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ABSTRACT

Survival of patients with metastatic CRC (mCRC) has 
improved steadily over the past several decades, due 
largely to the development of new combinations of 
standard chemotherapy, as well as to the introduction 
of new targeted therapies. Among the available target-
ed therapies are two monoclonal antibodies that target 
the epidermal growth factor receptor (EGFR) – cetux-
imab and panitumumab – which have demonstrated 
efficacy in the treatment of mCRC. These therapies 
are associated with a unique set of toxicities and 
costs, prompting the need for tools to select patients 
who are most likely to derive a benefit from them. 
Mutations in the KRAS oncogene have consistently 
been shown to predict non-response to cetuximab 
and panitumumab. The role of KRAS as a marker of 
efficacy of anti-EGFR therapies is reviewed.
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1.	 Introduction

Colorectal cancer (CRC) affects more than 21,000 
Canadians each year, and is the second leading 
cause of death from cancer among Canadian men 
and women1. Survival of patients with metastatic 
CRC (mCRC) has improved steadily over the past 
several decades, due largely to the development of 
new combinations of standard chemotherapy such as 
5-fluorouracil, irinotecan, and oxaliplatin, as well as 
to the introduction of new targeted therapies. Among 
the available targeted therapies are two monoclonal 
antibodies that target the epidermal growth factor 
receptor (EGFR) – cetuximab and panitumumab – 
which have clearly demonstrated efficacy in the 
treatment of mCRC. However, the introduction of 

these therapies has also introduced a unique set of 
toxicities and increased costs2, prompting the need 
for tools to select the patients who are most likely to 
benefit from these therapies.

There has recently been heightened interest in 
the relevance of several biomarkers for the selection 
of patients who will benefit from EGFR-targeted 
therapies for the treatment of CRC and other EGFR-
associated cancers. In particular, mutations in the 
KRAS oncogene have consistently been shown to 
predict nonresponse to cetuximab and panitumumab. 
This marker is of particular importance, given the 
prevalence of KRAS mutations among patients with 
CRC; up to half of patients with CRC are found to 
have the mutant version of the gene3-6.

1.1	  KRAS and the EGFR pathway

KRAS is a signal transducer downstream of tyrosine 
kinase receptors including EGFR – a complex sig-
naling cascade involved in the development and 
progression of cancer. The EGFR pathway is acti-
vated by the binding of the cell-surface EGFR/HER 
family receptors to their ligands, such as transforming 
growth factor alpha (TGF- α) and EGF. This leads to 
activation of genes that regulate cell cycle progres-
sion, tumor cell survival, metastases and angiogenesis 
(Fig. 1). Monoclonal antibodies against EGFR, such 
as cetuximab and panitumumab, block the receptor 
signaling and its downstream events, including those 
mediated by KRAS.

Upon stimulation of the EGFR, wild-type KRAS 
is active for a short period and the signaling activities 
to the downstream RAF/mitogen-activated protein 
kinase (MAPK)/extracellular signal-related kinase 
(ERK) pathway are tightly controlled. Mutated KRAS 
protein becomes constitutively activated, thereby 
making the cascade independent of upstream signal-
ing by tyrosine kinase receptors such as the EGFR. 
Therefore, blocking of EGFR with cetuximab or 
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panitumumab may not affect downstream events. 
Mutations within the KRAS gene resulting in constitu-
tive protein activity are found in approximately 30% 
to 50% of all CRCs3-6. 

1.2	 The role of KRAS and BRAF as markers of  
efficacy of the anti-EGFR therapy

1.2.1  KRAS
As reviewed by Fakih and Wong in this supplement, 
the efficacy of the anti-EGFR antibodies cetuximab 
and panitumumab in the treatment of mCRC has 
consistently been shown to rely on the KRAS status 
of the tumor (Tables 1 and 2). Post hoc analyses of 
both randomized and single-arm trials of cetuximab or 
panitumumab have demonstrated that these monoclo-
nal antibodies are only effective against tumors with 
wild-type KRAS, while patients with KRAS mutations 
in codon 12 or 13 do not derive any benefit from these 
treatments3,4,6-11.

