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Abstract: Recent advances in deep learning have enhanced medical imaging research. Breast cancer
is the most prevalent cancer among women, and many applications have been developed to improve
its early detection. The purpose of this review is to examine how various deep learning methods
can be applied to breast cancer screening workflows. We summarize deep learning methods, data
availability and different screening methods for breast cancer including mammography, thermogra-
phy, ultrasound and magnetic resonance imaging. In this review, we will explore deep learning in
diagnostic breast imaging and describe the literature review. As a conclusion, we discuss some of the
limitations and opportunities of integrating artificial intelligence into breast cancer clinical practice.

Keywords: breast cancer; deep learning; convolutional neural network; classification; detection;
segmentation; radiology

1. Introduction

Breast cancer is the most common cancer and can affect both women and men. An ab-
normal growth of breast cells leads to breast cancer, and as these cells continue to multiply
at a faster rate than healthy cells, they accumulate and form a mass [1].

Mutations in two genes known as breast cancer (BRCA) genes, BRCA1 and BRCA2,
are linked with 5 to 10% of all breast cancers [2]. There is an increased risk of breast cancer
for those who inherit harmful variants in one of these genes. BRCA1 or BRCA2 variants
can be inherited from a parent. If a parent carries any mutation in one of these genes, then
the child has a 50% chance of inheriting the mutation [3]. It is possible for toxins, radiation
and chemicals to harm these genes during adulthood [4].

Breast cancer is classified based on the cells in the breast that eventually become
cancerous [5]. There are many types of breast cancer. The first type is ductal carcinoma
in situ (DCIS), a non-invasive cancer present in the lining of the breast milk duct. The second
type is invasive ductal carcinoma, which is the most common type and makes up about
70–80% of all breast cancers. The third type is inflammatory breast cancer, a form of
invasive breast cancer in which cancer cells block lymph vessels, which causes the breast
to look inflamed. It is rare and is responsible for about 1% to 5% of all breast cancers.
The fourth type is triple-negative breast cancer, an aggressive form of invasive breast cancer
in which the cancer cells lack estrogen receptors (ER) or progesterone receptors (PR) and
do not produce human epidermal growth factor receptor 2 (HER2). About 15% of all breast
cancers are of this type. Other types of breast cancer are less common and make up around
1% of all breast cancers [6].

There are several ways to detect breast cancer. Breast self-examination can be con-
ducted by pressing on the breast and checking for changes [7]. However, this method is
not very reliable in detecting cancer. In 1960, mammography was introduced [8]. It is one
of the most common screening tools used to detect breast cancer [9]. This type of screening
may be uncomfortable and painful for the patient due to the pressure applied to the breast
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to spread the breast tissue and enhance the clarity of the X-ray image [10]. In addition to
mammography, other types of screening have been introduced, such as thermography,
ultrasound, and magnetic resonance imaging (MRI) [11].

The early detection and treatment of breast cancer increases the survival rates [12].
Unfortunately, in most cases, breast cancer is detected after symptoms appear rather than
through screening. Delaying treatment may result in the cancer reaching an advanced stage
and decreasing the chances of survival [13]. A number of strategies have been developed
to detect breast cancer in its early stages.

Artificial intelligence technology plays a major role in diagnosis and decision making
in the medical field [14]. Many applications were developed using machine learning and
deep learning to assist with a number of tasks, such as the classification, detection and
segmentation of breast cancer. Currently, deep learning is the most popular method [15].

The novel aspect of this study relates to the review of the most recent research on the
application of deep learning to multiple medical imaging modalities for breast cancer diag-
nosis, particularly the most common screening tests for breast cancer used in deep learning:
mammography, thermography, ultrasound, and magnetic resonance imaging (MRI).

The main contributions of this review are as follows:

• Our paper provides a detailed review on the available breast cancer datasets of each
of the 4 different modalities not available in past reviews [16–18].

• We explore the methods in which recent deep learning algorithms are used to detect
breast cancer using different types of screening.

• We discuss some of the limitations and opportunities of integrating artificial intelli-
gence into breast cancer screenings.

The structure of this review is as follows: Section 2 explains the fundamentals of
deep learning in medical and cancer research, Section 3 describes the data availability for
various types of breast cancer screening, and Section 4 provides a detailed review of breast
cancer detection research using deep learning. The discussion follows in Section 5, and the
conclusion is presented in Section 6.

2. Deep Learning Methods

The term deep learning refers to a sub-field of machine learning in which several
processing layers are employed to extract data features relevant to a given task [19]. Using
multiple layers of neural network architectures and a large amount of labeled data, models
are trained and can make classifications based on images, texts or sounds [20].

To detect breast cancer, different deep learning tasks can be applied:

• Image classification is the probability that the input is a particular class [21]. It involves
defining a set of target classes (e.g., cancerous, healthy) and using labeled images
to train a model to recognize them. Raw pixel data are the input to early computer
vision models.

• Object detection refers to locating and presenting the abnormal areas of an image,
such as tumors [22]. A bounding box is drawn around one or more objects in an image
to localize them.

• Image segmentation is the task of grouping parts of an image that reflect the same
object class (e.g., tumor area). The process of determining the class of each pixel is
made by combining classification and object detection [23].

Figure 1 illustrates various deep learning tasks for breast cancer detection.



Curr. Oncol. 2022, 29 8769

(a) (b)

(c) (d)
Figure 1. Sample applications of deep neural networks to breast cancer images for (a): classification
as healthy using a thermogram; (b): classification as unhealthy using a thermogram [24]; (c): detection
using ultrasound images; (d): segmentation using ultrasound images [25].

2.1. Layers

A layer is a basic structure of neural networks in which the information from the
previous layers is passed to the next layer [26]. There are the most common layers such
as convolution layers [27], pooling layers [28], dense layers [29], dropout layers [30] and
batch normalization layers [31].

• A convolution layer employs a filter to scan the input with respect to its dimensions in
order to extract features based on the input. There are 3 types of convolution layers: 1D
conv, 2D conv and 3D conv. The filter size, stride and padding are its hyperparameters,
and as a result, feature maps are produced.

• A pooling layer is typically employed after a convolution layer to extract features and
reduce dimensions by downsampling. The most popular types of pooling used are
max pooling, average pooling and global average. The padding and pool size are
its hyperparameters.

• A dropout layer is, in general, used to prevent the model from overfitting. When the
training phase is updated, the output of a subset of hidden units is randomly set to 0.

• A dense layer is a regular fully connected layer in which every neuron receives
input from all neurons in its preceding layer. It is the most commonly used layer
for classification.

• A normalization layer is used to standardize the input. Different types of normaliza-
tion layers exist, such as batch normalization, weight normalization, layer normaliza-
tion and group normalization.

• An activation layer carries out an activation function on the previous layer and
increases the non-linearity of the network. There are several used activation functions,
such as ReLU, Sigmoid, Tanh, Softmax, leaky ReLU, etc.

2.2. Loss Function

When a neural network model is trained to perform a particular task, such as regres-
sion or classification, the loss function measures the performance of the model [32]. It
measures the difference between the predicted classes and ground truth classes. It plays an
important role in the performance of the model. The following are the most common loss
functions used in the reviewed papers.
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2.2.1. Cross-Entropy Loss

Cross-entropy loss is a loss function used to measure the efficiency of a classification
model [33].

1. Binary cross-entropy loss

l(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ)); (1)

2. Multi-class cross-entropy loss

l(y, ŷ) = −
n

∑
i=1

yi log(ŷi). (2)

• n = number of classes;
• yi = ground truth classes;
• ŷi = probability of the predicted classes.

2.2.2. YOLO Loss

YOLO calculates loss based on the sum-squared error between predictions and ground
truth. The loss function combines the loss of classification, localization and confidence. It is
used for object detection [34].

l1 = λcoord
s2

∑
i=0

B
∑

j=0
1o

ijbj[(xi − x̂2
i ) + (yi − ŷi)

2] + λcoord
s2

∑
i=0

B
∑

j=0
1o

ijbj[(
√

wi −
√

ŵi
2
) + (
√

hi −
√

ĥi)
2]

+
s2

∑
i=0

B
∑

j=0
1o

ijbj[(pi(n)− p̂i(n))2] +
s2

∑
i=0

B
∑

j=0
1o

ijbj[(Ci − Ĉ2
i )] + λcoord

s2

∑
i=0

B
∑

j=0
1o

ijbj[(Ci − Ĉ2
i )]

(3)

• λ = weighted parameter for balancing;
• n = classes;
• xi, yi = bbox’s center coordinate ground truth;
• x̂i, ŷi = bbox’s center coordinate prediction;
• B = number of bbox;
• wi, hi = bbox’s width and height ground truth;
• ŵi, ĥi = bbox’s width and height prediction;
• pi = class prediction;
• p̂i = class ground truth;
• s = number of cells in bbox;
• Ci = confidence score of if there is an object;
• Ĉi = is 1 if there is an object, else 0.

2.2.3. IoU Loss

The intersection over union (IoU) loss function is a scale-invariant bounding box
regression function. It is used for object detection [35].

