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ABSTRACT

Since the early 1970s, a dramatic change has occurred
in the epidemiology of esophageal malignancy in
both North America and Europe: the incidence of
adenocarcinomas of the lower esophagus and
esophagogastric junction is increasing. Several
lifestyle factors are implicated in this change, includ-
ing gastroesophageal reflux disease (GERD). Primary
esophageal adenocarcinomas are thought to arise
from Barrett esophagus, an acquired condition in
which the normal esophageal squamous epithelium
is replaced by a specialized metaplastic columnar-
cell-lined epithelium.

Today, GERD is recognized as an important risk
factor in Barrett esophagus. Progression of Barrett
esophagus to invasive adenocarcinoma is reflected
histologically by the metaplasia–dysplasia–carcinoma
sequence. Although several molecular alterations
associated with progression of Barrett esophagus to
invasive adenocarcinoma have been identified, rela-
tively few will ultimately have clinical application.
Currently, the histologic finding of high-grade dys-
plasia remains the most reliable predictor of progres-
sion to invasive esophageal adenocarcinoma.
However other promising molecular biomarkers in-
clude aneuploidy; 17p loss of heterozygosity, which
implicates the TP53 tumour suppressor gene;
cyclin D1 protein overexpression; and p16 alterations.
It is anticipated that models incorporating combina-
tions of objective scores of sociodemographic and
lifestyle risk factors (that is, age, sex, body mass
index), severity of GERD, endoscopic and histologic
findings, and a panel of biomarkers will be devel-
oped to better identify patients with Barrett esopha-
gus at increased risk for malignant progression,
leading to more rational endoscopic surveillance and
screening programs.
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1. INTRODUCTION

Since the early 1970s, a dramatic change has occurred
in the epidemiology of esophageal malignancy in both
North America and Europe: the incidence of adeno-
carcinomas of the lower esophagus and esopha-
gogastric junction (EGJ) is increasing, with stability in
the incidence of squamous cell carcinoma 1–3. The rea-
sons for this change are unclear and controversial, but
several lifestyle factors have been proposed 4–7. Gas-
troesophageal reflux disease (GERD) has been demon-
strated to have a strong statistical association with risk
of esophageal adenocarcinoma and its premalignant
lesion, Barrett esophagus 8–10. Also, prevalence rates
for obesity in the general population have increased
markedly since the 1970s 11–13, and a number of case-
control studies support the role of obesity as a major
risk factor for esophageal adenocarcinoma 14–19. How-
ever, the precise biologic mechanisms underlying the
reported associations between body mass, GERD, and
esophageal adenocarcinoma have yet to be defined.
Although diet 11,16,20–22 and tobacco and alcohol con-
sumption 15,16,23,24 are well-established risk factors for
squamous cell carcinoma of the esophagus, their con-
tribution to the pathogenesis of esophageal adenocar-
cinoma remains unclear.

Primary esophageal adenocarcinomas are thought
to arise from Barrett esophagus, an acquired condi-
tion in which the normal esophageal squamous epi-
thelium is replaced by a specialized metaplastic
intestinal columnar-cell-lined epithelium 25,26. Al-
though the definition of Barrett esophagus (Barrett
epithelium, Barrett mucosa) has been somewhat vari-
able in the past, the American College of Gastroen-
terology currently defines Barrett esophagus as “a
change in the esophageal epithelium of any length
that can be recognized at endoscopy and is confirmed
to have intestinal metaplasia by biopsy” 27,28. Progres-
sion of Barrett esophagus to invasive adenocarcinoma
is reflected histologically by the metaplasia–dyspla-
sia–carcinoma sequence 29.

An established risk factor for Barrett esophagus
is GERD, and consequently, a plausible link exists be-
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tween GERD, Barrett esophagus, and esophageal ad-
enocarcinoma 30. The hypothesis is that GERD results
in acute mucosal injury (esophagitis), thereby pro-
moting cellular proliferation and inducing special-
ized columnar metaplasia of the normal squamous
epithelium lining the esophagus. Dysplasia is widely
regarded as the precursor of invasive cancer, and high-
grade dysplasia in Barrett epithelium is frequently
associated with esophageal adenocarcinoma. That
association underlies the rationale for endoscopic
surveillance programs: to detect malignancy at an
earlier and potentially curable stage. However, the
surveillance strategy remains controversial.