The first study to provide conclusive data showing 
the relationship between KRAS status and the efficacy 
of the monoclonal anti-EGFR antibody panitumumab 
was Amado’s analysis of tumors from 427 mCRC pa-
tients who were randomly assigned to treatment with 
panitumumab or best supportive care (BSC)6. Treat-
ment response and improvement in progression-free 
survival (PFS) with panitumumab monotherapy were 
both limited to patients with wild-type KRAS. Of the 
84 panitumumab treated patients with KRAS muta-
tions, none responded to the treatment. In contrast, 21 

of 124 antibody-treated patients with wild-type KRAS 
tumors experienced a partial response. Among patients 
with wild-type KRAS, PFS was significantly improved 
with panitumumab compared with BSC alone (HR 
0.45; 95% CI 0.34–0.59; median PFS 12.3 weeks for 
panitumumab vs. 7.3 weeks for BSC), while no benefit 
was observed among those with mutant KRAS (HR 
0.99; 95% CI 0.73–1.36; median PFS of 7.4 weeks 
for panitumumab vs. 7.3 weeks for BSC). 

Similar results have been demonstrated with 
cetuximab. In a retrospective analysis of 540 muta-
tion assessable patients in the CRYSTAL (Cetuximab 
Combined with Irinotecan in First-Line Therapy for 
Metastatic Colorectal Cancer) trial, KRAS mutations 
were identified in 35.6%4. For patients with wild-type 
KRAS, the addition of cetuximab to folinic acid, fluo-
rouracil, and irinotecan (FOLFIRI) improved both PFS 
(9.9 vs. 8.7 months; HR 0.68; P=0.017) and response 
rate (59.3% vs. 43.2%; P=0.0025). In contrast, for pa-
tients with KRAS mutations, treatment with cetuximab 
did not significantly improve either PFS (7.6 vs. 8.1 
months; HR 1.07; P=0.47) or response rate (40.2% vs. 
36.2%; P=0.46) in comparison with FOLFIRI alone. In 
the OPUS (Oxaliplatin and Cetuximab for First-Line 
Treatment of Metastatic Colorectal Cancer) study, 
patients were treated with first-line infused fluorou-
racil, folinic acid, and oxaliplatin (FOLFOX) with or 
without cetuximab3. Response rate and PFS were both 
significantly improved in patients treated with cetux-
imab; however, these benefits were limited to those 
with wild-type KRAS tumors, and patients with mu-

figure 1  Left: the EGFR pathway; Right: inhibition of the EGFR pathway by the EGFR monoclonal antibodies
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Table I.	 Randomized clinical trial evidence on the relationship of KRAS mutation status to efficacy of anti-EGFR monoclonal antibodies 
in patients with metastatic colorectal cancer 

KRAS Wild-type KRAS Mutated

Study and Population Treatments by Arm Variable Antibody Arm Control Arm Antibody Arm Control Arm

