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Abstract: Development of a nutritious, sustainable food source is essential to address worldwide
deficiencies in human micronutrients. Aquatic floating plants (e.g., species in the family Lemnaceae,
duckweeds) are uniquely suited for area-efficient productivity with exceptionally high rates of
growth and nutritional quality. Here, we provide an overview of the role of dietary micronutrients
(with a focus on carotenoids) in human health and the promise of Lemnaceae as sustainable crops.
We examine the effect of growth light environment on plant biomass production and levels of the
carotenoids zeaxanthin, lutein, and pro-vitamin A (β-carotene), as well as the antioxidant vitamin
E (α-tocopherol), and protein. Data on each of these nutrients are reported on a plant dry biomass
basis (as relevant for nutrition) as well as relative to the required input of light energy (as relevant to
resource-use efficiency).

Keywords: acclimation; carotenoids; duckweed; growth environment; human health; Lemnaceae;
inflammation; light-use efficiency; photosynthesis; productivity

1. Introduction

Access to nutritious food that is replete in essential human micronutrients (required
for vital functions but not synthesized de novo by humans) is urgently needed worldwide
to support basic human functioning and lower the risk of many diseases and disorders. To
this end, it is necessary to develop crops with superior nutritional traits. Edible floating
aquatic plants of the Lemnaceae family (water lens or duckweed) have attractive nutritional
traits as well as the potential to support sustainable agriculture in a changing climate.

Here, we present a further evaluation of duckweed nutritional quality by expressing
data on carotenoid and protein content (previously reported on frond area and chlorophyll
bases) on a biomass basis that is more relevant to human nutrition. We focus on plant
protein content as well as carotenoids with emphasis on the xanthophylls zeaxanthin and
lutein and their unique and diverse roles in human health. We, furthermore, characterized
the influence of growth light intensity on plant biomass accumulation and the content of
protein, vitamin E, and carotenoids (β-carotene, lutein, and zeaxanthin) in Lemna gibba.

Rather than expressing nutrient content on a reference basis of area growth, the present
study reports nutrient content per dry biomass produced, i.e., as the nutritional quality of
the biomass (proportion of biomass consisting of protein and key micronutrients) and as
biomass and nutrient production relative to how much light energy is required to support
this production (light use efficiency; LUE). The nutritional quality of leafy foods for humans
is best evaluated as nutrient content per portion size, i.e., on a biomass (weight) basis, rather
than on a chlorophyll or leaf area basis, because humans do not derive more nutrition
from a plant-based food when carotenoid-to-chlorophyll ratios are high simply because
chlorophyll levels are low. Additionally, we here express carotenoids and vitamin E in

Nutraceuticals 2022, 2, 350–364. https://doi.org/10.3390/nutraceuticals2040027 https://www.mdpi.com/journal/nutraceuticals

https://doi.org/10.3390/nutraceuticals2040027
https://doi.org/10.3390/nutraceuticals2040027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutraceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-7385-5072
https://orcid.org/0000-0002-0226-534X
https://orcid.org/0000-0001-8515-4540
https://orcid.org/0000-0002-3901-5790
https://orcid.org/0000-0001-5918-0921
https://doi.org/10.3390/nutraceuticals2040027
https://www.mdpi.com/journal/nutraceuticals
https://www.mdpi.com/article/10.3390/nutraceuticals2040027?type=check_update&version=1


Nutraceuticals 2022, 2 351

mg rather than (as previously reported for these data) on a molar basis because these
compounds are generally reported in mg in the nutrition literature. Furthermore, nutrient
content per biomass is compared for plants grown under constant low or high growth
light intensity (photon flux density; PFD) in environmentally controlled growth chambers
versus plants growing on a sun-exposed pond with natural diurnal changes in PFD.

Especially for food production with artificial light supply in urban agriculture [1,2]
or in spaceflight environments [3,4], the light energy required for nutrient production
is a critical factor for food production. Findings are used to discuss options to im-
prove nutritional quality through a combination of informed crop choice and suitable
growing conditions.