The recent identification of molecular markers
associated with the Barrett metaplasia–dysplasia–
carcinoma progression may have potential clinical
application to identify individuals with Barrett
esophagus who are at increased risk for progression
to invasive adenocarcinoma 29,31–33.

The present review focuses on the pathogenesis
of Barrett esophagus and esophageal adenocarci-
noma, with emphasis on selected molecular
biomarkers that may have future clinical application
to the management of this disease.

2. PATHOLOGY

2.1 Intestinal Metaplasia

The diagnosis of intestinal metaplasia is made histo-
logically and is characterized by the presence of gob-
let cells 34,35. Alcian blue may complement the
histologic diagnosis, because mucin produced by
goblet cells stains an intense blue colour. Less in-
tense staining is also seen with some reactive condi-
tions and should not be confused with specialized
intestinal metaplasia unless accompanied by the dis-
tinctive goblet cell morphology.

The definition of intestinal metaplasia (Barrett
esophagus) may be further categorized by endoscopic
measurement of the length of the columnar epithe-
lium. Classic “long-segment” Barrett esophagus re-
fers to specialized intestinal metaplasia extending
more than 3 cm above the anatomic EGJ 36,37; “short-
segment” Barrett esophagus is defined as intestinal
metaplasia within 3 cm of the EGJ 38,39. When no ob-
vious columnar epithelium is seen endoscopically,
microscopic foci of specialized intestinal metaplasia
may be identified at biopsy 40,41. This latter entity has
been called either “cardia intestinal metaplasia” or
“ultra-short segment” Barrett esophagus, and its sig-
nificance is extremely controversial 39.

From a practical standpoint, intestinal metapla-
sia of the esophagus and cardia cannot be accurately
differentiated on the basis of routine histology alone.
Recent immunohistochemical studies have reported
a potential role for cytokeratins 7 (CK7) and 20
(CK20) in differentiating the two 42. In esophageal
intestinal metaplasia, CK7 positivity is found in su-

perficial and deep glands, and CK20 positivity is lim-
ited to superficial glands (“Barrett CK 7/20 pattern”).
In cardia intestinal metaplasia, CK7 immunoreactiv-
ity is absent (or weak or patchy), but CK20 positiv-
ity is seen in both superficial and deep glands.
Although early reports suggest that CK 7/20
immunostaining patterns are highly sensitive and
specific, routine application of these immunohis-
tochemical techniques requires further critical evalu-
ation. Interpretation of CK immunoreactivity should
be applied in conjunction with current clinical, en-
doscopic, and histologic findings.

The reported prevalence of Barrett esophagus has
varied between populations, and most studies have
reported incidence and prevalence rates for the clas-
sic long-segment disease 43. However, several trends
are apparent, with male sex and increasing age being
associated with an increased prevalence of Barrett
esophagus 44,45. For patients who undergo endoscopy
for upper gastrointestinal symptoms (predominantly
reflux-related), current estimates suggest a prevalence
for Barrett esophagus of about 3%–8%; this com-
pares with a reported prevalence of about 1% in pa-
tients who undergo endoscopy for any clinical
indication 46–48. However, autopsy series suggest a
much higher prevalence (approximately 20 times
higher) in the general population 49. Currently, it is
unclear whether the prevalence of Barrett esophagus
is increasing 50,51, but preliminary data from the
United Kingdom (adjusted for increasing numbers
of endoscopic procedures) suggests a real increase
in prevalence 52. Other studies have reported a stable
prevalence for long-segment disease, suggesting that
the prevalence of short-segment Barrett esophagus
is what has increased—likely as a result of increased
awareness of the condition 53. Estimates of the preva-
lence of short-segment Barrett in unselected patients
currently range from 2% to 13%, and estimates for
cardia intestinal metaplasia of up to 35% are re-
ported 38,40,41,48,54.

2.2 Dysplasia

Dysplasia within a segment of Barrett esophagus can
be identified histologically based on phenotypic
nuclear alterations resulting from DNA abnormalities.
Such dysplasia is generally classified as indefinite,
low-grade, or high-grade 28,35,55. Low-grade and high-
grade dysplasia may be differentiated based on
nuclear localization in relation to the luminal surface
of the cell. Unfortunately, the histologic diagnosis of
dysplasia is largely subjective, and it is generally ac-
cepted that considerable intra- and inter-observer
variation occurs. Interpretation of dysplasia may be
further complicated when atypical epithelial cells,
arising from a background of active inflammation,
are present.

