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Data analysis 

This section describes the machine learning algorithms evaluated for the differentia-

tion between mutated and non-mutated tumors. The algorithms were: Linear Discrimi-

nant Analysis (LDA), K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest 

(RF), Support Vector Machines (SVM) and XGBoost (XGB). 

The LDA algorithm is a well-known method for dimensionality reduction and clas-

sification. The main idea of training an LDA algorithm is the projection of data points to 

a lower dimensional space so that the between-class distance of class centers is maximized 

and the within-class distance of data points is minimized, and defining a decision bound-

ary between the classes that is used to classify new samples. The KNN algorithm is a very 

popular, powerful and simple algorithm. It takes a sample, finds the closest K-Neighbor-

ing points in the training data and makes a prediction based on the majority vote. The DT 

algorithm generates optimized tree structure of the data and makes predictions by follow-

ing the generated tree. The RF algorithm is an extension of the DT, where classification is 

based on several generated decision trees. The SVM algorithm in its simplest case tries to 

separate a data set by finding the smallest margin between a decision boundary and the 

closest samples to the decision boundary. The XGBoost algorithm is very close to the Ran-

dom Forest concept but uses another algorithm for training. 

The data set revealed temperature rise, which caused baseline drift during measure-

ment of one well plate making the data biased. Thus, the only preprocessing method was 

removing dimension-wise linear trend from each part of the data set, which belongs to 

one well plate. This preprocessing step improved the classification results compared to 

the classification of the raw data. The data set contained 352 samples taken from 22 pa-

tients. Such structure of the data suggests using group cross-validation strategies for train-

ing algorithms. The group cross-validation is implemented such that at every iteration it 

leaves one group of samples only for testing. Other groups are used for training. In this 

case the nested group cross-validation technique was used. This algorithm leaves one 

group for testing and the rest groups are used for training and validating. For the next 

iteration the next group is used for testing and the rest for the training and validating and 

so on. This approach ensures that there are no data leakages into the training phase. Figure 

2 shows visualization of the nested group cross-validation approach. 
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Figure S1. Nested cross-validation. 

Cross-validation. Details. 

The grid search is a popular technique to select the best parameters for a classifier. 

The grid search goes through all combinations of a predefined parameter set for deter-

mining the best combination of parameters. In this work the grid search was used inside 

the nested group cross-validation for exploring general classification capability of each 

applied algorithm. As can be seen from Figure 1 (Workflow of the algorithm), at the start 

the data is divided into training and test sets. The test set contains one group of patients 

and the train set contains the rest of the groups. The train set is divided into the train and 

validation sets. The latter two sets are used for the grid search and validation. When the 

best estimator is selected its accuracy is measured by predicting labels of the test set. On 

the next iteration the algorithm takes another group as the test and proceeds. The algo-

rithm iterates over all 22 groups of patients. At each iteration the best model predicted the 

test set. The predictions and ground truths were stored in a separate vector for further 

analysis of accuracy. 

Set of parameters for the grid search 

See below for parameters used for each algorithm for training. The parameter grid 

used for each algorithm was: 

-   Linear Discriminant Analysis 

-   solver: svd, lsqr 

-   store_covariance: True, False 

-   shrinkage: None, 0.1,0.2,...,0.9, auto 

-   K-Nearest Neighbors 

-   n_neighbors: 5,7,9,...,21 

-   weights: uniform, distance 

-   algorithm: auto, ball_tree, kd_tree, brute 

-   p: 1,2 

-   XGBoost 

-   n_estimators: 50, 100, 150, 200 

-   Decision Tree 

-   criterion: gini, entropy 
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-   learning_rate: 0.01, 0.1, 0.2, 0.3 

-   max_depth: 3,4,...,10 

-   colsample_by_tree: 1/10, 2/10, 3/10 

-   gamma: 0, 1/10, 2/10 

- eval_metric: error 

-   splitter: best, random 

-   max_features: auto, sqrt, log2, None 

-   Random Forest 

-   n_estimators: 10,20,30,...,90,100,150,200 

-   criterion: gini, entropy 

-   max_features: auto, sqrt, log2 

-   bootstrap: True, False 

-   warm_start: True, False 

-   Support Vector Machine 

-   kernel: rbf, linear, poly, sigmoid 

-   gamma: scale, auto 

-   shrinking: True, False 

-   degree: 1,2,3,4 

The parameter’s names are named as they are in the scikit-learn library. For a more detailed expla-

nation on each parameter please refer to the scikit-learn official documentation.

Classification results for other algorithms 

LDA DT RF SVM KNN XGBoost 

sensitivity 0.86 0.60 0.71 0.79 0.61 0.74 

specificity 0.85 0.63 0.72 0.78 0.57 0.74 

accuracy 0.86 0.59 0.70 0.80 0.62 0.74 

Classification results of different algorithms. 


