% in both arms

SAVOIR [72] III Savolitinib vs.
Sunitinib

n = 60 (all
MET-driven)

Savolitinib: n = 33
Sunitinib: n = 27

NR vs. 13.2
(HR 0.51, 95% CI
0.2–1.2; p = 0.11)

7.0 vs. 5.6
(HR 0.71; 95% CI 0.4–1.4) 27% vs. 7%

PAPMET [73] II

Savolitinib/
Crizotinib/
Sunitinib/

Cabozantinib

n = 152
(MET testing not

performed)

N/A

No improvement in PFS
with savolitinib/

crizotinib vs. VEGFi
(halted early

after
prespecified

futility
analysis)

N/A

Cabozantinib vs.
Sunitinib N/A 9.0 vs. 5.6

HR 0.60
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Knowledge of signalling pathways implicated in HLRCC such as HIF upregulation
and NRF2 activation [18] has led to targeted therapy trials in this space. Response rates
of approximately 50% were demonstrated with the combination of the epithelial growth
factor receptor (EGFR) inhibitor erlotinib and bevacizumab, a VEGF inhibitor, in both the
phase II AVATAR trial [74] and a Korean retrospective series [75]. Trials evaluating use
of immune checkpoint inhibitors in this space are ongoing [18], and preclinical studies
of polyadenosine diphosphate-ribose polymerase (PARP) inhibitors hold promise as a
therapeutic strategy [76], although more clinical data are necessary.

3.3. Combination Therapies: IO/Targeted Therapy

The interplay of tumour vessels and T-cells creates a vicious cycle within the tumour
microenvironment. Tumour vessels have been shown to hinder CD8+ T cell trafficking
into the tumour microenvironment, leading to impaired T-cell effector functions and T-cell
killing. Additionally, VEGF has the potential to interfere with dendritic cell maturation and
priming of T cells. As such, combination IO and VEGF inhibition is hypothesised to have
synergistic anti-tumour activity [77].

Single arm prospective studies have presented efficacy data with combination IO and
targeted therapy (Table 6), although more prospective, randomised trials are needed to
assess superiority over other combinations and individual classes of treatment. A recent
phase II single arm trial of nivolumab in combination with cabozantinib demonstrated
the striking difference in response rates between patients with chromophobe (0%) vs.
papillary/unclassified/translocation associated RCC (47.5%) [78]. Combination therapy
with IO and MET inhibitor was explored in the CALYPSO trial in both papillary and clear
cell RCC cohorts [79,80] (Table 6). In the ccRCC cohort, the primary objective of ≥50%
response rate was not observed either with savolitinib monotherapy or with combination
savolitinib/durvalumab.

Table 6. Completed single arm studies of IO plus targeted therapy in nccRCC [78,79,81,82].

Trial Phase Treatment Sample Size Efficacy

NCT02724878 [81] II Atezolizumab/
Bevacizumab

n = 60
Papillary: n = 12

Chromophobe: n = 10
Unclassified: n = 9

Collecting duct: n = 5
Medullary: n = 1

ORR: 33%
Papillary: 25%

Chromophobe: 10%
Unclassified: 33%

Collecting duct: 40%
Medullary: 100%

COSMIC-021 [82] Ib/II Atezolizumab/
Cabozantinib

n = 32 (nccRCC cohort)
Papillary: n = 15

Chromophobe: n = 9
Other: n = 7

mPFS: 9.5mths
ORR 31% (80% CI: 20-44)