van Cutsem et al, 20084; CRYSTAL 
trial of first-line therapy

FOLFIRI ± cetuximab n 172 176 105 87

RR (%) 59.3 43.2 36.2 40.2
95% CI 51.6–66.7 35.8–50.9 27.0–46.2 29.9–51.3

P 0.0025 0.46
Median PFS (mo) 9.9 8.7 7.6 8.1

HR 0.68 1.07
P 0.017 0.47

Bokemeyer et al, 200939; OPUS
trial of first-line therapy

FOLFOX - cetuximab n 61 73 52 47

RR (%) 60.7 37.0 32.7 48.9
95% CI 47.3–72.9 26.0–49.1 20.3–47.1 34.1–63.9

P 0.011 0.106
OR 2.54 0.51

95% CI 1.24–5.23 0.22–1.15
Median PFS (mo) 7.7 7.2 5.5 8.6

HR 0.57 1.83
P 0.016 0.0192

Punt et al, 200811; CAIRO2 trial of 
first-line therapy

(Capecitabine + oxaliplatin 
+ bevacizumab) ± 

cetuximab

n 153 152 93 103

Median PFS (mo) 10.5 10.7 8.6 12.5
P 0.10 0.43

Median OS (mo) 22.2 23.0 19.1 24.9
P 0.49 0.35

Amado et al, 20086; Chemotherapy-
refractory disease

Panitumumab v best 
supportive care

n 124 119 84 100

RR (%) 17 0 0 0
Median PFS 

(wks)
12.3 7.3 7.4 7.3

HR 0.45 0.99
95% CI 0.34–0.59 0.73–1.36

Karapetis et al, 20089; second- or 
subsequent-line therapy

Cetuximab v best 
supportive care

n 117 113 81 83

RR (%) 12.8 0 1.2 0
Median PFS (mo) 3.7 1.9 1.8 1.8

HR 0.40 0.99
95% CI 0.30–0.54 0.73–1.36

P <0.001 0.96
Median OS (mo) 9.5 4.8 4.5 4.6

P 0.01 (for interaction, KRAS mutation status and treatment arm)
OS at 1 yr (%) 28.3 20.1 13.2 19.6

HR (death) 0.55 0.98
95% CI 0.41–0.74 0.70–1.37

P <0.001 0.89

EGFR = Epidermal growth factor receptor; HR = hazard ratio; OR = odds ratio; PFS = progression-free survival; FOLFIRI = folinic acid, fluoroura-
cil, and irinotecan; FOLFOX = folinic acid, fluorouracil, and oxaliplatin; CRYSTAL = Cetuximab Combined With Irinotecan in First-Line Therapy 
for Metastatic Colorectal Cancer; OPUS = Oxaliplatin and Cetuximab in First-Line Treatment of mCRC; CAIRO2, Capecitabine, Irinotecan, and 
Oxaliplatin in Advanced Colorectal Cancer; RR = Risk reduction 
Adapted with permission: BlueCross BlueShield Association. Technology Evaluation Center. KRAS Mutations and Epidermal Growth Factor Receptor 
Inhibitor Therapy in Metastatic Colorectal Cancer TEC Assessments 2008; volume 23, tab 6. Copyright © 2008, BlueCross BlueShield Association.
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tated KRAS receiving cetuximab demonstrated poorer 
outcomes than those receiving FOLFOX alone.

The phase III CO.17 trial, conducted by the Na-
tional Cancer Institute of Canada Clinical Trials Group 
(NCIC CTG) in collaboration with the Australasian 
Gastro-Intestinal Trials Group (AGITG), examined the 
effect of cetuximab on survival among patients with 
advanced CRC in whom all chemotherapy had failed 

and for whom no other standard anticancer therapy 
was available12. Although cetuximab used alone in 
the third-line setting improved overall survival and 
PFS and preserved quality of life to a better degree 
than BSC alone, resistance to cetuximab was high, 
with more than half of the cetuximab-treated patients 
showing progression at the first assessment of disease 
response. With the accumulating evidence demonstrat-

Soulières et al.

Table II.  Single-arm studies of treatment of metastatic colorectal cancer with anti-EGFR monoclonal antibodies and KRAS mutational status

Study and Population Treatments by Arm Variable KRAS Wild-type KRAS Mutated

Lievre et al, 200810;  
second-line therapy Cetuximab n 65 24

RR 40 0
P 0.001

PFS, weeks 31.4 10.1
95% CI 19.4 to 36 8 to 16

P 0.0001
OS, months 14.3 10.1

95% CI 9.4 to 20 5.1 to 13
P 0.026

De Roock et al, 20088 Cetuximab alone v with irinotecan n 57 46
RR 41 0

P (cetuximab vs. 
irinotecan) 0.000001

P (cetuximab alone) 0.126
PFS cetuximab vs. 
irinotecan (weeks) 34 12

95% CI 28.5 to 40.0 5.4 to 18.7
P 0.016

PFS cetuximab (weeks) 12 12
95% CI 4.2 to 20.0 7.0 to 17.0

P 0.351
OS cetuximab . 

irinotecan (weeks) 44.7 27.3
95% CI 28.4 to 61.0 9.5 to 45.0

P 0.003
OS (weeks) 27 25.3

95% CI 8.9 to 45.1 0.0 to 70.0
P 0.33

Khambata-Ford et al, 20077
Cetuximab; second-or  

third-line treatment n 50 30
RR (%) 10 0

Di Fiore et al, 20077 Cetuximab plus chemotherapy n 43 16
RR (%) 28 0

Benvenuti et al, 200740 Panitumumab or cetuximab, or n 32 16
cetuximab plus chemotherapy RR (%) 31 6