LIoU = 1−
|B ∩ Bgt|
|B ∪ Bgt|

(4)

• B = predicted bounding box;
• Bgt = ground truth bounding box.
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2.2.4. GIoU Loss

The generalized intersection over union (GIoU) loss function has a penalty term along
with the IoU loss function and is used for detection [36].

LGIoU = 1− IoU +
|C− B ∪ Bgt|

|C| (5)

• IoU = |B∩Bgt |
|B∪Bgt | ;

• C is the smallest box covering B;
• B = predicted bounding box;
• Bgt = ground truth bounding box.

2.2.5. Smooth L1 Loss

Smooth L1 loss is a loss function for object detection that makes bounding box regres-
sion more robust [37].

smooth L1 =

{
0.5 f 2 | f | ≤ 1
| f | − 0.5 otherwise

(6)

f is the difference between the predicted value and the ground truth.

2.2.6. Focal Loss

Focal loss is a RetinaNet loss function used for object detection that helps to handle
the class imbalance problem during training [38].

FL(pt) = −(1− pt)
γlog(pt)

• pt =

{
p if y = 1
(1− p) otherwise;

• p is the probability that the model estimated for the class with the label y = 1;
• y = ground truth class ;
• γ controls the shape of the curve.

2.2.7. Dice Loss

Dice loss is a widely-used loss to calculate the similarity between images and is used
for segmentation [39].

DL(y, ŷ) = 1− 2yŷ + 1
y + ŷ + 1

(7)

• y = ground truth classes;
• ŷ = probability of the predicted classes.

2.2.8. Shape-Aware Loss

Shape-aware loss is a loss function in which shape is taken into account [40]. It is used
for segmentation.

Lshape-aware = −∑
i

CE(y, ŷ)−∑ iEiCE(y, ŷ) (8)

• CE =

{
− log(ŷ) if y = 1
− log(1− ŷ) otherwise

• y = ground truth classes;
• ŷ = probability of the predicted classes;
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• Ei = D(Ĉ, CGT);
• D = curve of the Euclidean distance;
• Ĉ = curve of the predicted segmentation;
• CGT = curve of the ground truth.

2.3. Metrics

In the reviewed papers, the common performance metrics in breast cancer detection
are accuracy, sensitivity, specificity, precision, F1-score, receiver operating characteristic
(ROC) curve and area under the curve (AUC) [41]. The true positive (TP) represents
the number of positive classes that have been correctly classified as positive. The true
negative (TN) is the number of negative classes that that have been correctly classified
as negative. The false positive (FP) represents the number of negative classes that have
been misclassified as the positive class. The false negative (FN) represents the number of
positive classes that have been misclassified as negative.

Table 1 summarizes the common performance metrics for various deep learning tasks
in the reviewed papers.

Table 1. Metrics used in deep learning for breast cancer detection. TP = true positive, TN = true
negative, FP = false positive and FN = false negative.

Methodology Metric Definition Note

Classification

Accuracy Acc = (TP + TN)/(TP + TN + FP + FN) The number of correctly classi-
fied samples

Sensitivity Recall = (TP)/(TP + FN) True-positive rate (TPR) or recall

Specificity Specificity = (TP + TN)/(TP + TN + FP + FN) True-negative rate (TNR)

Precision Precision = (TP)/(TP + FP)

The ratio between correctly classi-
fied positive samples and the to-
tal number of samples classified
as positive

F1-Score F1-Score = 2 ∗ (Precision ∗ Recall)/(Precision +
Recall)

The classification ability of the clas-
sifiers

ROC The performance of a classification model at all clas-
sification threshold illustrated as a graph

Receiver operating characteris-
tic curve

AUC Used to summarize the ROC curve and measure how
well a classifier can distinguish between classes Area under the ROC curve

PR curve Shows the precision/recall trade-off for different
probabilities Precision-recall curve

Average precision AP =
∫ 1

0
p(r)dr Identifying the area under the

precision-recall curve

Object detection

mAP mAP =
1
N

N

∑
i=1

APi Mean average precision

IoU IoU = Area of Overlap/ Area of union Intersection over union

NMS The selection of the best bounding box for mAP eval-
uation over an object Non-maximum suppression

Segmentation

PA Indicate the percentage of pixels correctly classified
in the image Pixel accuracy

mPA Computes the mean of pixel accuracy Mean pixel accuracy

MIoU Computes the mean of IoU Mean intersection over union
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3. Public Datasets

There are many datasets available for breast cancer. Many of them are publicly available.

3.1. Mammographic Image Analysis Society Digital Mammogram Database (MIAS)

The Mammographic Image Analysis Society Digital Mammogram Database (MIAS) [42]
consists of 322 images collected in 1994 from 161 patients and stored in portable gray map
file format (PGM) with a spatial resolution of 8 bits per pixel. This database consists of
three classes: benign, malignant and normal. Figure 2 illustrates some sample images from
the MIAS database.

(a) (b) (c)
Figure 2. Sample images from the MIAS database (a): benign; (b): malignant; (c): normal.

3.2. Magic-5

Magic-5 [43] is an Italian database of digitised mammograms that was collected in
1999 by a group of physicists. As a first step, they worked with radiologists in several
Italian hospitals to develop a computer-aided detection system. The database contains
3369 images collected from 967 patients and classified according to lesion type, morphology,
breast tissue and pathology type with a resolution of 16 bits per pixel and saved in a
DICOM format. There are more than 60% of patients in the database who are older than
50 years of age. However, these images were collected in diverse environments and are
from multiple views, including lateral, craniocaudal (CC) and mediolateral oblique (MLO)
views. The repartition of the database in the CC, MLO and lateral views is 1601, 1456 and
312 images, respectively.

3.3. The BancoWeb LAPIMO Database

The BancoWeb LAPIMO Database [44] contains 1473 images collected in 2010 from
320 cases. Images are available in TIFF format in 12-bit resolution. In general, their spatial
resolutions are between 0.075 mm and 0.150 mm, depending on the scanner used. There
are three classes of data in this database, namely benign, malignant and normal. All
images are attached to the medical reports of the corresponding exams. In most cases,
the exams were performed for women between the ages of 40 and 60. Access is available
for registered users to Breast Imaging-Reporting And Data System (BI-RADS) annotations
and patient information.

3.4. INbreast

INbreast [45] is a full-field digital mammographic database that consists of 410 images
collected in 2012 at a breast center located in a university hospital (CHSJ, Breast Cen-
tre, Porto). Images were taken from screening, diagnostic and follow-up cases. From
115 cases, 90 have two images from craniocaudal (CC) and mediolateral oblique (MLO)
views of each breast, and there are 25 cases where two images of only one breast were
collected. Among the 91 cases with 2 images per breast, 8 had acquired images at various
times. The dataset is divided into six classes: asymmetries, calcifications, masses, multiple
findings and architectural distortions. These images are available in a DICOM format
with a resolution of 14 bits per pixel. The region of interest of each image and related
information are stored in XML format. Figure 3 illustrates some sample images from the
INbreast database.
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(a) (b)

(c) (d)
Figure 3. Sample images from the INbreast database. (a) Craniocaudal (CC) view of the right breast;
(b) CC view of the left breast; (c) mediolateral oblique (MLO) view of the right breast; (d) MLO view
of the left breast.

3.5. Digital Database for Screening Mammography (DDSM)

The Digital Database for Screening Mammography (DDSM) [46] was first collected in
1999 from Massachusetts General Hospital, the Wake Forest University School of Medicine,
Sacred Heart Hospital and Washington University of the St. Louis School of Medicine.
This database contains 2620 film mammography cases with 4 standard views (mediolateral
oblique and craniocaudal) from each case. A total of 10,480 images are divided into 3 classes:
normal, benign and malignant. The DDSM is widely used due to its large database and
ground truth validation. The images are available in LJEPG format with a resolution of 8 or
16 bits per pixel.

3.6. CBIS-DDSM

The CBIS-DDSM (Curated Breast Imaging Subset of the DDSM) [47] is an updated
and standardized version of the DDSM set up in 2017 that contains a subset of the DDSM
data that has been selected and curated by trained radiographers and converted into
DICOM format. It consists of 1644 cases with a spatial resolution of 16 bits per pixel, along
with updated ROI segmentation and bounding boxes, as well as pathologic diagnosis for
training data.

3.7. OPTIMAM Medical Image Database

The OPTIMAM Mammography Image Database (OMI-DB) [48] has been collected
since 2010 to provide a centralized, fully annotated dataset for research. The Cancer
Research United Kingdom created the database to evaluate how various factors affect mam-
mograms for breast cancer detection and collected 2,889,312 images from 173,319 women.
The 173,319 women include 154,832, 6909, 9690 and 1888 with normal breasts, benign
findings, screen-detected cancers, and interval cancers, respectively [17]. These images are
available in DICOM format. Additionally, the OMI-DB includes clinical information about
previous analog imaging sessions, but images are not included.