Although the natural history of dysplasia is not
known, it was recently reported that the presence of
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low-grade dysplasia in Barrett epithelia conferred an
increased risk of progression to malignancy 56. Cur-
rently, however, high-grade dysplasia (HGD) is re-
garded as the most reliable predictor for progression
to invasive cancer; HGD is frequently associated with
esophageal adenocarcinoma 41,55,57. Unfortunately,
the rate of progression of HGD to invasive adenocar-
cinoma is quite variable; reports have indicated that
most patients with HGD actually die from non-malig-
nant causes 58,59.

Relatively few studies have investigated the
prevalence of dysplasia within Barrett epithelia.
Based on careful pathologic examination of resected
esophageal adenocarcinomas, dysplastic change is
reported in a relatively high percentage of associated
Barrett epithelia 34,35,55,57. However, the prevalence
of dysplasia in patients with Barrett esophagus who
undergo endoscopy for any reason is estimated to be
below 10% 44,54,60,61.

2.3 Adenocarcinomas of the Esophagus and Cardia

The definition of primary esophageal adenocarcinoma
is controversial, especially when the tumour involves
the EGJ or cardia. The Siewert system is increasingly
being used to classify adenocarcinomas of the esopha-
gus and esophagogastric junction. This system is
based on an estimate of the tumour centre in relation
to the EGJ 62. Type I (esophageal adenocarcinomas)
arise 1 cm to 5 cm above the EGJ, and type II (cardia
adenocarcinomas) arise from the region 1 cm above
to 2 cm below the EGJ. Type III  (subcardia gastric ad-
enocarcinomas) arise 2 cm to 5 cm below the EGJ. One
disadvantage of the Siewert classification is that pre-
cise measurements may be difficult for large, ad-
vanced-stage tumours.

Since the mid-1990s, our group has used strict
clinicopathologic criteria to stratify primary esoph-
ageal adenocarcinomas (type I) from adenocarcino-
mas arising at the EGJ (type II) 63. Based on clinical,
endoscopic, radiologic, operative, and pathologic
findings, we have defined primary esophageal ad-
enocarcinomas as follows:

1. Presence of an associated Barrett epithelium
2. A tumour mass that involves more than 75% of

the tubular esophagus
3. Histologic evidence of direct invasion of peri-

esophageal tissues
4. Minimal gastric involvement
5. Clinical symptoms of esophageal obstruction

(that is, dysphagia)

The most important criterion for establishing a
diagnosis of a primary esophageal adenocarcinoma
is the presence of Barrett epithelium. However, be-
cause Barrett epithelium may not be identified in up
to 50% of surgically resected esophageal adenocar-
cinomas (likely as a consequence of tumour progres-

sion), criteria 2 to 5 should be met to establish a pri-
mary esophageal origin (as opposed to a cardia,
subcardia, or gastric origin).

The prevalence of esophageal adenocarcinoma
has recently been well studied and, as mentioned ear-
lier, has increased steadily since the mid-1970s. Cur-
rent estimates of the annual incidence of
adenocarcinoma of the esophagus and EGJ range from
0.74 to 1.34 per 100,000 population 43. Older series
suggested an annual risk of adenocarcinoma in Barrett
esophagus of 1%–2%, but more recent studies sug-
gest that the risk of adenocarcinoma is approximately
0.4% per person–year of follow-up in patients with
Barrett esophagus as compared with 0.07% per per-
son–year in patients without Barrett esophagus 64.

3. ENDOSCOPIC SURVEILLANCE AND
BARRETT ESOPHAGUS

The goal of any cancer surveillance program is the
detection of premalignant or early invasive disease
which, when treated, will ultimately result in im-
proved survival. For patients with Barrett esophagus,
endoscopic surveillance refers to esophagogas-
troscopy and biopsy performed at regular intervals
to detect HGD or cancer at an early and potentially
curable stage.

Table I summarizes the current guidelines for en-
doscopic surveillance from the American College of
Gastroenterology 65. Recommendations are based on
the highest grade of dysplasia identified by histol-
ogy at baseline and confirmed by two expert gas-
trointestinal pathologists. At each surveillance
interval, a standard protocol of four quadrant biop-
sies for every 2 cm length of Barrett epithelium (in
the absence of visible abnormalities) is currently
advised 28.