EGFR = epidermal growth factor receptor; PFS = progression-free survival; OS = overall survival.
Adapted with permission: BlueCross BlueShield Association. Technology Evaluation Center. KRAS Mutations and Epidermal Growth Fac-
tor Receptor Inhibitor Therapy in Metastatic Colorectal Cancer TEC Assessments 2008; volume 23, tab 6. Copyright © 2008, BlueCross 
BlueShield Association.
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ing the ineffectiveness of anti-EGFR in patients with 
KRAS mutations, the study group undertook correlative 
analyses to determine whether the mutation status of 
the KRAS gene modified the effect of cetuximab on 
the overall survival (OS) and PFS in the CO.17 patient 
population9. A total of 394 tumor samples – 198 from 
the cetuximab group and 196 from the BSC group 
– were available for KRAS analysis, accounting for 
68.9% of the original study population. KRAS muta-
tions were detected in 40.9% and 42.3% of tumors from 
the cetuximab and BSC groups, respectively. Among 
patients with wild-type KRAS, median overall survival 
was significantly longer in the cetuximab group (9.5 
months) than in the BSC group (4.8 months), with 
one-year overall survival rates of 28.3% and 20.1%, 
respectively (HR 0.55, 95% CI 0.41–0.74, P<0.001). 
However, among patients with KRAS mutations, 
overall survival was not improved with cetuximab, 
with a median survival of 4.5 months vs. 4.6 months 
with BSC alone, and one-year overall survival rates 
of 13.2% and 19.6%, respectively (HR 0.98, 95% CI 
0.70–1.37, p=0.89). These results were instrumental 
in defining the indication for the monoclonal antibody 
EGFR inhibitors in North America. 

1.2.2  BRAF
In the absence of KRAS mutations, resistance to anti-
EGFR therapies may occur as a result of mutations in 
other signaling molecules in the RAS-RAF-MAPK 
pathway. Recent retrospective analyses of mCRC 
patients treated with cetuximab or panitumumab have 
shown that BRAF mutations, which are exclusive 
from KRAS mutations, occur in approximately14% of 
patients and are also associated with a lack of response 
to anti-EGFR therapy13,14. BRAF mutations have also 
been associated with significantly shorter PFS13,14 and 
overall survival13 in patients with mCRC.

2.	 METHODS for KRAS testing

2.1 	Guidelines for testing

In Canada, panitumumab is currently restricted to 
the treatment of EGFR-expressing mCRC with non-
mutated (wild-type) KRAS15, while KRAS status is not 
specified in the indication for cetuximab16. However, 
with the knowledge that patients with mCRC who har-
bour KRAS mutations do not derive any benefit from 
treatment with EGFR-targeting monoclonal antibodies 
in the first-, second-, or third-line settings, Cancer Care 
Ontario (CCO) recommends the two clinically avail-
able EGFR inhibitors, cetuximab and panitumumab, 
be used “for the treatment of patients with advanced 
CRC after failure of standard chemotherapy and 
whose tumors have tested negative for KRAS gene 
mutations”17. CCO has also recently approved the use 
of cetuximab in combination with irinotecan for the 
third-line treatment of mCRC only in the presence of 
tumors with the non-mutated KRAS oncogene.

The American Society of Clinical Oncology 
(ASCO) recently also released a provisional clinical 
opinion recommending that patients with mCRC who 
are candidates for treatment with cetuximab or panitu-
mumab undergo tumor testing for KRAS mutations in 
a CLIA-accredited laboratory18. The updated National 
Comprehensive Cancer Network (NCCN) clinical prac-
tice guidelines for colon cancer and rectal cancer also 
recommend testing for KRAS gene mutations, stipulating 
that only patients with wild-type KRAS genes should re-
ceive treatment with cetuximab or panitumumab19,20. 

However, BRAF testing is currently not a require-
ment for treatment with an EGFR inhibitor.