3.8. Breast Cancer Digital Repository (BCDR)

The Breast Cancer Digital Repository (BCDR) [49] is a collection of patient data in
northern Portugal collected since 2009 that has been validated by radiologists at Hos-
pital São João, University of Porto, Portugal. It is composed of 1010 cases, including
3703 digitized film mammography images available in TIFF format with a resolution
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of 14 bits per pixel, clinical history, segmented lesions that are BI-RADS classified, and
image-based descriptors.

Additionally, manual segmentation of identified lesions has been made by med-
ical specialists. There were 795 lesions segmented in MLO and CC images, yielding
a total of 1493 segmentations, in which 639, 341, 145, 102, 66 and 2 are masses, mi-
crocalcifications, calcifications, stromal distortions, architectural distortions and axillary
adenopathies, respectively.

3.9. DMR-Database for Mastology Research-Visual Lab

The DMR-Database [24] has been collected since 2010 by the Database for Mastology
Research-Visual Lab, UFF, Niteroi, Brazil. This dataset was taken by FLIR SC-620 thermal
cameras with 480× 640 pixel resolution. Static and dynamic protocols were used to acquire
the images. Static images are recorded after 10 to 15 min of thermal stabilization while the
patient rested. However, the dynamic images are comprised of a sequence of thermograms
taken every 15 s during five minutes. Static protocols reduce the formation of false regions
of warmth or cold by uniformly cooling the skin of the breasts and armpits. However,
there is a long resting time needed to stabilize skin temperature. A total of 5760 images
are divided into 3 classes, healthy, sick, and unknown, and are available in JPG format.
Figure 4 illustrates some sample static and dynamic images from the DMR-Database.

(a) (b) (c)

(d) (e) (f)
Figure 4. Sample images from the DMR-Database (a): static frontal healthy; (b): static frontal sick;
(c): static frontal unknown; (d): dynamic frontal healthy; (e): dynamic frontal sick; (f): dynamic
frontal unknown.

3.10. Breast Ultrasound Image

Breast Ultrasound Image (BUS) [50], collected in 2017, is a publicly available Mendeley
dataset. The dataset consists of 250 breast cancer images, of which 100 are benign and
150 are malignant. The size of the images are 72 × 72 pixels, ranging in width from 57 to
61 pixels and height from 75 to 199 pixels [51]. These images are available in BMP format.
It has been widely used in various studies [52–54]. Figure 5 illustrates some sample images
from the Breast Ultrasound Image (BUS) dataset.
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(a) (b)
Figure 5. Sample images from the BUS database. (a): benign; (b): malignant.

3.11. Breast Ultrasound Dataset

The Breast Ultrasound Dataset [25] was collected in 2018 and stored in DICOM format
at Baheya Hospital, Cairo, Egypt. A LOGIQ E9 ultrasound system and a LOGIQ E9
Agile ultrasound system were used in the scanning process. Using a DICOM converter
application, the images were converted into PNG format. All images were preprocessed by
removing duplicate images and unused boundaries from the images. A total of 600 female
patients between the ages of 25 and 75 were included in this dataset. The dataset was
divided into three classes: normal, benign and malignant, with 133, 487 and 210 images,
respectively. Each image is in PNG format and is 500 pixels by 500 pixels. There is also a
ground truth available for each image. Figure 6 illustrates some sample images from the
Breast Ultrasound dataset.

(a) (b) (c)

(d) (e) (f)
Figure 6. Sample images from the Breast Ultrasound dataset (a): normal; (b): benign; (c): malignant;
(d): ground truth—normal; (e): ground truth—benign; (f): ground truth—malignant.

3.12. Dynamic Contrast-Enhanced Magnetic Resonance Images

Dynamic contrast-enhanced magnetic resonance images of breast cancer patients
with tumor locations (Duke-Breast-Cancer-MRI) [55] is a dataset collected from 2000 to
2014 and stored in the National Cancer Institute’s Cancer Imaging Archive. The dataset
includes 922 DCE-MRI images of invasive breast cancer patients before treatment, along
with information about demographics and clinical, pathological and treatment outcomes.
The dataset is available in a DICOM format and was acquired by 1.5 T or 3 T scanners in the
prone position. It consisted of a non-fat-saturated T1-weighted sequence, a fat-saturated
gradient echo T1-weighted precontrast sequence, and mostly three to four post-contrast
sequences. Annotation boxes were provided by radiologists to locate the tumors on the
DCE-MRI images.
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3.13. RIDER Breast MRI

The Reference Image Database to Evaluate Therapy Response (RIDER) Breast MRI [56]
was collected in 2006 to establish procedures to evaluate the efficacy of drugs or radiation
treatments. The dataset is stored in the National Cancer Institute’s Cancer Imaging Archive
and is composed of 1500 images available in DICOM format obtained from an approach
that identifies the changes in the local apparent diffusion coefficient in 3 of 5 primary breast
cancer patients.

Figure 7 illustrates some sample images from the Duke-Breast-Cancer-MRI and RIDER
Breast MRI databases.

(a) (b)
Figure 7. Sample images from (a): Duke-Breast-Cancer-MRI database; (b): RIDER Breast MRI database.

Table 2 summarizes the characteristics of the reviewed public datasets.

Table 2. Various public databases and their characteristics.

Dataset Modality Year No. of Images Resolution Image Type

MIAS [42] Mammography 1994 322 8 bits/pixel PGM
Magic-5 [43] Mammography 1999 3369 16 bits/pixel DICOM
BancoWeb [45] Mammography 2010 1473 12 bits/pixel TIFF
INbreast [44] Mammography 2012 410 14 bits/pixel DICOM
DDSM [46] Mammography 1999 10,480 8 or 16 bits/pixel LJPEG
CBIS-DDSM [47] Mammography 2017 3468 16 bits/pixel DICOM
OPTIMAM [48] Mammography 2010–present 2,889,312 - DICOM
BCDR [49] Mammography 2009–present 3703 14 bits/pixel TIFF
DMR-Database [24] Thermography 2010–present 5760 - JPG
BUS [50] Ultrasound 2017 250 - BMP
Breast Ultrasound Dataset [25] Ultrasound 2018 780 - PNG
Duke-Breast-Cancer-MRI [55] MRI 2000–2014 922 - DICOM
RIDER Breast MRI [56] MRI 2006 1500 - DICOM

4. Deep Learning for Breast Cancer

A breast cancer screening involves examining breasts using imaging modalities to see
if there are any unusual signs or symptoms of cancer, which can help detect the disease at
an early stage. In the following, we present deep learning research work conducted using
different types of screening for breast cancer detection.

4.1. Mammography

Mammography is a type of breast cancer screening used to detect cancer at an early
stage with a low dose of radiation. There are three types of mammograms [57]. The first
type is film mammography, which is an X-ray image of the breast. The second type is digital
mammography, which is a computer image of the breast. The third type is digital breast
tomosynthesis (DBT), which involves taking a series of pictures of the breast from various
angles. Many studies have been conducted using mammograms to detect breast cancer.
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Using a fully annotated dataset, Shen et al. [58] proposed a deep learning algorithm
with an end-to-end training approach for classifying local image patches. Lesion annota-
tions were only needed during initial training, and the entire image classifier was trained
on the CBIS-DDSM database and transferred to INbreast FFDM images using only a few
samples for fine-tuning without relying on additional lesion annotations. Two steps were
used to train a whole image classifier using VGG-16 and ResNet-50 models. First, a patch
classifier was trained. From the patch classifier, a whole-image classifier was developed.
A probabilistic grid of outputs was generated based on the recognition of local patches on
images, and different results were obtained depending on different patch sets. The high-
est result achieved in this study was an area under the curve (AUC) of 0.95 using the
independent test set from the INbreast database.

Tan et al. [59] proposed a convolutional neural network to detect breast cancer using
mammograms. In this study, the mini-Mammographic Image Analysis Society (mini-MIAS)
database was used, with 322 mammograms classified into normal, benign and malignant
from the original database. These images were preprocessed, and only the abnormal tissue
was cropped to extract only relevant information. This network was composed of a patch
of 48 × 48 pixels as inputs, a convolution layer with a kernel size of 5 × 5, a pooling layer
with a 2 × 2 filter and strides of 2, a learning rate of 0.003, and a training step of 20,000.
With their proposed system, the highest accuracy achieved was 82.71%.

Melekoodappattu et al. [60] used an integration method to develop a system for
detecting cancer. Their method consisted of an ensemble approach developed to diagnose
malignancies in breast tissue. A CNN model and feature extraction were the central com-
ponents of the ensemble model, which can enhance classification efficiency. The images
were preprocessed by using methods such as the median filter to remove noise and im-
age enhancement to improve contrast. The extraction-based method relied on defining
texture features and reducing their dimensions using uniform manifold approximation
and projection. Several classifiers were used in conjunction with a nine-layer CNN model
to diagnose cancer on the MIAS and DDSM repositories. Using the ensemble of a CNN
and feature extraction, the accuracies achieved were 98.00% using the MIAS repository and
97.90% using the DDSM repository. As illustrated in Figure 8, their approach comprised
four stages: pre-processing, CNN classification, feature extraction-based classification and
an integration system.