Particular attention is given to the carotenoid zeaxanthin in view of its unique roles
in supporting human health. Because plants quickly convert zeaxanthin to its precursor
violaxanthin upon removal from high light, zeaxanthin levels are reported separately for
tissue frozen immediately after harvesting and corresponding samples frozen after a 30-
minute recovery period in low light. The extent of nutritional decline post-harvest (with
respect to zeaxanthin level) is assessed through the comparison of zeaxanthin level at
harvest and after 30 min for a range of growth PFDs.

1.1. Dietary Carotenoids and Human Health

Urbanization and modernization were accompanied by world-wide changes in diet
and lifestyle, including a transition to overly energy-dense but nutrient-deficient foods [5,6].
Moreover, rising atmospheric CO2 levels threaten to further lower plant nutritional quality
with respect to protein and micronutrient levels [7,8]. The combination of a micronutrient-
deficient diet with a sedentary lifestyle and chronic psychological stress can lead to a
dysfunctional human immune system with uncontrolled system-wide inflammation and
poor immunity against infections [9,10]. Chronic, low-grade inflammation is a root cause for
cognitive dysfunctions [11] and mental disorders [12,13]. Uncontrolled system-wide inflam-
mation has also been linked to chronic diseases [14–16] as well as infectious diseases [17],
including increased risk for severe COVID-19 [18,19] and is associated with long COVID
(post-acute sequelae; [19–21]). Carotenoids and vitamin E (α-tocopherol) play key roles in
opposing chronic inflammation [22] as briefly reviewed below.

System-wide roles associated with membrane fatty acids: Lipid-soluble diet-derived
carotenoids and vitamin E become embedded in biological membranes throughout the
body and play a unique role in modulating membrane-derived immune regulators (for
recent reviews see [22,23]). Zeaxanthin, lutein, and β-carotene can inactivate, and thus
detoxify, reactive oxygen species (ROS) and oxidized membrane lipids [24,25], but vary
in how susceptible they are to themselves becoming involved in propagating dangerous
oxidation cascades [22]. To prevent such pro-oxidant effects, these membrane-associated
antioxidants must, furthermore, be recycled (for recent reviews see [4,22]) by water-soluble
dietary and endogenous antioxidant systems at the membrane surface. Zeaxanthin’s effect
in limiting oxidation cascades was improved when vitamins E and C were present [26,27]
(for a recent review see [22]). Conversely, zeaxanthin [26] as well as vitamin C [24,28]
improved vitamin E’s detoxifying effect [28–32].

Activity as gene regulators: Carotenoids regulate genes that function in the immune
response or in the control of energy balance. The β-carotene cleavage product vitamin
A serves as a regulator of key genes of the immune response [23] and impacts the func-
tion of multiple organs [28]. Similarly, cleavage products of lutein, zeaxanthin, and other
xanthophylls [33] can act as gene regulators [34–36]. Some carotenoids (including zeax-
anthin) and additional dietary nutraceuticals directly oppose obesity that is also a con-
tributing factor to chronic inflammation [37,38]. Specifically, zeaxanthin [39–41] and other
nutraceuticals [42] tune the controls of energy balance by triggering emergence of mito-
chondria in fat cells, enhancing fat burning, and increasing the fraction of energy released
as heat (thermogenesis).



Nutraceuticals 2022, 2 352

Specific to the human eye: The ocular carotenoids, or their derivatives such as the
β-carotene cleavage product pro-vitamin A, each have unique roles in the human eye.
Vitamin A is required as a component of the vision protein; the xanthophylls zeaxanthin
and lutein support visual acuity and reduce glare as well as protect against photodamage
by intense light. Whereas zeaxanthin is dominant in the central portions of the human eye
that receive the brightest light [23,43,44], lutein is dominant in the peripheral regions of the
retina responsible for low-light vision [45,46].

Modulation of other processes: Remarkably, zeaxanthin has an additional, indepen-
dent effect in lowering the risk for severe COVID-19 by inhibiting viral entry into human
cells. Zeaxanthin inhibits one of the two human proteases [47] that cleave the spike pro-
tein of SARS-CoV-2 and thereby greatly enhance its binding affinity to the human ACE2
receptor [48].

In summary, dietary antioxidants can be a double-edged sword. A mix of carotenoids,
vitamin E, and other dietary micronutrients is needed to combat chronic inflammation
and associated diseases effectively because the few dietary antioxidants that can protect
biological membranes can turn into damaging pro-oxidants in the absence of synergistically
acting water-soluble antioxidants. Such a mix is provided by a diet rich in whole plant-
based foods containing different classes of micronutrients [4,22,49].