2.2	  How to test?

By screening patients with mCRC for KRAS tumor 
status prior to initiating treatment with an anti-EGFR 
monoclonal antibody, unnecessary toxicity and costs 
can be avoided for patients who are unlikely to re-
spond. However, there are logistical challenges in 
testing tumors from mCRC patients, as well as ques-
tions surrounding specimen selection, and selection 
of the appropriate assay. 

2.3	 Specimen selection

The most readily available clinical specimens for 
mutational analysis are typically formalin-fixed, par-
affin-embedded (FFPE) tissue blocks. Until recently, 
formalin-fixed samples were considered to be of low 
quality and yield for DNA testing21; however, improve-
ments in techniques have enhanced the ability to use 
DNA from FFPE tissue22. Because the fixation process 
damages DNA and can potentially introduce artificial 
mutations in conventional PCR processes, sufficient 
cellular material is necessary for analysis23. DNA 
from surrounding reactive cells, such as fibroblasts, 
leukocytes, or endothelial cells, can also potentially 
compete with mutant DNA in amplification reactions 
and introduce errors in testing. Tumor cell enrichment 
by micro- or macro-dissection or selective sampling 
of the paraffin block by needle core may increase the 
sensitivity of mutation testing, but care must be taken 
with these procedures to ensure that sufficient DNA 
is available for amplification22 and contamination of 
normal DNA with mutant DNA does not occur.

Based on current knowledge, the most appropriate 
specimens for KRAS mutation testing may be obtained 
from the primary tumor24. However, an estimated 20% 
of patients will present with metastatic disease and, 
therefore, lack tissues from the primary tumor24. In 
these patients, KRAS testing may be performed using 
material from the metastatic tumor24. Data comparing 
KRAS status in primary and metastatic tumors are lim-
ited and have had inconsistent results25-28. However, 
in a recent Italian study of 48 patients with mCRC, 
DNA sequencing revealed an overall concordance of 
KRAS mutational status between primary tumors and 

KRAS testing in treatment of colorectal cancer
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metastases in 92% of patients, suggesting that evalu-
ation of KRAS status can be performed in either the 
primary tumor or metastatic sites29.

2.4	 Assay selection

Several mutation detection procedures have been de-
scribed, all of which are based on the polymerase chain 

reaction (PCR) (Table 3)22. Generally, selection of the best 
technique for use is based on the sample size, desired level 
of sensitivity and DNA quality and quantity available.

2.5	 Direct sequencing of PCR products

Direct sequencing of PCR products detects all 
mutations in amplified DNA sequences, and this is 

Soulières et al.

Table III.  Methods for analyzing KRAS mutations22,41

Method Principle Sensitivity  
(MT/WT, %)

Turnaround Advantages Disadvantages

Direct sequencing Non-mutation-specific 
determination of 

test case nucleotide 
sequence and 

comparison with 
normal sequence

15-25 Slow (4 days to 
2 weeks from 

paraffin)

Gold standard

Detects all possible mutations

Poorly quantitative

Insensitive;  
Labour intensive

Open PCR system requires 
strict control to prevent 

contamination

RFLP Mutation presence 
induces or eliminates 
specific sites where 

DNA-targeting 
enzymes insert cuts in 

DNA

1 Slow (4 days to 
2 weeks from 

paraffin)

Requires no specialized 
equipment, inexpensive

Often requires confirmation 
by sequencing

Does not identify specific 
mutation

Non-quantitative

Allele-specific 
probe

Polymerase chain 
reaction/selective 

detection

10 Rapid (<2 days 
from paraffin)

Rapid turnaround Relatively low sensitivity

High resolution 
melting analysis, 
confirmed 
by direct 
sequencing

Sequences with 
mutations hybridize 

at different, fixed 
temperatures

5 Slow (4 days to 
2 weeks from 

paraffin)

Can screen for mutations 
prior to sequencing

Complicated  
Requires sequencing 

confirmation

Considerable manual input 
required

Amplification 
refractory 
mutation system 
(ARMS)

Mutation specific 
polymerase chain 
reaction/detection

1 Rapid (<2 days 
from paraffin)

High sensitivity

Rapid turnaround

Detects only single specific 
mutation per reaction

Requires specially 
engineered primer/probe

TheraScreen™ 
KRAS testing 
kit (DxS, 
Manchester, 
United 
Kingdom)

Combination of 
ARMS and real-time 

PCR technology

1-5% Rapid (2 days) High sensitivity

Rapid turnaround

Closed PCR system 
eliminates risk of 

contamination 

Available as a commercial kit

Detects only the most 
common mutations

Requires more tissue for 
analysis than other methods

Very Expensive

Pyrosequencing Detection and 
measurement of 
the amount of 
pyrophosphate 

released by DNA 
extension reaction

5-10 Rapid Precise and reproducible 
allele quantification

Allows sequencing of relatively 
small PCR products (useful for 

degraded DNA samples).