Figure 8. Diagram of the ensemble approach with a CNN and feature extraction for breast cancer
detection proposed in [60].
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Using deep convolutional neural networks (CNN), Khan et al. [7] proposed a method
for classifying and segmenting breast abnormalities, such as calcifications, masses, asym-
metry and carcinomas. The images have been subjected to various filtering techniques in
order to select the most appropriate one, including Wiener filters to reduce image noise,
inverse filtering to recover blurred images and median filters to reduce the amount of in-
tensity variation between pixels while maintaining the sharpness of image edges [61]. They
applied transfer learning by using a pretrained ResNet-50 model to the customized dataset
created from the CBIS-DDSM and UPMC datasets, where UPMC comprised tomosynthesis
images containing asymmetric breast abnormalities and mass images. Following that, data
augmentation was applied to produce a selection of images based on a variety of datasets.
To optimize the model further, an enhanced CNN was developed to adjust the learning
rate. The results showed an accuracy of 88.00% in the classification of the abnormalities.

In [62], a convolutional neural network (CNN) architecture was proposed by Altan et al.
to classify mammograms into 2 classes, normal and cancerous. The contribution was based
on the observation that pruned CNN architectures can be used with a feature-based learning
process to classify mammograms. The best CNN model consisted of 18 layers and achieved
92.84% accuracy, 95.30% sensitivity and 96.72% specificity.

Varela et al. [63] proposed a system to detect malignant masses on mammograms
by applying an IRIS filter to segment suspicious regions. The database was selected from
patient files at hospitals of the health district of Santiago de Compostela (Spain). Af-
ter processing the mammograms, an adaptive threshold was applied to select and segment
potential lesions. A total of five types of features were extracted from the segmented
areas to distinguish between mass and false-positive (FP) detection. These images were
characterized based on the output of the IRIS filter, gray levels, texture, contour-related
and morphological features extracted from the images. Their IRIS filter was implemented
using a region of support with a circular ring having an inner radius of 2.5 mm and an
outer radius of 17.5 mm. A backpropagation neural network classifier was trained with a
combination of seven features to reduce the number of false positives. The free-response
receiver operating characteristic analysis was used to evaluate the performance of their
system in a complete independent test set. On the basis of lesion evaluation, a sensitivity of
88.00% was achieved at an approximate FP rate per image of 1 while a sensitivity of 94.00%
was achieved at 1.02 FP findings per image.

Using a variety of models, Salama et al. [64] proposed a new framework for breast
cancer image segmentation and classification. A modified U-Net model was used for
segmenting breast areas of 3 different databases, MIAS, DDSM and CBIS-DDSM. Further-
more, a number of models, including Inception-V3, DenseNet-121, ResNet-50, VGG-16 and
MobileNet-V2, were employed to classify the segmented MIAS, DDSM and CBIS-DDSM
databases as benign or malignant. Two different views, craniocaudal (CC) and mediolateral
oblique (MLO), were employed to improve the system performance. The best results
were achieved by using the Inception-V3 model on the DDSM dataset. It achieved 98.87%
accuracy, 0.98 area under the curve (AUC), and 98.98% sensitivity. Combining MLO and
CC views in the proposed framework was more efficient than using the MLO view alone.

Altameem et al. [65] developed an ensemble approach based on a Gompertz function
by building fuzzy rankings of the deep CNN techniques Inception-V4, ResNet-164, VGG-11,
and DenseNet121. This study employed four mammography datasets, including the Breast
Cancer Digital Repository (BCDR), Mini Mammographic Image Analysis Society (Mini-
MIAS), INbreast, and the Digital Database for Mammography Screening (DDSM), each
with 1145 normal, benign and malignant images. As a result of the proposed approach,
the suggested Inception-V4 ensemble model had an accuracy of 99.32%.

4.2. Thermography

Thermography is a type of breast cancer screening, also known as infrared imaging,
where an infrared camera is used to detect heat patterns within the body and to measure
blood flow [66]. It measures the temperature of a patient’s breast skin.



Curr. Oncol. 2022, 29 8780

Pramanik et al. [67] proposed a method for segmenting breast tissue based on a series
of three steps: background removal, inframammary fold detection and axilla detection.
Otsu’s thresholding and gray level reconstruction techniques were used to remove the
background of the image. Feature extraction was performed using multi-resolution analysis
on breast region, and these features were then sent to a feed-forward neural network-based
classifier to detect healthy and unhealthy breast tissue. In their proposed system, the results
showed an accuracy of 90.48%, sensitivity of 87.60% and specificity of 89.73%.

Torres-Galván et al. [68] evaluated deep neural networks using automated tech-
niques for breast thermogram classification. Seven deep learning architectures, AlexNet,
GoogLeNet, ResNet-50, ResNet-101, InceptionV3, VGG-16 and VGG-19, were used to
train 173 images. The best accuracy achieved was 91.18%, with a sensitivity of 100.00%
and specificity of 82.35% with a VGG-16 convolutional neural network. Despite false
positives, the results demonstrated the usefulness of deep neural networks for breast
cancer pre-screening.

Mohamed et al. [69] proposed an automatic segmentation method for detecting breast
cancer. The DMR-Database for Mastology Research-Visual Lab was used to evaluate the
proposed method. The U-Net network, shown in Figure 9, was used to extract and isolate
the breast regions from other areas of the body. Furthermore, a two-class CNN model was
trained from scratch to classify the thermal images into normal and abnormal breast tissues.
Using 1000 thermal images, the proposed system achieved an accuracy, sensitivity and
specificity of 99.33%, 100.00% and 98.67%, respectively. Figure 10 illustrates the architecture
of their proposed CNN model.

Figure 9. Architecture of the proposed U-Net network used in [70].

In [71], several convolutional neural network (CNN) models, such as ResNet-101,
DenseNet, MobileNet-V2 and ShuffleNet-V2, were used for breast cancer detection. Static
and dynamic DMR databases consisting of two classes, cancerous and healthy, were used for
training. As a result, DenseNet classified all the databases correctly. In the case of ResNet-
101 and MobileNet-V2, static datasets were correctly classified, whereas dynamic datasets
obtained an accuracy of 99.60%. Only a 98.00% accuracy was achieved by ShuffleNet-V2.

Mahoro et al. [72] proposed a breast cancer detection system based on the segmenta-
tion and classification of breast thermograms. A vision-based Transformer called TransUNet
was used to segment the breast region of interest. Each of four models, EfficientNet-B7,
ResNet-50, VGG-16, and DenseNet-201, was evaluated on its performance in classifying
segmented thermograms into healthy, sick, and unknown types. A total of 3989 breast
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thermograms from the DMR-Database for Mastology Research-Visual Lab was used. The
results obtained using the ResNet-50 model included an accuracy and sensitivity of 97.26%
and 97.26%, respectively.

Figure 10. Architecture of the proposed CNN model in [69].

Mishra et al. [73] used a deep convolutional neural network model to predict breast
cancer. The proposed network consisted of five groups of convolutional, batch normaliza-
tion, and rectified linear activation function (ReLU) layers and three max-pooling layers,
followed by one dropout layer, one fully connected layer, one softmax layer and one classifi-
cation layer. In this method, 680 thermal images were converted to grayscale, preprocessed,
segmented and classified. As a result, the accuracy achieved was 95.80%, while sensitivity
and specificity were 99.50% and 76.30%, respectively.

In [74], Ekici et al. suggested a new algorithm for feature extraction based on bio-data,
image analysis and image statistics. Five processes were employed in the proposed method,
namely data acquisition, image processing, segmentation, feature extraction, and classi-
fication. Breast segmentation was done using projection profile analysis. The segmented
images were classified as normal or suspected by using a convolutional neural network
(CNN) optimized by the Bayesian algorithm. The proposed network consisted of multiple
layers, including convolutional, max-pooling, and fully connected layers, engaging multi-
ple stages. Based on their proposed algorithm, which was implemented on 3895 thermal
images, they obtained an accuracy of 98.95%.

4.3. Ultrasonography

A form of breast cancer screening known as ultrasonography is an alternative method
for detecting breast cancer when mammography cannot be used [75]. It is useful when
there is no way to see through the tissues or when the patient is pregnant or under the age
of 25.

Becker et al. [76] tested a generic deep learning software (DLS) called ViDi Suite
Version 2.0 against human readers for breast cancer diagnosis. The software identified and
categorized anomalies in image data using deep learning algorithms. The breast ultrasound
dataset used consisted of 632 images, 82 of which were malignant lesions and 550 of which
were benign lesions. As for human interpretation, the training images were given to a
4th-year medical student and the validation images were presented to two radiologists
under the assumption that, similar to the software, the student would learn solely from
the images. A comparison between the performance of the DLS and human readers was
conducted. Compared to human readers, the DLS took less time to evaluate the dataset,
and its area under the curve (AUC) was 0.84.
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Qian et al. [77] proposed an ensemble deep learning system for the classification
of breast ultrasound images. A comparison with different models, including ResNet-18,
VGG19, ResNet-50 and Inception-v3, all of which were embedded with the SENet block,
was performed to identify the most effective base model for breast cancer prediction.
The proposed system was trained on 10,815 breast ultrasound images derived from 634 pa-
tient cases involving 721 lesions. The ResNet-18 model with the SENet backbone provided
better performance, and the results obtained for the area under the receiver operating curve
(AUC) was 0.95 for multimodal images compared to 0.92 for bimodal images.