Papillary: 40%
Chromophobe: 14%

Other: 60%

CALYPSO [79] I/II Durvalumab/
Savolitinib

n = 41
Papillary: n = 40

ORR 27%
mOS: 12.3mths
mPFS: 4.9mths

NCT03635892 [78] II Nivolumab/
Cabozantinib

n = 47
Cohort 1 (papillary,

unclassified,
translocation associated

RCC): n = 40
Cohort 2 (chromophobe): n

= 7

Cohort 1: ORR 47.5%,
mPFS 12.5mths,
mOS: 28mths

Cohort 2: ORR 0%

4. Future Directions

Non-clear cell RCC is a subset of genitourinary cancer that is being increasingly
examined. In spite of this, however, there is still no agent or combination of agents that has
parallelled response rates seen in ccRCC. As understanding of the underlying molecular
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pathophysiology of nccRCC grows, so does the potential for development of predictive
biomarkers and future therapeutic targets. A tissue-based analysis conducted as part of the
ASPEN trial (everolimus vs. sunitinib) demonstrated the relevance of particular prognostic
biomarkers in nccRCC. Multivariate analysis revealed the negative and positive predictive
values of p-Akt and c-kit expression respectively with regards to overall survival. Moreover,
c-kit expression was predictive of benefit from everolimus, and c-MET expression correlated
with a poorer response to everolimus or sunitinib [83].

The prognostic and predictive value of PD-L1 level and TMB in nccRCC is unclear,
although higher PD-L1 level has been shown to correlate with poorer survival in sev-
eral studies in the metastatic RCC space (inclusive of both clear cell and non-clear cell
RCC) [84].Within the clear cell RCC context, recent data have highlighted the utility of
metabolic profiling in predicting clinical outcomes including prognosis and response to
therapies through a combination of metabolomics, lipidomics and transcriptomics. There is
therefore scope for similar investigation to be prospectively conducted in the non-clear cell
RCC space [85].

Other molecular targets are currently under investigation. Preclinical studies have
demonstrated the oncogenicity of Hypoxia-inducible factor 1-alpha (HIF-1α) in ccRCC and
FH deficient nccRCC [86]. Increased HIF-1α activity results from loss of function of the VHL
tumour suppressor gene [86]. Further exploration of this target has led to development of
HIF inhibitors. The role of Bezultifan, an oral HIF-2α inhibitor, in VHL associated RCC has
been studied in a recent open label phase I/II study in patients, demonstrating an ORR of
49.2% [87]. Fumarate hydratase mutations—which are commonly seen in hereditary type
II papillary RCC and are characterised by an aggressive clinical course—have also been
hypothesised to lead to HIF-1α overexpression through intracellular accumulation of the
oncometabolite fumarate, and consequent destabilisation of HIF-1α [88]. As such, the role
of HIF-1α in FH-deficient RCC is ongoingly being examined.

5. Discussion

Though historically poorly characterised, our understanding of nccRCC is rapidly
expanding. It is imperative to recognise that nccRCC subtypes exhibit heterogeneity.
Recent advances in genomic profiling have enabled identification of underlying molecular
abnormalities unique to the tumorigenesis of each subtype of this disease. Prototypically,
discovery of the role of MET alterations in hereditary papillary RCC has subsequently
led to investigation of its role in the sporadic form of the disease, in turn resulting in
therapeutic strategies with several MET inhibitor trials. In a similar vein, the pathogenic
role of FH gene mutations in HLRCC has also led to exploration of HIF inhibitors as a
therapeutic class. Synthesis of the aforementioned trials raises the question of the optimal
first line management strategy of nccRCC subtypes. It is important to acknowledge that
to date, only single arm immunotherapy trials have been conducted in this space, and
no head-to-head studies of checkpoint inhibitors vs. targeted therapies exist. Indirect
comparisons would suggest that response rates to checkpoint inhibitors are superior to
targeted therapies with some exceptions (e.g., chromophobe RCC); however, there is no
clear overall survival benefit. Additionally, trial populations are heterogeneous in subtype
frequency, and inter-trial population differences exist. Given that nccRCC subtypes are
biologically and phenotypically distinct, it is also important to recognise variability in
efficacy of therapeutic classes between subtypes. In the majority of the listed trials, sample
sizes of distinct nccRCC subtypes are small and difficult to draw firm conclusions from.