Short reading length for 
sequences used

Open PCR system requires 
strict control to prevent 

contamination

MT = Mutant; WT = Wild-type
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currently the most commonly used method for KRAS 
testing30. However, this method requires mutant cop-
ies to have a minimum concentration of 20% to 50% 
that of any accompanying wild-type sequences, and 
will therefore miss mutations that may be present 
at a lower level 21,31. Because of the low sensitivity 
and the expense of direct sequencing, more sensi-
tive and specific assays have been developed to 
assess KRAS in clinical samples, including methods 
that employ restriction fragmentation length poly-
morphism (RFLP), allele-specific oligonucleotide 
(ASO) hybridization, high resolution melting analy-
sis (HRMA), and amplification refractory mutation 
systems (ARMS).

2.6	 RFLP

Whereas gene sequencing compares the sequence 
of the sample gene with the normal sequence of 
the gene, nucleotide by nucleotide, RFLP methods 
detect differences between mutant and wild-type 
DNA by their susceptibility to digestion by restric-
tion enzymes. Restriction enzymes can be selected to 
recognize a defined sequence which is present only 
in the mutated or non-mutated DNA. Knowing what 
specific size the digested fragment should be in mu-
tated vs. non-mutated DNA allows one to identify if 
a mutation is present or not.  These amplified mutant 
copies can then be detected by gel or capillary elec-
trophoresis32. While highly sensitive, this method is 
also very complex, requiring tight control of PCR and 
digestion conditions to avoid replication errors and 
artificial mutations. Furthermore, when a mutation is 
detected by this methodology the specific nucleotide 
change cannot be identified.  If the specific mutation 
identity is required (this is not currently necessary for 
clinical utility), then direct sequencing can be used 
after mutation identification by RFLP.

2.7	  Allele-specific oligonucleotide hybridization 

Short segments of synthetically produced DNA (oli-
gonucleotides) can be used to detect mutations in a 
gene segment. The oligonucleotides are complemen-
tary to a corresponding segment of the gene under 
investigation, hybridizing completely with the wild-
type sequence or to one of the possible mutations. A 
single base mismatch caused by a mutation reduces 
the melting point temperature of the double-stranded 
hybrid33. The difference in melting points between 
matched and mismatched sequences can be used to 
detect single-base mismatches between wild-type and 
mutant sequences34.

Finding rare mutant alleles in a DNA mixture 
can be challenging however, particularly in samples 
containing high levels of normal alleles. Therefore, if a 
sample has a low tumor burden, this may not be the best 
approach. This technique is also expensive, requiring 
specialized equipment and software for analysis35.

2.8	  High resolution melting analysis

The presence of a mutation disrupts the affinity of two 
DNA chains, causing them to bind with less energy and 
become more easily separated by heat. High resolu-
tion melting analysis (HRMA) is performed following 
PCR, and measures differences in melting point tem-
peratures between matched and mismatched double 
stranded DNA, caused by polymorphisms or somatic 
mutations35. HRMA has a high sensitivity, and is also 
inexpensive and fast. However, because any DNA al-
teration can produce an abnormal melting point curve, 
abnormal curves need to be confirmed by sequencing, 
which increases turnaround time and expense, reduc-
ing HRMA’s advantage over direct sequencing alone. 
HRMA may therefore be useful for rapid screening; 
however the need for confirmation by sequencing may 
limit its utility in the clinical setting.