Almajalid et al. [78] developed a breast ultrasound image segmentation framework
based on U-Net deep learning architecture. In order to improve the quality of images,
they applied preprocessing techniques to a database of 221 images. With the help of
the speckle-reducing anisotropic diffusion (SRAD) method, they reduced speckle noise
while preserving the image features and also used histogram equalization to increase
the contrast. Two-fold cross-validation was used to train and test the proposed model.
As a result, the dice coefficient was 0.82, and the similarity rate was 0.69. As a final step,
the segmentation result was post-processed to remove noisy regions.

Han et al. [79] proposed a GoogLeNet convolutionary neural network to identify
distinct types of lesions and nodules on breast ultrasound images. A total of 7408 images
of the breast were included in the dataset, of which 4254 were benign and 3154 were
malignant. Histogram equalization, image cropping and margin augmentation were used
in the proposed method. The optimal parameters were determined through ten-fold cross-
validation with the training data. As result, they found an accuracy of about 90.00%,
a sensitivity of 86.00%, and a specificity of 96.00%. With this method, radiologists can
differentiate malignant lesions more accurately and in a shorter period of time.

Yap et al. [80] investigated the performance of three deep learning methods, a patch-
based LeNet, a U-Net, and the transfer learning approach with a pretrained FCN-AlexNet,
for the detection of lesions in breast ultrasounds. Two conventional datasets named Dataset
A and Dataset B, having 306 and 163 images, respectively, were used. According to
the results, the transfer learning FCN-AlexNet method performed better than the other
two approaches with respect to the true-positive fraction (TFP), false positives per image
(FPs/image) and F-measure on two datasets. With the transfer learning FCN-AlexNet
model, they obtained a TPF of 0.98, FPs/image of 0.16, and an F-measure of 0.91 for Dataset
A and a TPF of 0.92, FPs/image of 0.17, and an F-measure of 0.89 for Dataset B.

Jabeen et al. [81] proposed a framework for classifying breast cancer based on ul-
trasound images. A pretrained deep model, DarkNet-53, was modified and trained on
augmented images. A new probability-based serial approach was used to fuse the best
features chosen using reformed differential evolution and reformed gray wolf for classifica-
tion based on machine learning algorithms. Using 780 images, the best accuracy obtained
was 99.10%. The structure of the modified DarkNet-53 deep model is shown in Figure 11.

Based on a convolutional neural network, Tanaka et al. [82] developed a computer-
aided diagnosis system for detecting malignant and benign masses in the breast using
ultrasonography. By generating heat maps, they indicated the regions of interest used by a
CNN for classification. The dataset contained 1536 images, of which 897 were malignant
and 639 were benign. To fine-tune the ensemble network based on balanced training
data, they combined two CNN models: VGG-19 and ResNet-152. The results showed a
sensitivity of 90.90%, specificity of 87.00% and an area under the curve (AUC) of 0.95.
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Figure 11. Structure of the modified DarkNet-53 deep model proposed in [81].

Ademola et al. [83] proposed a VEU-Net method consisting of the variant enhanced
(VE) block and the concatenated convolutions for segmentation. A total of two datasets,
containing, respectively, 264 and 830 breast ultrasound images, were used in combination
with three different methods: the Dice measure, the Jaccard measure and the Hausdroff
distance. Contrast-limited adaptive histogram equalization was applied to these images to
improve the low quality of images and reduce noise using the bilateral filter. Afterwards,
the preprocessed images were encoded using the VE block, and the concatenated convo-
lutions were used to generate the segmentation mask. Based on the results, the proposed
method achieved a high Dice measure for malignant images of 89.73% and for benign
images of 89.62%.

Huang et al. [84] proposed an automatic segmentation algorithm based on a fuzzy
fully convolutional network (FCN) and accurate fine-tuning post-processing. Contrast en-
hancement was applied to the image before wavelet features were used for image augmen-
tation. Breast anatomy layers were mapped to improve the performance. With 325 images,
the proposed system achieved a true-positive rate of 90.33%, a false-positive rate of 9.00%,
an intersection over union rate of 81.29% on the tumor category and an overall intersection
over union rate of 80.47% across the five categories: fat layer, mammary layer, muscle layer,
background, and tumor.

Hijab et al. [85] proposed a deep learning technique for classifying breast ultrasound
images into benign and malignant cases. Three approaches were used in the development
of the proposed model: a training from scratch approach, a transfer-learning approach
based on a pretrained VGG-16 CNN architecture and a fine-tuning approach. The dataset
used consisted of 1000 images in the training set and 300 images in the test set. The dataset
was augmented to overcome overfitting, and fine-tuning was applied along with the
bottleneck features of the VGG16 pretrained model to increase the accuracy. An accuracy
of 97.00% and an AUC of 0.98 were achieved by using the fine-tuned approach with a
pretrained VGG-16.

Kim et al. [86] developed a weakly supervised deep learning algorithm that diagnosed
breast cancer on ultrasound images without the image annotation. The DL algorithms were
implemented using three networks: VGG-16, ResNet-34 and GoogLeNet. A comparison
between manual and automatic ROI annotation with a fully supervised algorithm was
made. The class activation maps of the breast masses were used to determine the accuracy
of their localization using weakly supervised DL algorithms. The weakly supervised
DL algorithms achieved excellent diagnostic performances in internal validation sets,
with AUC values of 0.92–0.96 and in external validation sets, with AUC values of 0.86–0.90.
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All weakly-supervised algorithms, except for ResNet-34 (98.00%), detected malignant
masses with 100.00% accuracy on both the internal and external validation sets.

Podda et al. [86] developed a convolutional deep autoencoder model for segmentation
and radiomic extraction. In parallel with segmenting the breast lesions, radiomic features
are extracted. In this study, 780 ultrasound images were used to train the models, including
437 benign images, 210 malignant images, and 133 normal images. In total, 354 conventional
radiomics were extracted using a radiomic library, and its dimensionality decreased more
than 29 times to 12 imaging biomarkers by applying the spectral mapping algorithm.
A random forest model was trained, tuned, cross-validated, and tested to classify segmented
lesions into malignant and benign types. As result, they obtained 78.50% accuracy for a
maximum cross-validated model for a combination of radiomic groups.

4.4. Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) makes detailed pictures of the inside of the breast
using radio waves and powerful magnets [87]. In most cases, it is used to measure the size
of the cancer and detect other tumors in the breast.

Verburg et al. [88] proposed an automated triaging model based on 4581 breast
MRI examinations by eliminating most examinations without lesions while identifying
malignant lesions. In addition to discarding breasts with normal phenotypical variations,
the model was trained to triage lesions based on eight-fold internal-external validation.
Receiver operating characteristic analysis was employed to assess performance. When the
proposed model was at 100.00% sensitivity for malignant lesions, 90.70% of the MRI exams
with lesions were labeled as abnormal and directed to radiology review. As a result, 39.70%
of MRI exams without lesions were dismissed by the proposed model. When comparing
MRI examinations with and without lesions, the proposed model had an average AUC
of 0.83.

Yunan et al. [89] developed a fusion CNN model based on dynamic contrast-enhanced
MRI images to improve breast cancer diagnosis. The proposed network consisted of
two branches, a deep branch with a composite grayscale tumor ROI image, and a shallow
branch with seven analytical features as input. Among the 130 patients, 71 had malignant
tumors and 59 had benign tumors. Three types of evidence criteria were used to interpret
the CNN classification outcome: prediction probability, feature visualization and contribut-
ing dynamic scan time points. In a five-fold evaluation process, the proposed method
achieved an accuracy of 87.70%, a precision of 91.20%, a sensitivity of 86.10% and an AUC
of 0.91.

With the aim of improving breast MRI lesion classification specificity, Liu et al. [90]
presented a weakly supervised deep learning approach without pixel-level segmentation.
The proposed approach was based on the ResNet-101 architecture. In total, the dataset
contained 288,685 image slices from 438 patients. Rather than just evaluating the region
of interest (ROI) of the MRI image, their network evaluated the entire slice of the image
to increase its specificity. In contrast to the process of manually defining ROI boundaries,
the proposed approach reduced errors due to subjectivity. Using the proposed method,
breast MRI images were classified into malignant and benign and achieved an AUC of 0.92,
an accuracy of 94.20%, a sensitivity of 74.40% and a specificity of 95.30%.

Dalmış et al. [91] developed a computer-aided detection (CADe) system based on
the spatial information from early-phase MRI scans. Dynamic breast MRI protocol is used
in this system, comprising precontrast and registered postcontract images. The process
involved three steps: breast segmentation using U-Net architecture, candidate detection,
and candidate classification using a 3D CNN with two patches as input and one convo-
lutional, one max-pooling, and one dense layer for each input. The dataset consisted of
385 MRI scans, of which 161 are malignant lesions and 224 are benign lesions. As re-
sult, the proposed system obtained a significantly higher average sensitivity of 64.29%.
The proposed 3D CNN is shown in Figure 12.
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Figure 12. Architecture of the proposed CNN model in [91].

