
Supplementary material 

Table S1. - The image preprocessing of intensity and spatial discretization. 

Pre-processing 

settings 
Spatial resampling Re-segmented range Bin width Gray levels 

CT [1.0 × 1.0 × 1.0]𝑚𝑚3 [−1000 ÷ 3000] 𝐻𝑈 10 HU 400 

PET [3.0 × 3.0 × 3.0]𝑚𝑚3 [0 ÷  20] SUV  0.3125 SUV 64 

Table S2. - Lasso feature selection coefficients. 

Models' condition λLASSO 

Harmo CT + Original PET features (A) 0.1355 

Harmo CT features (B) 0.1220 

Original CT features (C) 0.1290 

PET features only (D) 0.0950 

Text S1. Models’ description 

Linear SVM 

Linear SVM classifiers provide low generalization error even with small learning 

sample datasets. A binary classification problem can be viewed as the task of separating 

observations in the features space. Consider a training dataset defined through a ma-

trix𝑛 × 𝑝, and that these observations fall in two different classes collected in a vector of 

dimension𝑛. The aim is to classify unseen observations belonging to the validation da-

taset.  

The basic idea under the SVM classifier is to find an optimal hyperplane that sepa-

rates the observations in the features space. One can easily determine on which side of 

the hyperplane a point lies, by simply calculating the sign of the hyperplane mathemati-

cal expression. Also, it is possible to compute the perpendicular distance between each 

observation and the hyperplane. The smallest distance between the observations and the 

hyperplane is called margin. In real classification problems, the hyperplane cannot sepa-

rate perfectly the data into two classes. Because it isn’t possible to define exactly the side 

on which the observations are located the SVM classifier allows the observation to be on 

the wrong side of the hyperplane. Setting the hyperplane equation in p dimension as 

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝 = 0, where 𝑋𝑖 are the observations and 𝛽𝑖 the parameters, 

and 𝑀 as the margin, the optimal classifier can be found by solving the quadratic opti-

mization problem that maximizes the separation margin between the closest data points 

of each class, referred to as the support vectors: 
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C is a non-negative tuning parameter that gives information on the number of ob-

servations that can violate the margin. The variable 𝜖𝑖 are called slack variables and give 

information on the observation.  

Ensemble Subspace Discriminant 

In Ensemble Subspace Discriminant (ESD), a random selection of features in the 

subspaces and a majority voting (between the predictors) rule are used to build the en-

semble of learners and to adopt the classification result.  Ensemble predictors combine 



results from many base learners, also referred to as ‘weak learners’, into one of higher 

performance, using methods such as bagging, subspace, boosting, etc.  

The random subspace method is similar to bagging except that the features are ran-

domly sampled, with replacement, for each learner. Informally, this causes individual 

learners to not over-focus on features that appear highly predictive/descriptive in the 

training set, but fail to be as predictive for points outside that set. For this reason, ran-

dom subspaces are an attractive choice for high-dimensional problems where the num-

ber of features is much larger than the number of training points.  

The random subspace method has been applied to different classifiers as discrimi-

nant classifiers.  