Whereas leafy greens and other green plant foods contain lutein and β-carotene, such
foods typically have little to no zeaxanthin when they reach the human consumer [3,50].
This is because zeaxanthin is typically formed only when leaves are exposed to excess
light and accumulates at much lower levels in fast-growing terrestrial crops compared to
slow-growing evergreens with inedible leaves. Most diets are thus lacking in zeaxanthin
despite this carotenoid’s unique role in health and wellness [51,52]. Currently available
whole foods with high, stable levels of zeaxanthin include egg yolk, corn, and orange
pepper [49]. As shown here, duckweed may serve as an alternative, less-resource-intensive
food source with high levels of both lutein and zeaxanthin.

1.2. Floating Plants with Exceptional Nutritional Quality and Sustainable Production

Aquatic floating plants in the duckweed family Lemnaceae have long been used
as crops in Asia [53] and are receiving increasing interest as exceptionally nutritious
crops in other parts of the world [54]. Duckweeds are attractive because they exhibit an
unusual combination of multiple desirable features, including fast growth, high levels of
zeaxanthin [8,55] and synergistically acting antioxidant vitamins and phenolics [4], a high
protein content, a healthful fat composition [56–58], and a small environmental footprint.
We briefly elaborate on each of these points in the following paragraphs.

Antioxidant micronutrients: Duckweed is rich in α-tocopherol [56,57,59] and carotenoids,
with exceptionally high levels of zeaxanthin when grown in high light [8,55,59]. Duckweed
also shows a unique combination (not seen in land plants) of fast growth while still maintaining
high zeaxanthin levels [8,55,59]. In addition, duckweed contains high levels of phenolics [4,60].

Protein content: Duckweeds combine a beneficial amino-acid composition with all
essential amino acids required by humans [57,61]. The entire duckweed plant is edible [62]
and thus has a higher total protein production (e.g., up to 20× higher) per growing area
for a single layer of duckweed (that stores protein throughout the plant) [63] compared to
soybean plants (that store protein only in its seed) [64–67].

Fat composition: Duckweeds have a nutritionally favorable ratio of polyunsaturated
omega-6- and omega-3-fatty-acids that have immune-response-initiating and immune-
response-terminating effects, respectively [57,68–73].

Climate resilience and small environmental footprint: The high growth rates of duck-
weeds exhibit a lesser responsiveness to certain environmental conditions [8], including
elevated CO2 [8,74,75], than those of other species. Furthermore, these aquatic plants
exhibit a high nitrogen-use efficiency [76] and a particularly effective synthesis of amino
acids and protein [77–79]. Moreover, duckweeds are also particularly efficient at taking up



Nutraceuticals 2022, 2 353

inorganic nutrients from their growth medium, which is why they are useful in wastewater
recycling [64–67,80–82].

2. Materials and Methods
2.1. Plant Growth and Assessment of Nutrient Content

Data shown are for Lemna gibba L. 7741 (G3) from Rutgers Duckweed Stock Cooperative
(https://ruduckweed.org; accessed on 29 September 2022) grown in growth chambers
under continuous (24 h per day) light. Lemna minor L. growing on a local pond exposed to
natural full sunlight, and three terrestrial species (pumpkin [Cucurbita pepo L. cv. Autumn
Gold]; tomato [Solanum lycopersicum L. cv. Brandywine]; sunflower [Helianthus annuus
L. ANN 2199]) grown in growth chambers were used for comparison in one instance.
Original data were presented previously on a leaf or frond area basis and a chlorophyll
basis [55,59,83]. All conditions and procedures for duckweed growth, photosynthesis
measurements, and assays of human nutrients (protein, carotenoids, and α-tocopherol)
were thus as described in [55,59] and for the terrestrial species as described in [83]. Figure 1
shows images of L. gibba grown under 50, 500, and 1000 µmol photons m–2 s–1.
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Figure 1. Images of Lemna gibba fronds grown under light intensities of 50, 500, and 1000 µmol
photons m–2 s–1.