Using multiparametric magnetic resonance imaging, Hu et al. [92] developed a
computer-aided diagnosis method based on deep transfer learning. This dataset contained
MRI images of 927 unique lesions on 616 women. Dynamic contrast-enhanced (DCE)
and T2-weighted MRI sequences were both used in this study, and feature extraction was
performed using a pretrained convolutional neural network (CNN). The image fusion,
feature fusion and classifier fusion were used, and the dataset was classified into benign
or malignant using support-vector machine (SVM) classifiers. With the single-sequence
classifiers, the AUC of DCE was 0.85, and the AUC of T2w was 0.78, while the AUCs of the
multiparametric schemes were 0.85 for ImageFusion, 0.87 for FeatureFusion and 0.86 for
ClassifierFusion. The best result obtained was with the feature fusion method.

Herent et al. [93] developed a deep learning model with the ability to detect and
characterize lesions simultaneously. Using a single two-dimensional T1-weighted fat-
suppressed MRI image, they developed a lesion characterization model. A ResNet50
Neural Network was used to extract features from images, and those images were then
processed by the algorithm’s attention block that learned to detect anomalies in the images.
They also fed the images into a second branch that averaged features over the selected areas.
The features were then fitted to a logistic regression, which generated the output. A total
of 335 images representing 17 histological subtypes of breast lesions were included in the
dataset and grouped into 4 categories: mammary glands, benign lesions, invasive ductal
carcinoma and other malignant lesions. Using the test set, the proposed model obtained a
weighted mean AUC of 0.81.

Benjelloun et al. [94] proposed a deep learning approach for segmenting breast tumors
on dynamic contrast-enhanced MRI (DCE-MRI) imaging data. The architecture was based
on the U-Net fully convolutional neural network. A total of 86 DCE-MRIs from 43 adult
patients with local breast cancer were acquired before and after chemotherapy. Annotations
were performed manually in each breast tumor area to create ground-truth data. In total,
5452 slices were gathered from the DCE-MRIs for training and validation. Each breast slice
was detected and segmented by the trained model. A mean intersection over union (IoU)
of 76.14% was achieved by the proposed model.

Zhang et al. [95] proposed a method for breast segmentation using the U-Net archi-
tecture to quantify fibroglandular tissue volume in breast MRI. The segmentation was
performed on the precontrast T1-weighted images without fat suppression. MRI images of
286 patients were used as a training set and were segmented based on their contralateral
normal breasts. A template-based segmentation method was used to obtain the ground
truth for breast and fibroglandular tissue. The 10-fold cross-validation algorithm was used
to develop the final model. This resulted in a mean accuracy of 94.00% for breast tissue and
93.00% for fibroglandular tissue.
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Using MRI images, Yurttakal et al. [96] proposed a method based on a convolutional
neural network to classify lesions as malignant or benign. A multi-layer CNN architecture
with online data augmentation was designed with only pixel information. Six groups of
convolutional, batch normalization, rectified linear activation function (ReLU) layers and
five max-pooling layers were present in the proposed network, followed by one dropout
layer, one fully connected layer, and one softmax layer. Among the 200 tumorous regions
in the breast MRI dataset, there were 98 that were benign and 102 that were malignant.
The proposed method achieved an accuracy of 98.33%, a sensitivity of 100.00% and a
specificity of 96.88%.

Amit et al. [97] proposed a new way of representing dynamic contrast-enhanced
breast MRI lesions. Two different deep learning approaches were used to classify breast
MRI lesions automatically. A designated convolutional neural network (CNN) as well as a
pretrained VGG network were used to distinguish benign from malignant lesions. The pro-
posed CNN consisted of three consecutive blocks of convolution, pooling, and rectified
linear unit layers, followed by a fully connected layer and a softmax loss layer. In to-
tal, 123 female patients’ breast MRI exams were analyzed, consisting of 173 annotated
lesions and resulting in 891 malignant images and 365 benign images. Comparing the
proposed network to the pretrained model, the proposed network provided a higher level
of classification accuracy of 83% accuracy with an AUC of 0.91.

Table 3 shows the reviewed work on breast cancer detection using deep learning.

Table 3. Some of the state-of-the-art methods using breast cancer images. Acc: accuracy, Sn: sensitivity,
AUC: area under the curve, Dc: Dice coefficient, IoU: intersection over union and AUC-ff: AUCs of
the feature fusion.

Modality Ref. Dataset Methodology Architecture Results

Mammography

[58] INbreast Classification VGG-16 + ResNet-50 AUC = 0.95

[60] MIAS Detection
Nine-layer CNN and feature
extraction Acc = 98.30%

[64] DDSM Segmentation and classification U-Net and Inception-V3 Acc = 98.87%

[7]
CBIS-DDSM +
UPMC Segmentation and classification ResNet-50 Acc = 88.00%

[62] DDSM Classification Eighteen-layer CNN Acc = 92.84%

[63] 386 images Segmentation
IRIS filter and
adaptive threshold Sn = 94.00%

[65]
BCDR + DDSM
+ INbreast +
Mini-MIAS

Classification Fuzzy Ensemble Modeling
Techniques

Acc = 99.32%

Thermography

[68] 173 images Classification VGG-16 Acc = 91.18%

[69] 1000 images Segmentation and classification U-Net and pretrained CNN Acc = 99.33%

[72] 3989 images Segmentation and classification TransUNet + ResNet-50 Acc = 97.26%

[74] 3895 images Classification
CNN optimized by the
Bayesian algorithm Acc = 98.95%

[73] 680 images Classification Deep CNN Acc = 95.80%
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Table 3. Cont.

Modality Ref. Dataset Methodology Architecture Results

Ultrasound

[76] 632 images Classification
Generic deep learning soft-
ware (DLS) AUC = 0.84

[77] 10,815 images Classification
Multimodal deep learning
model AUC = 0.95

[78] 221 images Segmentation U-Net Dc = 0.82

[79] 7408 images Classification GoogLeNet Acc = 90.00%

[82] 1536 images Classification VGG-19 + ResNet-152 AUC = 0.95

[85] 1000 images Classification Pretrained VGG-16 Acc = 97.00%

[81] 780 images Classification Pretrained DarkNet-53 Acc = 99.10%

MRI

[94] 86 images Segmentation U-Net mean IoU = 76.14%

[90] 288,685 images Classification ResNet-101 Acc = 94.20%

[93] 335 images Detection Pretrained ResNet-50 mean AUC = 0.81

[89] 130 images Classification Sixteen-layer CNN Acc = 87.70%

[95] 286 images Segmentation U-Net Acc = 94.00%

[92] 927 images
Feature extraction and computer-
aided diagnosis method

Pretrained CNN and SVM
classifier AUC-ff = 0.87

[96] 200 images Classification Multi-layer CNN Acc = 98.33%

[91] 385 images Detection 3-D CNN Sn = 0.64

[97] 1256 images Classification Pretrained CNN Acc = 83.00%

5. Discussion

In this section, we will discuss the studies and challenges in the area of breast can-
cer research.

The use of deep learning in medical research has proven to be very effective in medical
image analysis. Despite this, the available breast cancer datasets are not balanced, which
can lead to inaccurate diagnosis. It is important to note that some informative datasets
are not publicly available or are not annotated, which results in a lack of information for
medical research. The consequences of misreading a medical imaging report can be severe.
The study in [98] explained the fact that the specificity of artificial intelligence (AI) systems
cannot completely replace an expert in radiology. However, there should be collaboration
between radiologists and computer vision experts. In order to increase the accuracy of
medical reports, research should focus on practical applications.

Our review explores the use of deep learning models to detect breast cancer with
four different screening methods. With each screening method, we observe different
databases have been made available for research and have been used to train the models.
The three most common deep learning tasks in the breast cancer research field are image
classification, object detection, and image segmentation. In order to obtain an efficient
result, several models were implemented by considering learning attributes, weights and
activations. Table 4 describes the best models and their results.
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Table 4. Comparison of performance metrics of the best models. Acc: Accuracy.

Ref. Modality Dataset Methodology Model Acc (%)

[69] Thermography 1000 images Segmentation and classification U-Net and pretrained CNN 99.33
[81] Ultrasound 780 images Classification Pretrained DarkNet-53 99.10
[74] Thermography 3895 images Classification CNN optimized by the Bayesian algorithm 98.95
[64] Mammography DDSM Segmentation and classification U-Net and Inception-V3 98.87
[96] MRI 200 images Classification Multi-layer CNN 98.33

As shown in Table 4, Mohamed et al. [69] achieved the highest level of accuracy of
99.33% by segmenting 1000 thermal images using the U-Net network and then classifying
them into normal and abnormal breast tissues using a pretrained CNN. In second place,
Jabeen et al. [81] achieved an accuracy of 99.10% by classifying breast cancer from 780 ultra-
sound images using the pretrained deep model DarkNet-53. In third place, an accuracy of
98.95% was obtained by Ekici et al. [74] by classifying the 3895 thermal images as normal
or suspected using a CNN optimized by the Bayesian algorithm. This was followed by an
accuracy of 98.87% achieved by Salama et al. [64], who used a modified U-Net model to seg-
ment breast areas and Inception-V3 to classify the segmented DDSM database into benign
or malignant categories. Lastly, an accuracy of 98.33% was achieved by Yurttakal et al. [96]
using a multi-layer CNN architecture to classify 200 MRI images as malignant or benign.