The efficacy and utility of Barrett surveillance
is controversial. Among the proposed disadvantages
are the difficulty of identifying early neoplastic le-
sions with current endoscopic techniques and the fre-
quency of sampling error 66. Furthermore, even
among expert histopathologists, substantial intra- and
inter-observer variability in grading dysplasia is seen,
making accurate diagnosis difficult. Surveillance en-
doscopy can be expensive and time-consuming, and
given the low absolute incidence of esophageal ad-
enocarcinoma among patients with Barrett esopha-
gus, the cost-effectiveness of such surveillance has
been questioned 67,68. Additionally, the ability of sur-
veillance to detect earlier cancers and to improve
outcome is unclear. Retrospective data suggest that
esophageal adenocarcinomas detected during a sur-
veillance program are more likely to have an earlier
stage and improved 2-year and 5-year survival as
compared with those detected in patients not involved
in a surveillance program 69–71.

It has been suggested that new strategies are re-
quired to improve the efficacy of surveillance for
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Barrett esophagus. Proposed methods of reducing
endoscopic variability and sampling error include the
use of chromoendoscopy, magnification endoscopy,
fluorescent endoscopy, or optical coherence tomog-
raphy 66. Other proposed approaches include the use
of alternative techniques for tissue sampling (such as
brush cytology or mucosal stripping), combined with
the evaluation of molecular markers to help identify
patients at high risk for progression to invasive esoph-
ageal adenocarcinoma.

3.1 Pathogenesis

Although the precise causes and natural history of
Barrett esophagus remain unknown, the condition is
generally accepted to be acquired as a result of GERD.
This theory is supported by a number of physiologic
abnormalities that have been identified in patients
with Barrett esophagus—among them, increased acid
exposure, a defective lower esophageal sphincter, and
impaired esophageal motility and clearance 37. Fur-
thermore, a role for the reflux of duodenal contents
in the pathogenesis of esophagitis and Barrett esopha-
gus has been proposed. Pure alkaline reflux is thought
to be rare, but it has been suggested that a mixed
refluxate consisting of acid, bile, lysolecithin, and
pancreatic enzymes may cause more esophageal
mucosal damage than acid alone 72,73. Bile acids are
thought to alter the ionic permeability of mucous
membranes, with back-diffusion of hydrogen ions and
resultant intracellular acidification 74.

The hypothesis is that GERD leads to acute mu-
cosal injury, promotes cellular proliferation, and in-
duces specialized intestinal metaplasia of the
esophagus. Studies have shown Barrett esophagus
to be hyperproliferative, reflected by an increased
S-phase fraction on flow cytometry 75 and by immu-
nohistologic detection of proliferating cell nuclear
antigen (PCNA) 76,77 and of a cell nuclear proliferation–
associated antigen (Ki67) 78. Specifically, PCNA

immunostaining is limited to the basal layer of meta-
plastic Barrett epithelia; in HGD, it extends to the more
superficial layers. Similar patterns of staining for Ki67
suggest a functional instability of Barrett mucosa.

To date, no genetic locus for familial GERD or
Barrett esophagus (or both) has been reported 79.
Associations have been reported between Barrett
esophagus and various intrinsic esophageal diseases
including scleroderma 80 and esophageal conditions
subsequent to gastrectomy 81, lye ingestion 82, and
myotomy for achalasia 83. Use of anticancer chemo-
therapy has also been associated with Barrett esopha-
gus 84. However, these diseases and conditions
frequently have associated abnormalities at the EGJ,
predisposing to GERD or to stasis.

Similarly, the causes and pathogenesis of car-
dia intestinal metaplasia are unknown. A number of
reports suggest that this entity may represent an early
manifestation of GERD (and hence be associated with
Barrett esophagus); others have found stronger as-
sociations with chronic gastritis, Helicobacter py-
lori  infection, gastric intestinal metaplasia, and
gastric malignancy 85–87. Of particular interest is the
association with H. pylori, because gastric infection
with S100A8-positive strains (formerly called
CAGA-positive strains) has been found to have an
inverse association with the development of esoph-
ageal adenocarcinoma 88. Currently, it has been sug-
gested that cardia intestinal metaplasia be considered
a separate entity until its causes, pathogenesis, and
association with malignancy are more clearly
defined.