2.2. Light-Use Efficiency

Amounts of carotenoid, α-tocopherol, protein, and dry biomass produced per dish
were divided by number of photons received, over the course of an experiment, to calcu-
late light-use efficiency of production (in mg or g of product produced per mol photons
provided for plant growth) using [X] (average concentration [mg or g per m2 frond area]
of compound X under the growth PFD), FA0 and FAt (m2 of frond area per dish at the
beginning and end of the experiment, respectively), and γt (number of photons received by
plants over the course of the experiment; for details, see [55]):

Light − use efficiency of X production =
([X]× FAt)− ([X]× FA0)

γt
(1)

2.3. Statistical Analysis

Comparisons of multiple mean values under each growth PFD were made using one-
way analysis of variance (ANOVA) and post hoc Tukey–Kramer test for honestly significant
differences. Comparisons of two means were made with a Student’s t-test. Sample size
for experiments under 50, 200, and 1000 µmol photons m–2 s–1 was 3 or 4 dishes each, and
for experiments under 100, 500, and 700 µmol photons m–2 s–1 was 3 dishes each. Sample
size of growth-based metrics (e.g., LUE) for experiments under 50 µmol photons m–2 s–1

was 7 dishes since growth was characterized in two separate trials. All statistical tests were
conducted with JMP Pro 15 software (SAS Institute Inc., Cary, NC, USA), and data were

https://ruduckweed.org
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visualized with R software (https://www.r-project.org; accessed on 9 November 2022) and
ggplot2 package [84].

3. Results
3.1. The Impact of Reference Basis on the Assessment of Photosynthetic Performance

To address the impact of reference basis in revealing species-specific trends in the
acclimation to growth light environment, light- and CO2-saturated maximal photosyn-
thetic capacity per area (Figure 2A) and per biomass (Figure 2B) were assessed for fronds
of L. gibba in comparison with leaves of three terrestrial species (pumpkin, tomato, and
sunflower), all grown under either low (100 µmol photons m–2 s–1) or high (700 µmol
photons m–2 s–1 for L. gibba and 750 µmol photons m–2 s–1 for the three land plants) PFD.
For all species, biomass per area was significantly higher in plants grown under high versus
low PFD. In all three terrestrial species, but not in duckweed, maximal photosynthetic
capacity was significantly greater in plants growing under high versus low PFD (Figure 2A).
Consequently, maximal photosynthetic capacity expressed on a biomass basis was signif-
icantly lower in L. gibba in high versus low growth PFD but was either not significantly
different or slightly higher in the three terrestrial species (Figure 2B). The following figures
and results focus on the growth-PFD dependence of biomass production and nutritional
quality (relative to both biomass and photon input) of duckweed.

Nutraceuticals 2022, 2, FOR PEER REVIEW 5 
 

 

2.3. Statistical Analysis 

Comparisons of multiple mean values under each growth PFD were made using one-

way analysis of variance (ANOVA) and post hoc Tukey–Kramer test for honestly signifi-

cant differences. Comparisons of two means were made with a Student’s t-test. Sample 

size for experiments under 50, 200, and 1000 μmol photons m–2 s–1 was 3 or 4 dishes each, 

and for experiments under 100, 500, and 700 μmol photons m–2 s–1 was 3 dishes each. Sam-

ple size of growth-based metrics (e.g., LUE) for experiments under 50 μmol photons m–2 

s–1 was 7 dishes since growth was characterized in two separate trials. All statistical tests 

were conducted with JMP Pro 15 software (SAS Institute Inc., Cary, NC, USA), and data 

were visualized with R software (https://www.r-project.org; accessed on 9 November 

2022) and ggplot2 package [84]. 