Overall, we can see that the best-performing models used architectures based on
segmenting the region of interest of the images and then classifying them. As the regions of
interest are extracted and isolated, the models are able to focus on that area during training.
Due to the fact that the models were tested on different datasets with varying preprocessing
and enhancement, it is not feasible to perform a direct comparison of the different models.
However, the analysis highlights important aspects of designing a suitable deep learning
architecture for detecting breast cancer.

6. Conclusions

In addition to being the most common and most harmful disease, breast cancer
detection presents a challenging issue. With the help of the AI tool, many applications
were able to detect breast cancer even if there was no obvious tumor visible to the human
eye. Several deep learning applications and techniques have been developed to assist
radiologists in diagnosing medical images. Mammography, thermography, ultrasound and
MRI are some of the screening approaches used to detect breast cancer at an early stage.
By using different databases with different screening methods, researchers were able to
train the models and improve the early detection of breast cancer in many ways.

However, there are still challenges to overcome, and more applications are needed to
improve the accuracy of breast cancer detection. One of the challenges is the lack of balance
in the available breast cancer datasets. Medical research can be constrained by the lack of
information from some informative datasets that are not publicly accessible or unannotated.
In order to improve accuracy, recent deep learning techniques such as Transformers can be
used, as they have demonstrated remarkable improvements in image classification, object
detection, and segmentation. In future work, a new computer-aided system based on such
techniques may be useful. For image classification, we can use the Vision Transformer (ViT)
model [99], a Transformer encoder model that can classify breast images as malignant or
benign. The detr-resnet-50 model [100], an encoder-decoder transformer with a ResNet-50
backbone that can help detect breast cancer. Segmentation techniques such as TrSeg [101],
a Transformer for semantic segmentation, can also be used to extract region of interest for
breast cancer. Even though deep learning is effective in analyzing medical images, there
are not enough balanced breast cancer datasets, which can lead to inaccurate diagnosis.
Increasing medical report accuracy requires access to some useful datasets, informative
review and a focus on practical applications. This review provides an overview of the
most recent research on integrating deep learning into medical imaging for breast cancer
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diagnosis, as well as some techniques that may be useful in guiding future research in
the field.

Author Contributions: These authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was enabled in part by support provided by the New Brunswick Health
Research Foundation (NBHRF), and by the Natural Sciences and Engineering Research Council of
Canada (NSERC), funding reference number RGPIN-2018-06233.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mayo Clinic. Breast Cancer. 2022. Available online: https://www.mayoclinic.org/diseases-conditions/breast-cancer/symptom

s-causes/syc-20352470 (accessed on 30 June 2022).
2. Breastcancer.org. Genetic. 2022. Available online: https://www.breastcancer.org/risk/risk-factors/genetics (accessed on 30

June 2022).
3. Futreal, P.A.; Liu, Q.; Shattuck-Eidens, D.; Cochran, C.; Harshman, K.; Tavtigian, S.; Bennett, L.M.; Haugen-Strano, A.; Swensen,

J.; Miki, Y.; et al. BRCA1 Mutations in Primary Breast and Ovarian Carcinomas. Science 1994, 266, 120–122. [CrossRef] [PubMed]
4. MedicineNet. Breast Cancer Prevention. 2022. Available online: https://www.medicinenet.com/breast_cancer_prevention/artic

le.htm (accessed on 30 June 2022).
5. American Cancer Society. Types of Breast Cancer. 2021. Available online: https://www.cancer.org/cancer/breast-cancer/about/

types-of-breast-cancer.html (accessed on 8 August 2022).
6. Weigelt, B.; Geyer, F.C.; Reis-Filho, J.S. Histological types of breast cancer: How special are they? Mol. Oncol. 2010, 4, 192–208.

[CrossRef] [PubMed]
7. Heenaye-Mamode Khan, M.; Boodoo-Jahangeer, N.; Dullull, W.; Nathire, S.; Gao, X.; Sinha, G.R.; Nagwanshi, K.K. Multi-class

classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN). PLoS ONE 2021, 16, e0256500.
[CrossRef] [PubMed]

8. Kalaf, J.M. Mammography: A history of success and scientific enthusiasm. Radiol. Bras. 2014, 47, VII–VIII. [CrossRef]
9. Dongola, N. Mammography in breast cancer. MedScape, 20 November 2020.
10. Mayo Clinic. Mammogram. 2022. Available online: https://www.mayoclinic.org/tests-procedures/mammogram/about/pac-

20384806 (accessed on 30 June 2022).
11. Holistic Breast Health. Comparison of Breast Screenings. 2022. Available online: https://holisticbreasthealth.com/good-breast

-health/compare-breast-screenings/ (accessed on 30 June 2022).
12. American Cancer Society. American Cancer Society Recommendations for the Early Detection of Breast Cancer. 2022. Available

online: https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recomm
endations-for-the-early-detection-of-breast-cancer.html (accessed on 8 August 2022).

13. Richards, M.; Westcombe, A.; Love, S.; Littlejohns, P.; Ramirez, A. Influence of delay on survival in patients with breast cancer: A
systematic review. Lancet 1999, 353, 1119–1126. [CrossRef]

14. Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: Review, opportunities and challenges. Brief.
Bioinform. 2018, 19, 1236–1246. [CrossRef]

15. Biswal, A. Top 10 Deep Learning Algorithms You Should Know in 2022. 2022. Available online: https://www.simplilearn.com/
tutorials/deep-learning-tutorial/deep-learning-algorithm (accessed on 8 August 2022).

16. Balkenende, L.; Teuwen, J.; Mann, R.M. Application of Deep Learning in Breast Cancer Imaging. Semin. Nucl. Med. 2022, 52,
584–596. [CrossRef]

17. Yu, X.; Zhou, Q.; Wang, S.; Zhang, Y.D. A systematic survey of deep learning in breast cancer. Int. J. Intell. Syst. 2022, 37, 152–216.
[CrossRef]

18. Rautela, K.; Kumar, D.; Kumar, V. A Systematic Review on Breast Cancer Detection Using Deep Learning Techniques. Arch.
Comput. Methods Eng. 2022, 29, 4599–4629. [CrossRef]

19. Grieve, P. Deep Learning vs. Machine Learning: What’s the Difference? 2020. Available online: https://www.zendesk.com/blog
/machine-learning-and-deep-learning (accessed on 8 August 2022).

20. MathWorks. What Is Deep Learning? Available online: https://www.mathworks.com/discovery/deep-learning.html (accessed
on 8 August 2022).

21. Bonner, A. The Complete Beginner’s Guide to Deep Learning: Convolutional Neural Networks and Image Classification. 2019.
Available online: https://towardsdatascience.com/wtf-is-image-classification-8e78a8235acb (accessed on 8 August 2022).

https://www.mayoclinic.org/diseases-conditions/breast-cancer/symptoms-causes/syc-20352470
https://www.mayoclinic.org/diseases-conditions/breast-cancer/symptoms-causes/syc-20352470
https://www.breastcancer.org/risk/risk-factors/genetics
http://doi.org/10.1126/science.7939630
http://www.ncbi.nlm.nih.gov/pubmed/7939630
https://www.medicinenet.com/breast_cancer_prevention/article.htm
https://www.medicinenet.com/breast_cancer_prevention/article.htm
https://www.cancer.org/cancer/breast-cancer/about/types-of-breast-cancer.html
https://www.cancer.org/cancer/breast-cancer/about/types-of-breast-cancer.html
http://dx.doi.org/10.1016/j.molonc.2010.04.004
http://www.ncbi.nlm.nih.gov/pubmed/20452298
http://dx.doi.org/10.1371/journal.pone.0256500
http://www.ncbi.nlm.nih.gov/pubmed/34437623
http://dx.doi.org/10.1590/0100-3984.2014.47.4e2
https://www.mayoclinic.org/tests-procedures/mammogram/about/pac-20384806
https://www.mayoclinic.org/tests-procedures/mammogram/about/pac-20384806
https://holisticbreasthealth.com/good-breast-health/compare-breast-screenings/
https://holisticbreasthealth.com/good-breast-health/compare-breast-screenings/
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html
http://dx.doi.org/10.1016/S0140-6736(99)02143-1
http://dx.doi.org/10.1093/bib/bbx044
https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm
https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm
http://dx.doi.org/10.1053/j.semnuclmed.2022.02.003
http://dx.doi.org/10.1002/int.22622
http://dx.doi.org/10.1007/s11831-022-09744-5
https://www.zendesk.com/blog/machine-learning-and-deep-learning
https://www.zendesk.com/blog/machine-learning-and-deep-learning
https://www.mathworks.com/discovery/deep-learning.html
https://towardsdatascience.com/wtf-is-image-classification-8e78a8235acb


Curr. Oncol. 2022, 29 8790

22. Brownlee, J. A Gentle Introduction to Object Recognition with Deep Learning. 2019. Available online: https://machinelearnin
gmastery.com/object-recognition-with-deep-learning/ (accessed on 8 August 2022).