KEYNOTE-427, the largest prospective immunotherapy trial in the nccRCC space,
has demonstrated a discrepancy in ORR with pembrolizumab between papillary and
chromophobe RCC (28.8 vs. 9.5%, n = 21 in chromophobe subgroup) [55]. This could
reflect the immunologically ‘cold’ phenotype of chromophobe RCC described in the liter-
ature [51,52]. Poor response of chromophobe RCC to IO has also been demonstrated in
several retrospective analyses. In contrast, an ORR of 29% was observed with nivolumab
in the chromophobe cohort of the CheckMate-374 study, albeit with a smaller sample size
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(n = 7) [55]. As such, it is unclear if poorer response to IO is unequivocally seen with
chromophobe RCC. In light of this data, it may seem reasonable to pursue targeted therapy
as a first line treatment strategy in patients with chromophobe RCC, whilst further data are
awaited. The findings of the phase II single arm nivolumab/cabozantinib study demon-
strating no responses in the chromophobe cohort [78] suggest that response rates are not
superior with the addition of IO to targeted therapy in this subgroup.

In contrast, checkpoint inhibitors would seem to be preferable to TKI therapy in
papillary and other subtypes of RCC, given suggestion of improved response rates.

MET inhibition may prove to be a viable strategy in patients with papillary RCC and
confirmed MET alterations, though minimal data exist in MET-exclusive populations to
date. Response rates of up to 50% have been noted in MET-driven papillary RCC [69,70],
albeit in small sample sizes, and these agents certainly hold promise for the future.

Cabozantinib has demonstrated encouraging efficacy in the treatment of collecting
duct RCC, a poor prognosis RCC subtype, in the phase II BONSAI trial [67]. Given that no
standard treatments exist for this disease, the observed ORR of 35% suggests that this TKI
could be the agent of choice for this subpopulation.

Building upon our understanding of its molecular pathophysiology, in the HLRCC
population, the combination of EGFR and VEGF inhibition (erlotinib/bevacizumab) has
been shown to be effective, with response rates of up to 50% seen in the AVATAR study [74]
and a separate retrospective analysis [75], highlighting this as a valid therapeutic option in
this subgroup.

Moving forward, early results of HIF inhibitor trials have been promising, with the
oral HIF-2 inhibitor Belzutifan inducing response rates of 49% in patients with VHL-
associated RCC [87]. Further studies investigating role of HIF inhibitors in FH deficient
RCC such as HLRCC are required to evaluate clinical applicability of preclinical studies
using these agents.

Single arm combination IO and targeted therapy trials have been promising so far, al-
though all four studies have demonstrated superior response rates with non-chromophobe
(25–60%) than chromophobe (0–15%) cohorts [78,79,81,82]. Importantly, further head-
to-head trials comparing combination therapy with both IO and targeted therapies are
required to clearly answer the question of whether additional benefit is gained from a
combination strategy. Comparison of doublet IO to combination IO/targeted therapy
would also be clinically applicable. Moreover, breakdown of efficacy by nccRCC subtype
in such studies would also guide the optimal choice of first line management.

The challenges associated with conducting further trials in a heterogeneous population
with small numbers of patients with each subtype of the disease must be recognised,
highlighting the importance of collaborative efforts between global institutions to establish
further evidence-based guidance in the understanding and management of nccRCC.

As our understanding of nccRCC subtypes broadens, it is also important that clinically
relevant prognostic and predictive biomarkers are investigated, in order to better shape the
therapeutic landscape and personalise treatment for the individual patient. In particular,
the value of biomarkers such as PD-L1 expression, TMB and indel rates have not been
convincingly predictive of response to immunotherapy, and more work is certainly required
in this sphere.

6. Conclusions

Non-clear cell RCC is comprised of a heterogeneous spectrum of biologically distinct
subtypes. Understanding of the molecular pathogenesis of subtypes has significantly
improved in recent times. This will hopefully pave the way for future trials investigating
the role of biomarkers, and selection of the optimal therapeutic strategy in individual
nccRCC subtypes.
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