3. Results 

3.1. The Impact of Reference Basis on the Assessment of Photosynthetic Performance 

To address the impact of reference basis in revealing species-specific trends in the 

acclimation to growth light environment, light- and CO2-saturated maximal photosyn-

thetic capacity per area (Figure 2A) and per biomass (Figure 2B) were assessed for fronds 

of L. gibba in comparison with leaves of three terrestrial species (pumpkin, tomato, and 

sunflower), all grown under either low (100 μmol photons m–2 s–1) or high (700 μmol pho-

tons m–2 s–1 for L. gibba and 750 μmol photons m–2 s–1 for the three land plants) PFD. For 

all species, biomass per area was significantly higher in plants grown under high versus 

low PFD. In all three terrestrial species, but not in duckweed, maximal photosynthetic 

capacity was significantly greater in plants growing under high versus low PFD (Figure 

2A). Consequently, maximal photosynthetic capacity expressed on a biomass basis was 

significantly lower in L. gibba in high versus low growth PFD but was either not signifi-

cantly different or slightly higher in the three terrestrial species (Figure 2B). The following 

figures and results focus on the growth-PFD dependence of biomass production and nu-

tritional quality (relative to both biomass and photon input) of duckweed.  

 

Figure 2. Light- and CO2-saturated photosynthetic capacity per area (A) as well as per biomass (B) 

for Lemna gibba (green), pumpkin (orange), tomato (red), and sunflower (blue) grown under low 

(dark-color columns) and high (light-color columns) PFD. Mean values ± standard errors; n = 3 for 

all species. Significant differences between PFD conditions are denoted by asterisks *** = p < 0.001; * 

= p < 0.05; n.s. = not significantly different. Based on recalculation of original data from [55,83]. 

3.2. Growth Rate, Dry Biomass per Area, and Light-Use Efficiency of Biomass Production as a 

Function of Growth PFD 

RGR was similar across the range of growth PFD, with a remarkably high RGR even 
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Figure 2. Light- and CO2-saturated photosynthetic capacity per area (A) as well as per biomass
(B) for Lemna gibba (green), pumpkin (orange), tomato (red), and sunflower (blue) grown under low
(dark-color columns) and high (light-color columns) PFD. Mean values ± standard errors; n = 3 for
all species. Significant differences between PFD conditions are denoted by asterisks *** = p < 0.001;
* = p < 0.05; n.s. = not significantly different. Based on recalculation of original data from [55,83].

3.2. Growth Rate, Dry Biomass per Area, and Light-Use Efficiency of Biomass Production as a
Function of Growth PFD

RGR was similar across the range of growth PFD, with a remarkably high RGR even
at the lowest growth PFD (Figure 3A). Whereas dry biomass per area doubled between
the lowest and the highest growth PFD (Figure 3B), dry biomass production per mol
photons received (LUE) of frond dry biomass production exhibited a precipitous decline
with increasing growth PFD—by a factor of 20 from lowest to highest intensity (Figure 3C).

https://www.r-project.org
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Figure 3. Relative growth rate, RGR (A), ratio of dry biomass per frond area (B), and light-use
efficiency (LUE) of dry biomass production (C) for Lemna gibba grown under a range of seven growth
PFDs. Symbol colors from dark green to yellow correspond to frond color under the respective growth
PFDs from 50 to 1000 µmol photons m–2 s–1 (see Figure 1). Mean values ± standard deviations; n = 3
for all growth PFDs except for the lowest growth PFD (50 µmol photons m–2 s–1; n = 7). Different
lower-case letters represent significant differences at p < 0.05. Data on RGR from [55,59].

3.3. Lutein, β-Carotene, and α-Tocopherol Production on a Dry Biomass Basis and per Photons
Received as a Function of Growth PFD

Production of the carotenoids lutein and β-carotene (pro-vitamin A) as well as α-
tocopherol (vitamin E) was expressed relative to frond biomass and as nutrient production
relative to the amount of light energy used. Lutein (Figure 4A), β-carotene (Figure 4B),
and α-tocopherol (Figure 4C) concentration per frond dry biomass and per mol photons
received (Figure 4D–F, respectively) were maximal at the lowest growth PFD of 50 µmol
photons m–2 s–1 and decreased as growth PFD increased.
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Figure 4. Production of lutein (A), β-carotene (B), and α-tocopherol (C) per dry biomass, and light-use
efficiency (LUE) of lutein (D), β-carotene (E), and α-tocopherol (F) production for fronds grown under
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3.4. Zeaxanthin Production on a Dry Biomass Basis and per Photons Received as a Function of
Growth PFD