3.2 Candidate Biomarkers for Esophageal (Barrett)
Adenocarcinoma

A number of molecular alterations have been reported
in Barrett esophagus, and these molecular alterations
are implicated in the molecular pathogenesis of esoph-
ageal adenocarcinoma 29,31–33. Figure 1 outlines the
accumulation of these molecular alterations in the
metaplasia–dysplasia–carcinoma sequence. Molecu-
lar “biomarkers” may have potential clinical appli-
cation in these areas:

• Molecular diagnosis for early detection of HGD

or invasive adenocarcinoma
• Prediction of risk for disease progression in

TABLE I American College of Gastroenterology guidelines for Barrett esophagus surveillance 65

Dysplasia Management Follow-up intervention

None Endoscopy and biopsy showing Barrett-related columnar metaplasia Endoscopy up to 3 years
Treat esophagitis, if present, until healed
Repeat endoscopy in 1–3 months and obtain four-quadrant biopsies

every 2 cm to establish baseline diagnosis
Low grade As above Endoscopy annually until no dysplasia

Repeat endoscopy with biopsy shows low-grade dysplasia
High grade As above Surgical resection

Repeat endoscopy with four-quadrant biopsies every 1 cm to exclude Endoscopy every 3 months (if medically high risk)
cancer and document high-grade dysplasia

Confirm with two expert pathologists Endoscopic mucosal resection or ablation
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endoscopic surveillance programs
• Staging and prognosis
• Prediction of chemosensitivity
• Intermediate biomarkers in chemoprevention

studies
• Novel targets for anticancer therapies

Only a limited number of molecular biomarkers
are anticipated to ultimately have clinical application.
The introduction of selected biomarkers into clinical
practice will require careful evaluation. To facilitate
the process of introducing advances in basic science
into clinical practice, the National Cancer Institute
(NCI) Early Detection Research Network (EDRN) has
developed five phases to validate novel biomarkers
used in the early detection of cancer (see Table II) 89.
Notably, however, not all biomarkers need to progress
sequentially through each of the phases before rec-
ommendations regarding their clinical application can
be made. Rather, the recommendations were devel-
oped as a conceptual framework to help coordinate
biomarker research.

To date, no phase 5 studies have been conducted
to evaluate potential biomarkers associated with
Barrett esophagus. By contrast, several biomarkers
have been identified and evaluated in phase 1 and 2

studies, and these markers have been reviewed in de-
tail elsewhere 29,31–33.

The discussion that follows therefore focuses on
the recent results of a limited number of phase 3 and
4 studies that have evaluated selected biomarkers with
potential clinical application in the management of
Barrett esophagus and esophageal adenocarcinoma.

3.2.1 Ploidy
Several studies have reported that aneuploidy (or
abnormal cell nuclear DNA content) in Barrett epithe-
lia is associated with risk of progression to malig-
nancy 75,90–93. Furthermore, these phase 1–3 studies
suggest that the prevalence of aneuploidy increases
with the degree of dysplasia, as determined by tissue
histology.

A recently published and ongoing phase 4 study,
which has used a well-established endoscopic biopsy
protocol to prospectively evaluate more than 300
patients for 15 years, has provided further convinc-
ing evidence for using flow cytometry to determine
tissue ploidy in Barrett epithelia 94–99.

In brief, patients with Barrett esophagus who had
no, indefinite, or low-grade dysplasia at baseline bi-
opsy and a diploid cell population by flow cytometry
(that is, no aneuploidy or increased 4N fraction)

FIGURE 1 Barrett metaplasia–dysplasia–carcinoma sequence. Histologically, the index case is at low risk for malignant progression, but the
accumulation of molecular alterations may confer an increased risk for progression to invasive esophageal adenocarcinoma. LGD = low-
grade dysplasia; HGD = high-grade dysplasia. (Reprinted with permission from Wiley–Liss, Inc., a subsidiary of John Wiley & Sons, Inc.)
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appeared to be at low risk for progression to adeno-
carcinoma 95. It was suggested that this group of pa-
tients could undergo endoscopic surveillance at
intervals of up to 5 years. Patients whose baseline
biopsies had aneuploidy, tetraploidy (4N), or HGD had
5-year cancer incidences of 43%, 56%, and 59% re-
spectively, prompting a recommendation for more
frequent surveillance for that group. Interestingly,
patients who showed no aneuploidy or tetraploidy
by flow cytometry, but who progressed to invasive
esophageal adenocarcinoma, all had HGD at baseline
biopsy 95. Subsequent analysis of study data has de-
termined specific ploidy variables that appear to be
even more highly predictive of cancer progression—
namely, aneuploid content greater than 2.7N, and a
4N fraction greater than 6% 97. For esophageal ad-
enocarcinoma, tumour ploidy has been reported to
be associated with advanced-stage disease, lymph
node metastasis, and reduced survival; but overall,
these findings have been inconsistent 98–100.