2.9	  Amplification refractory mutation system

The amplification refractory mutation system 
(ARMS) – also known as allele-specific PCR or 
PCR amplification of specific alleles – utilizes a 
PCR primer which is designed to discriminate among 
templates that differ by a single nucleotide residue. 
The ARMS primer can be designed to amplify a spe-
cific allele of a multi-allelic system while remaining 
refractory to amplification of another allele that may 
differ by as little as a single base. ARMS is able to 
detect directly the presence of KRAS mutations in 
heterogeneous specimens at a low allelic concentra-
tion (1%) without the need for confirmation by direct 
sequencing. A drawback of ARMS is that it is only 
able to detect known mutations; separate reactions 
are required for each mutation, thus requiring more 
DNA material. However, because the amplification 
step and the diagnostic steps are combined, this may 
prove to be a time-efficient and practical method for 
routine diagnosis of KRAS mutations22.

2.10	� Standardization of KRAS testing in  
colorectal cancer

Because of the potential for variability among the dif-
ferent testing methods, a thorough analytical valida-
tion of testing methods, together with a high standard 
of quality assurance are critical for accurate, reliable 
testing of KRAS mutations in clinical practice24. In 
Canada, Health Canada has approved the use of the 
TheraScreen K-RAS testing kit (DxS, Manchester, 
United Kingdom), which combines ARMS with a real 
time PCR technology. In the United States, there is 
currently no FDA-approved test for KRAS testing, and 
testing can be performed using laboratory-developed 
tests, provided that the laboratory is accredited by the 
College of American Pathologists (CAP) and the test 
has been appropriately validated.36 To date, one pub-
lished study has evaluated the concordance between 

KRAS testing in treatment of colorectal cancer
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different methods for KRAS mutation testing37. Four 
commercially available assays were used to assess 
seven common mutations of the KRAS gene in codons 
12 and 13 in 40 colorectal tumor samples, with direct 
sequencing used as a reference. Two of the allele-
specific PCR-based methods and one PCR/direct se-
quencing method demonstrated high to good agreement 
with direct sequencing, whereas an oligonucleotide 
hybridization method showed poor agreement. 

3.	 Results

The authors of the present article conducted a small 
study involving six Canadian laboratories to compare 
the accuracy and sensitivity of three methods of KRAS 
mutation analysis – the TheraScreen K-RAS test-
ing kit only (1 laboratory), the TheraScreen K-RAS 
testing kit in combination with direct sequencing (2 
laboratories), the TheraScreen K-RAS testing kit in 
combination with direct sequencing and RFLP (1 
laboratory), and RFLP plus sequencing (2 laborato-
ries). In the first phase of the study, 10 DNA samples 
were extracted from seven KRAS mutant (positive) 
cell lines containing approximately 50–100% mutant 
cells. In the second phase, dilutions were created from 
each of the seven positive cell lines (approximately 
10–40% mutant cells). To assess the ability of the 
laboratory to extract DNA from paraffin and the re-
sulting specificity, accuracy and sensitivity of KRAS 
mutation testing on such samples, 8–10 samples were 
extracted from paraffin blocks for the third phase of 
the study. For each phase, KRAS-negative cell lines 
were used for comparison.

All of the labs were able to detect KRAS muta-
tions in samples derived from cell lines containing 

50–100% mutant KRAS cells as well as from diluted 
cells lines containing 10–40% mutant KRAS cells. 
However, two of the labs experienced some difficulty 
interpreting two samples from the diluted cell lines 
when using sequencing methodology; this is probably 
due to the limits of sensitivity of sequencing. 

Concordant results were achieved with five of 
the eight samples extracted from paraffin blocks. 
Inconsistent results with RFLP plus sequencing were 
seen in one lab, which was later discovered to be due 
to a mix-up of the samples (Lab 5, samples 3 and 4, 
Table 4). Discordant results were reported for three 
of the eight samples. In sample four, results were 
not concordant as the sample had a low level KRAS 
mutation requiring a very sensitive assay, prompting 
the question of what the sensitivity cutoff of an assay 
should be. In sample six, two labs reported inconclu-
sive results using the TheraScreen test, suggesting 
that labs reporting inconclusive results with this test 
should reconsider their delta-Ct cutoff criteria, opti-
mize their assay, or use another method to verify the 
results. In sample eight, most of the labs had some 
difficulty in interpreting the mutation status due to the 
limited tumor area on the slides and a non-formalin 
based fixation method, resulting in low DNA yield 
and poor DNA quality. The labs that participated are 
all well-experienced in performing complex genetic 
analyses on various sample types. These results thus 
point to some of the challenges of KRAS testing in 
poor quality samples. 