As expected, zeaxanthin production (Figure 5) exhibited a different response to growth
PFD than lutein, β-carotene, or α-tocopherol production (Figure 4). For both samples frozen
immediately upon harvest (Figure 5; solid lines) and corresponding samples subjected to a
30 min recovery period in low light at room temperature before freezing (Figure 5; dashed
lines), zeaxanthin per plant dry biomass increased near-linearly with increasing growth
PFD (Figure 5A). After recovery, zeaxanthin concentration per dry biomass was 0.08 mg g–1

lower than immediately after harvest for the highest growth PFD.
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Figure 5. Zeaxanthin production per dry biomass (A) as well as light-use efficiency of zeaxanthin
production (B) immediately upon removal from growth conditions (without recovery; solid lines)
or with a 30 min recovery period in low light (dashed lines). Symbol shades from green to yellow
correspond to frond color under the respective growth PFDs (see Figure 1). Mean values ± standard
deviations, n = 3 for all growth PFDs except for the lowest growth PFD (n = 4 or 7 for 50 µmol
photons m–2 s–1). Different lower-case letters represent significant differences at p < 0.05. Based on
recalculation of original data for zeaxanthin content at harvest from [55,59] with additional data for
zeaxanthin content 30 min post-harvest.

The growth-PFD dependency of LUE of zeaxanthin production was also affected
by recovery. LUE of zeaxanthin content as assessed immediately after harvest increased
quickly with increasing growth PFD, peaked at 500 µmol photons m–2 s–1, and then declined
somewhat as growth PFD increased further, resulting in an arc-shaped response (Figure 5B;
solid line). On the other hand, LUE of zeaxanthin content as assessed after recovery
increased more steadily and formed a plateau at the higher growth PFDs (Figure 5B;
dashed line). As was the case for zeaxanthin concentration on a dry biomass basis, LUE of
zeaxanthin production was lower at each respective growth PFD after the recovery period
compared to immediately after harvest.

3.5. Variations in Carotenoids and Vitamin E Dynamics

We include here a comparison of the pigment composition of L. gibba exposed to con-
tinuous light with L. minor fronds growing in a sun-exposed pond with naturally increasing
(peak PFD of 1600 µmol m−2 s−1 at midday) and decreasing PFD. Sun-grown L. minor
maintained higher concentrations of lutein, β-carotene, and α-tocopherol, but had lower
concentrations of zeaxanthin at midday compared to L. gibba fronds grown under controlled
conditions with continuous high PFD (1000 µmol photons m−2 s−1; Table 1). At the same
time, the L. gibba plants grown under continuous low PFD (50 µmol photons m−2 s−1) had
higher levels of lutein and β-carotene than either L. gibba grown under high continuous
PFD under controlled conditions or L. minor grown in full sun outdoors (Table 1). The
two compounds that exhibited prominence under high light were zeaxanthin (produced
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exclusively under either continuous high PFD or in sun-exposed leaves) and α-tocopherol
(produced at a particularly high ratio relative to carotenoids in sun-exposed leaves).

Table 1. Individual compounds (given as concentrations in mg g−1 dry mass) and their ratios (given
in g g−1) in fronds of L. gibba grown under PFDs of 50 and 1000 µmol photons m−2 s−1 (continuous
light 24 h per day) under controlled conditions or L. minor growing in a natural setting (sun-exposed)
in Superior, CO, USA. Based on recalculation of original data from [59].

Compound(s) 50 µmol m–2 s–1 1000 µmol m–2 s–1 Sun-Exposed

Zeaxanthin 0.02 ± 0.01 c 0.48 ± 0.03 a 0.34 ± 0.04 b

Lutein 1.25 ± 0.05 a 0.36 ± 0.00 c 0.84 ± 0.03 b

β-carotene 0.54 ± 0.06 a 0.12 ± 0.01 c 0.29 ± 0.03 b

α-tocopherol 0.10 ± 0.02 a 0.05 ± 0.01 b 0.14 ± 0.02 a

Xanthophylls 2.39 ± 0.07 a 1.18 ± 0.01 c 1.62 ± 0.07 b

Carotenoids 2.92 ± 0.05 a 1.31 ± 0.02 c 1.91 ± 0.04 b

Xanthophylls/β-carotene 4.58 ± 0.55 b 9.61 ± 0.53 a 5.57 ± 0.79 b

Zeaxanthin/Lutein 0.01 ± 0.01 c 1.35 ± 0.05 a 0.40 ± 0.03 b

(V + A + Z)/Lutein 0.59 ± 0.02 c 2.15 ± 0.02 a 0.64 ± 0.02 b

α-tocopherol/Carotenoids 0.04 ± 0.01 b 0.04 ± 0.01 b 0.07 ± 0.01 a

Mean values ± standard deviations, n = 3 or 4. Significant differences (p < 0.05) between growth conditions are
denoted by different superscript lowercase letters. A, antheraxanthin; V, violaxanthin; Z, zeaxanthin.