Flow cytometry has also been used to study cell-
cycle kinetics, including S-phase fraction, in esoph-
ageal pre-malignancy in a number of phase 1 and 2
studies 75,91,97,101. In the only substantive phase 4
study of Barrett esophagus performed to date, the
S-phase fraction was shown by univariate analysis
to be a predictor of cancer risk, but not a significant
independent risk factor in a multivariate model in-
corporating ploidy and dysplasia 97.

3.2.2 TP53 Tumour Suppressor Gene
The tumour suppressor gene TP53 is located on chro-
mosome 17p13 and encodes a 53-kDa polypeptide
(Tp53) that regulates cell cycle progression, DNA re-
pair, apoptosis, and neovascularization in both nor-
mal and malignant cells via highly complex DNA and
protein interactions 102,103. By inducing expression of
CDKN1A (also called P21, WAF1), which seques-
ters a number of cyclin-dependent kinases (CDKs),

Tp53 mediates both G1 and G2/M arrest. Point mu-
tations leading to loss of function of TP53 is a com-
mon mechanism of inactivation, and more than 90%
of TP53 mutations have been located in the conserved
DNA binding domain (exons 5–8). Through the 1990s,
TP53 was extensively characterized; it appears to
have a central role in human malignancy 104,105.

Mutations in the TP53 gene were initially reported
in primary esophageal adenocarcinomas and associ-
ated Barrett epithelium in 1991 106. These findings
were subsequently confirmed in several phase 1 and
2 studies, and the spectrum of TP53 alterations in
Barrett esophagus has been extensively character-
ized 107. The finding of TP53 mutations in non-dys-
plastic Barrett epithelia suggests that TP53 may be
altered early in the metaplasia–dysplasia–carcinoma
sequence, and it may therefore be a useful biomarker
in endoscopic surveillance programs.

In a 10-year prospective study of surgically
resected esophageal adenocarcinomas, TP53 muta-
tions were associated with poor tumour differentia-
tion and with reduced disease-free and overall
survival following surgical resection 108. Of particu-
lar biologic interest was the observation that patterns
of TP53 mutation in esophageal adenocarcinomas
were predominantly G:C to A:T transitions at CpG
dinucleotides, suggesting that TP53 mutations result
from endogenous mechanisms that likely involve
spontaneous deamination into thymine of the 5′-me-
thylated cytosine that frequently occurs at CpG di-
nucleotides. Because this mechanism is enhanced by
exposure to oxy-radicals and nitro-radicals, we hy-
pothesized that local overproduction of nitric oxide,
a consequence of chronic GERD, may enhance the rate
of formation of spontaneous TP53 mutations in
Barrett esophagus.

Although no phase 4 studies have evaluated TP53
mutations or protein overexpression in Barrett epi-
thelia as predictors of malignant progression, loss of

TABLE II Phases of biomarker development for early detection of cancer 89

Phase 1 Preclinical exploratory Single laboratory identifies a promising gene
Comparison of tumour and normal tissues
Selected tissue samples, often late stage
Limited outcomes/predictive value meaningless

Phase 2 Clinical assay and validation Phase 1 findings confirmed by other laboratories
Reproducibility and development of laboratory assays

Phase 3 Retrospective longitudinal Wider spectrum of tissues studies (tissue bank)
Biomarkers evaluated in premalignant disease (assessment of “lead time”)
Criteria for a positive screening test defined
Limited outcomes

Phase 4 Prospective screening Prospective assessments of outcomes: positive predictive tests
Feasibility for future controlled trials (phase 5)
Ethical issues

Phase 5 Cancer control Randomized trial of screening vs. “usual care”
Assessment of reduced cancer mortality by screening
Compliance, acceptability
Cost–benefit analysis
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heterozygosity (LOH) of 17p (inclusive of TP53) was
evaluated in one ongoing phase 4 study in conjunc-
tion with flow cytometry 96. The prevalence of 17p
LOH ranged from 6% in non-dysplastic Barrett epi-
thelia to 57% in HGD and was a significant indepen-
dent predictor of progression to esophageal
adenocarcinoma, with a relative risk of 16. In this
study of 325 patients with Barrett esophagus, only 6
of 26 patients who progressed to malignancy lacked
17p LOH. And 17p LOH was also associated with in-
creased risk for aneuploidy, tetraploidy, and HGD, with
relative risks of 7.5, 6.1, and 3.6 respectively.