4.	 CONCLUSIONS

In all clinical trials, anti-EGFR therapies have been 
consistently ineffective in mCRC patients with KRAS 

Soulières et al.

Table IV.  KRAS results of 8 mCRC tumor samples extracted from paraffin blocks: concordance among six testing laboratories

    Reference Lab (Lab1)

Sample ID DxS Sequencing FAM-labeled RFLP Lab 2 Lab 3 Lab 4 Lab 5 Lab 6

1 Gly12Asp Gly12Asp Codon 12 + √ √ √ √ √

2 Gly12Val Gly12Val Codon 12 + √ √ √ √ √

3 Wild Type Wild Type Wild Type √ √ √ RFLP:+
Seq: -

√

4 Gly12Asp?
∆ct 7.6

Wild Type Codon 12 +?
Low fluor

wt wt wt wt DxS 
Gly12Asp? 

Seq: wt

5 Gly13Asp Gly13Asp Not Done √ √ √ √ √

6 Wild Type Wild Type Wild Type √ DxS: ?
G13Asp

√ √ DxS: ?
Seq: wt

7 Gly12Asp Gly12Asp Codon 12 + √ √ √ √ √

8 Not Done Gly12Asp Codon 12 + √ Not  
determined

Need to  
repeat

RFLP: 12+
Seq: ?

No tumor
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mutations. Targeting these therapies based on KRAS 
status will not only spare patients ineffective and toxic 
therapies, but will also greatly reduce unnecessary 
costs. The economic implications of customizing 
anti-EGFR therapy based on KRAS status was re-
cently evaluated by Shakaran et al., using estimated 
incidence rates for new mCRC cases in the United 
States38. Based on an annual incidence of 29,762 
new cases of mCRC cases, the cost of upfront KRAS 
testing was calculated at $13 million ($452/patient). 
By treating only the estimated 64.4% of patients with 
wild-type KRAS, net savings were estimated to be 
$740 million in the U.S. Although cetuximab is used 
more commonly in the third-line setting where treat-
ment duration is shorter, targeting treatment based on 
KRAS status is likely to result in cost savings across 
all lines of therapy38.

Testing techniques need to be standardized and 
validated externally as well as internally. Cell line 
materials provided the most accurate results, while 
paraffin-embedded tissue may be somewhat more 
problematic, especially if suboptimal.

The role of the pathologist is very important 
in KRAS testing. The pathologist is responsible for 
choosing the most appropriate tissue block to be 
tested, evaluating the tumor content of the tissue 
block, and ensuring that it is adequate (tissue size, 
degree of tumor involvement) by assessing the H&E-
stained section of the tissue area and marking the 
area with adequate tumor density – preferably >70% 
carcinoma cells. Testing should be performed by an 
accredited and licensed testing lab that conforms to 
quality guidelines for KRAS testing24 and routinely 
participates in proficiency testing (e.g. the College of 
American Pathologists [CAP]). 

We propose an algorithmic approach to KRAS 
testing, where laboratory professionals (pathologists, 
geneticists) have access to multiple methods wher-
ever possible, especially when assessing suboptimal 
material. We have found that for small samples with 
degraded DNA, Sanger sequencing is often still the 
best method for mutation detection.

Regardless of the testing method used to deter-
mine KRAS status in patients with mCRC, the goal 
is for a sensitive and specific technique that has been 
standardized and validated externally and internally. 
As noted above, CAP currently has a proficiency 
challenge available for labs so they can assess their 
ability to test for KRAS mutations.

The anti-EGFR monoclonal antibody therapies are 
currently approved for the treatment of mCRC in the 
third-line setting. However, it may be several weeks 
before results of KRAS testing are obtained, which can 
be a long wait for a patient with advanced disease who 
requires treatment. Depending on the availability of 
funding, it would be optimal for KRAS testing to begin 
immediately following a diagnosis of metastatic dis-
ease; currently however, testing can only be undertaken 
when the Oncologist is considering third-line therapy.
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