3.6. Protein Production on a Dry Biomass Basis and per Photons Received as a Function of
Growth PFD

Protein content per dry biomass (Figure 6A) and per mol photons (Figure 6B) were
highest at the lowest growth PFD and lower at higher growth PFDs under controlled
growth conditions with continuous light.
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Figure 6. Protein production per dry biomass (A) as well as light-use efficiency (LUE) of protein
production (B) for Lemna gibba grown under three growth PFDs. Symbol colors from green to yellow
correspond to frond color under the respective growth PFDs (see Figure 1). Mean values ± standard
deviations; n = 4 for (A) and n = 3 (200 and 1000 µmol photons m–2 s–1) or 7 (50 µmol photons m–2 s–1)
for (B). Different lower-case letters represent significant differences at p < 0.05. Based on recalculation
of original data from [59] with additional data for 200 µmol photons m–2 s–1.

4. Discussion and Recommendations

Plant growth environment affects multiple aspects of plant form and function [85–87]
and can thus potentially be used to produce desired outcomes with respect to specific
individual crop traits. The finding that duckweed featured a remarkably high maximal
photosynthetic capacity, as well as a remarkably high relative growth rate, even when
grown in a low-light environment may, in part, be explained by the fact that duckweed
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fronds are thin and non-overlapping. Chloroplasts in these fronds thus likely experience a
minimal level of self-shading and contribute to photosynthetic productivity to a greater
degree than chloroplasts in leaves of terrestrial plants with multiple palisade layers and
a high degree of self-shading that can be exacerbated in tiered plant canopies. Further
discussion of the photosynthetic performance and relative growth rate of L. gibba grown
under low PFD is presented in the context of protein content. The following sections focus
on the nutritional quality of duckweed fronds on a biomass basis (as well as relative to
light-energy input) as the most relevant reference bases from the standpoint for nutrient
production for the human consumer.

Duckweeds, such as L. gibba, stand out for combining exceptional protein and mi-
cronutrient content, a low negative environmental impact, and climate resilience (for recent
reviews, see [7,8,57,88]). Plant growth rate expressed as area expansion rate is—as typically
observed for Lemnaceae [89,90]—very high and was, furthermore, remarkably independent
of growth PFDs over a wide range from 50 to 1000 µmol photons m–2 s–1 [55,59].

Due to a 2.5-fold increase in dry biomass per frond area between 50 and 500 µmol
photons m–2 s–1, the decrease in the levels of lutein, β-carotene, α-tocopherol, and protein
was even more pronounced on a biomass basis (as reported here) than on a frond area
basis (as previously reported in [55]). The associated precipitous decline in LUE of nutrient
production demonstrates that nutritional yield relative to the investment of light energy
became less and less favorable as growth PFD increased.

In stark contrast, nutritional quality with respect to the essential human micronutrient
zeaxanthin increased strongly with increasing growth PFD both relative to the biomass
produced and to the light energy used (as LUE of production). This was expected for
zeaxanthin because green plant organs produce this carotenoid only when the amount
of absorbed light exceeds what can be utilized in photochemistry (for recent reviews,
see [8,23]). Because zeaxanthin has a unique role in the removal of excitation energy from
chlorophyll (in a process that is protective under excess energy), zeaxanthin presence under
low PFD can, conversely, compete with efficient light utilization in photochemistry [8].
Because plants remove zeaxanthin in low light, fronds kept in low light for 30 min post-
harvest exhibited some loss of zeaxanthin content across the range of growth PFDs. This
also caused LUE to saturate at about 500 µmol photons m–2 s–1, whereas absolute zeax-
anthin production per dry biomass continued to increase. In other words, zeaxanthin
accumulation was also lower on a biomass versus frond area basis but zeaxanthin levels per
biomass nevertheless exhibited a remarkable near-linear increase with increasing growth
PFD. The contrasting response of the other human micronutrients, with declines on all
reference bases with increasing growth PFD, are explained by plant protective functions
across a wide PFD range that were characterized for α-tocopherol [91], lutein [92], and
β-carotene [93].