3.2.3 Cyclin D1
Cyclin D1 is a key regulator of cell-cycle progression,
particularly at the transition from G1 to the S phase;
it is encoded by the CCND1 gene located on chromo-
some 11q13 109. Several phase 1 and 2 studies have
implicated cyclin D1 in esophageal malignancy, and
overexpression of cyclin D1 protein has been reported
in up to 64% of adenocarcinomas and associated
Barrett epithelia 110,111. Recently, a phase 3 case-con-
trol study reported that immunohistochemical
overexpression of cyclin D1 in patients with Barrett
esophagus was associated with an increased risk for
progression to esophageal adenocarcinoma 111.

As a result of a single base polymorphism
(G870A) of CCND1, alternative gene splicing is
thought to give rise to two functional tran-
scripts 112–114. The normal gene transcript (cyclin D1a)
interacts with, and activates the G1 CDKs 4 and 6
(CDK4/6); the resulting complex phosphorylates the
RB1 tumour suppressor gene, thereby resulting in cell-
cycle progression to S phase. The variant transcript
(cyclin D1b), a consequence of the polymorphic A-
allele, encodes a truncated protein isoform with an
altered C-terminal domain that has been implicated
in neoplastic transformation 113,114. A report from a
prospective case-control (phase 4) study said that
individuals with the CCND1 A/A genotype were at
increased risk for GERD, Barrett esophagus, and esoph-
ageal adenocarcinoma, supporting the hypothesis that
this polymorphism is an individual susceptibility fac-
tor in the molecular progression of esophageal ad-
enocarcinoma 115.

3.2.4 CDKN2A  Gene
The CDKN2A gene (formerly called p16INK4a), which
is localized to chromosome 9p21, encodes a protein,
P16, that belongs to a family of CDK inhibitors. The
P16 protein binds to and inhibits CDK4/6, resulting
in reduced phosphorylation of RB1 and inhibition of
cell-cycle progression through G1. An alternative
transcript (formerly called p14ARF) functions to se-
quester MDM2, thereby stabilizing the TP53 tumour
suppressor gene 116.

Alterations of CDKN2A are reported frequently
in various human malignancies, but mechanisms of
CDKN2A inactivation appear to vary between tumour

types. Point mutations in Barrett esophagus and
esophageal adenocarcinoma are relatively uncom-
mon, but 9p LOH and promoter hypermethylation ap-
pear to be frequent mechanisms of CDKN2A
inactivation 117,118. Although CDKN2A alterations
have been the subject of phase 1 and 2 studies only,
they are increasingly recognized as critical early mo-
lecular lesions associated with clonal proliferation
within Barrett epithelia 116.

4. SUMMARY

Despite advances in multimodality therapy, esoph-
ageal (Barrett) adenocarcinoma remains a highly le-
thal malignancy. To substantially improve outcomes
with this disease, future management strategies will
need to focus on prevention and early detection based
on an improved understanding of esophageal tumour
biology. Although several molecular alterations in
the progression of Barrett esophagus to invasive
esophageal adenocarcinoma have been identified,
relatively few will ultimately prove to have clinical
application. Currently, HGD remains the most reliable
predictor of progression to invasive esophageal ad-
enocarcinoma, but potentially promising biomarkers
include aneuploidy (DNA content greater than 2.7N,
or 4N fraction greater than 6%, or both) 95,97, 17p
LOH and TP53 mutations 96, cyclin D1 protein
overexpression 111, and CDKN2A alterations 116,118.
It is anticipated that models incorporating a combi-
nation of objective scores of sociodemographic and
lifestyle risk factors (that is, age, sex, body mass
index), severity of GERD, endoscopic and histologic
findings, and a panel of biomarkers will be devel-
oped to better identify patients with Barrett esopha-
gus at increased risk for malignant progression,
leading to more rational endoscopic surveillance and
screening programs.
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