23. Sharma, P. Computer Vision Tutorial: A Step-by-Step Introduction to Image Segmentation Techniques (Part 1). 2019. Available
online: https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-python/ (accessed on 8
August 2022).

24. Silva, L.; Saade, D.; Sequeiros, G.; Silva, A.; Paiva, A.; Bravo, R.; Conci, A. A new database for breast research with infrared image.
J. Med. Imaging Health Inform. 2014, 4, 92–100. [CrossRef]

25. Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [CrossRef]
[PubMed]

26. Wikipedia, The Free Encyclopedia. Layer (Deep Learning). 2021. Available online: https://en.wikipedia.org/wiki/Layer_(deep
_learning) (accessed on 9 August 2022).

27. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

28. Ranzato, M.; Huang, F.J.; Boureau, Y.L.; LeCun, Y. Unsupervised learning of invariant feature hierarchies with applications to
object recognition. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN,
USA, 17–22 June 2007; pp. 1–8.

29. Verma, Y. A Complete Understanding of Dense Layers in Neural Networks. 2021. Available online: https://analyticsindiamag.
com/a-complete-understanding-of-dense-layers-in-neural-networks/ (accessed on 9 August 2022).

30. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

31. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proc. Mach.
Learn. Res. 2015, 37, 448–456.

32. Rakhecha, A. Importance of Loss Function in Machine Learning. 2019. Available online: https://towardsdatascience.com/impor
tance-of-loss-function-in-machine-learning-eddaaec69519 (accessed on 9 August 2022).

33. Loss Functions. Available online: https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html#cross-entropy (accessed
on 9 August 2022).

34. Bai, J.; Posner, R.; Wang, T.; Yang, C.; Nabavi, S. Applying deep learning in digital breast tomosynthesis for automatic breast
cancer detection: A review. Med. Image Anal. 2021, 71, 102049. [CrossRef] [PubMed]

35. Dwiyantoro, A.P.J. Distance-IoU Loss: An Improvement of IoU-based Loss for Object Detection Bounding Box Regression. 2020.
Available online: https://medium.com/nodeflux/distance-iou-loss-an-improvement-of-iou-based-loss-for-object-detection-
bounding-box-regression-4cbdd23d8660 (accessed on 9 August 2022).

36. Khandelwal, R. Different IoU Losses for Faster and Accurate Object Detection. 2021. Available online: https://medium.com/ana
lytics-vidhya/different-iou-losses-for-faster-and-accurate-object-detection-3345781e0bf (accessed on 9 August 2022).

37. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13
December 2015; pp. 1440–1448.

38. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.

39. Espressius, D. 3 Common Loss Functions for Image Segmentation. 2022. Available online: https://dev.to/_aadidev/3-common
-loss-functions-for-image-segmentation-545o (accessed on 9 August 2022).

40. Hayder, Z.; He, X.; Salzmann, M. Boundary-aware instance segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5696–5704.

41. Kumar, R.; Indrayan, A. Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr. 2011, 48, 277–287.
[CrossRef]

42. Suckling, J.P. The mammographic image analysis society digital mammogram database. Digital Mammo 1994, 1069, 375–386.
43. Tangaro, S.; Bellotti, R.; De Carlo, F.; Gargano, G.; Lattanzio, E.; Monno, P.; Massafra, R.; Delogu, P.; Fantacci, M.E.; Retico, A.; et al.

MAGIC-5: An Italian mammographic database of digitised images for research. Radiol. Medica 2008, 113, 477–485. [CrossRef]
44. Matheus, B.R.N.; Schiabel, H. Online mammographic images database for development and comparison of CAD schemes. J.

Digit. Imaging 2011, 24, 500–506. [CrossRef]
45. Moreira, I.C.; Amaral, I.; Domingues, I.; Cardoso, A.; Cardoso, M.J.; Cardoso, J.S. Inbreast: Toward a full-field digital mammo-

graphic database. Acad. Radiol. 2012, 19, 236–248. [CrossRef]
46. PUB, M.H.; Bowyer, K.; Kopans, D.; Moore, R.; Kegelmeyer, P. The digital database for screening mammography. In Proceedings

of the Fifth International Workshop on Digital Mammography, Toronto, ON, Canada, 11–14 June 2000; pp. 212–218.
47. Lee, R.S.; Gimenez, F.; Hoogi, A.; Miyake, K.K.; Gorovoy, M.; Rubin, D.L. A curated mammography data set for use in

computer-aided detection and diagnosis research. Sci. Data 2017, 4, 1–9. [CrossRef] [PubMed]
48. Halling-Brown, M.D.; Warren, L.M.; Ward, D.; Lewis, E.; Mackenzie, A.; Wallis, M.G.; Wilkinson, L.S.; Given-Wilson, R.M.;

McAvinchey, R.; Young, K.C. OPTIMAM Mammography image database: A large-scale resource of mammography images and
clinical data. Radiol. Artif. Intell. 2020, 3, e200103. [CrossRef] [PubMed]

https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-python/
http://dx.doi.org/10.1166/jmihi.2014.1226
http://dx.doi.org/10.1016/j.dib.2019.104863
http://www.ncbi.nlm.nih.gov/pubmed/31867417
https://en.wikipedia.org/wiki/Layer_(deep_learning)
https://en.wikipedia.org/wiki/Layer_(deep_learning)
http://dx.doi.org/10.1109/5.726791
https://analyticsindiamag.com/a-complete-understanding-of-dense-layers-in-neural-networks/
https://analyticsindiamag.com/a-complete-understanding-of-dense-layers-in-neural-networks/
https://towardsdatascience.com/importance-of-loss-function-in-machine-learning-eddaaec69519
https://towardsdatascience.com/importance-of-loss-function-in-machine-learning-eddaaec69519
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html#cross-entropy
http://dx.doi.org/10.1016/j.media.2021.102049
http://www.ncbi.nlm.nih.gov/pubmed/33901993
https://medium.com/nodeflux/distance-iou-loss-an-improvement-of-iou-based-loss-for-object-detection-bounding-box-regression-4cbdd23d8660
https://medium.com/nodeflux/distance-iou-loss-an-improvement-of-iou-based-loss-for-object-detection-bounding-box-regression-4cbdd23d8660
https://medium.com/analytics-vidhya/different-iou-losses-for-faster-and-accurate-object-detection-3345781e0bf
https://medium.com/analytics-vidhya/different-iou-losses-for-faster-and-accurate-object-detection-3345781e0bf
https://dev.to/_aadidev/3-common-loss-functions-for-image-segmentation-545o
https://dev.to/_aadidev/3-common-loss-functions-for-image-segmentation-545o
http://dx.doi.org/10.1007/s13312-011-0055-4
http://dx.doi.org/10.1007/s11547-008-0282-5
http://dx.doi.org/10.1007/s10278-010-9297-2
http://dx.doi.org/10.1016/j.acra.2011.09.014
http://dx.doi.org/10.1038/sdata.2017.177
http://www.ncbi.nlm.nih.gov/pubmed/29257132
http://dx.doi.org/10.1148/ryai.2020200103
http://www.ncbi.nlm.nih.gov/pubmed/33937853


Curr. Oncol. 2022, 29 8791

49. Lopez, M.G.; Posada, N.; Moura, D.C.; Pollán, R.R.; Valiente, J.M.F.; Ortega, C.S.; Solar, M.; Diaz-Herrero, G.; Ramos, I.; Loureiro,
J.; et al. BCDR: A breast cancer digital repository. In Proceedings of the 15th International Conference on Experimental Mechanics,
Porto, Portugal, 22–27 July 2012; Volume 1215.

50. Rodrigues, P.S. Breast Ultrasound Image. Mendeley Data. 2017. Available online: https://data.mendeley.com/datasets/wmy84gz
ngw/1 (accessed on 8 May 2022).

51. Rasaee, H.; Rivaz, H. Explainable AI and susceptibility to adversarial attacks: A case study in classification of breast ultrasound
images. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021; pp. 1–4.

52. Acevedo, P.; Vazquez, M. Classification of tumors in breast echography using a SVM algorithm. In Proceedings of the 2019
International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 5–7 December
2019; pp. 686–689.

53. Zeebaree, D.Q.; Haron, H.; Abdulazeez, A.M.; Zebari, D.A. Machine learning and region growing for breast cancer segmentation.
In Proceedings of the 2019 International Conference on Advanced Science and Engineering (ICOASE), Duhok, Iraq, 2–4 April
2019; pp. 88–93.
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