Furthermore, our findings include differences between L. minor growing naturally on a
sun-exposed pond versus the closely related L. gibba growing under continuous high growth
PFD in environmentally controlled chambers. The higher levels of chlorophyll, lutein, β-
carotene, and α-tocopherol in L. minor grown under natural sun-exposed conditions with
diurnal changes suggest higher levels of chlorophyll/carotenoid-binding complexes com-
pared to L. gibba grown under continuous very high PFD that had evidently resulted in a
strong downregulation of chlorophyll content (and thus chlorophyll/carotenoid-binding
complexes). While species-dependent differences cannot be excluded, the protective roles
of carotenoids and α-tocopherol, which include removal of chlorophyll-related excess
excitation [91,94], should indeed be expected to be more important in the greener sun-
grown (L. minor) plants compared to the yellower (L. gibba) plants grown under continuous
high PFD. The fact that zeaxanthin exhibited the opposite trend suggests that a consid-
erable portion of zeaxanthin was dissolved in the chloroplast membrane phospholipid
bilayer [95,96] in plants grown under continuous high PFD. Such membrane-dissolved
zeaxanthin can make an equal contribution to human nutrition without causing removal
of light energy from photosynthesis [97]. Our findings suggest that controlled light envi-
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ronments may be more effective at producing a significant zeaxanthin pool not associated
with chlorophyll than natural sun exposure.

Our finding of an exceptionally high protein content (45% of dry biomass) specifi-
cally under low growth PFD was similar to the unusually high maximal photosynthetic
capacity, as well as a remarkably high relative growth rate, under the growth PFD of
100 versus 700 µmol photons m–2 s–1. These findings are consistent with the observa-
tion that ribulose bisphosphate carboxylase-oxygenase (RUBISCO)—the carboxylating
protein of photosynthesis and the vegetative storage protein in duckweeds—could be
fully activated for engagement in photosynthesis in duckweed grown under light-limiting
conditions [98]. It is thought that a lowering of leaf protein content in terrestrial plants
growing in light-limiting environments is important for lowering metabolic costs of pro-
tein turnover in support of shade tolerance. The fact that duckweeds use RUBISCO as
their vegetative storage protein (possibly with associated low turnover rates) may allow
them to accumulate and maintain biomass high in protein, resulting in an exceptional
nutritional quality, even in low-light environments. Conversely, growth under high PFD
decreases duckweed nutritional quality, especially on a biomass basis, with respect to not
only micronutrients but also protein.

5. Conclusions

These findings reported here can further inform the design of suitable growth protocols
that optimize nutritional quality for the human consumer relative to the required light
input for plant cultivation in controlled environments, including in locations with extreme
climates or high levels of urbanization [1,2]. Duckweed is an attractive candidate for
controlled growth environments and limited space, where this diminutive plant can be
grown in shallow trays stacked vertically in multiple layers and supplied with lighting from
energy-efficient light-emitting diodes [99]. To optimize production of multiple essential
human nutrients, a growing procedure would be desirable that includes growth in low/non-
excessive light combined with approaches that increase zeaxanthin content via either a
sudden pre-harvest increase in growth PFD and/or via engineering of the xanthophyll
cycle. Duckweeds provide an attractive mix of carotenoids and polyphenols [4,55,57,60]
and duckweed consumption has benefits for human health [100–107]. Future studies of the
impact of growth light environment on duckweed’s nutritional quality should combine
evaluation of carotenoid, antioxidant, vitamin, and phenolics production in consideration
of their synergistic actions. In addition to varying growth PFD as done in the present study,
variation of light quality may serve to enhance phenolics content (see [108]) as well as
carotenoid and vitamin E content [109].
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109. Samuolienė, G.; Viršilė, A.; Brazaitytė, A.; Jankauskienė, J.; Sakalauskienė, S.; Vaštakaitė, V.; Novičkovas, A.; Viškelienė, A.;
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