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Abstract: A new type of grafting chitosan (CTS) was synthesized using 2-hydroxyethyl- 

trimethyl ammonium chloride (HGCTS). The adsorption of Cr(VI) on HGCTS was studied. 

The effect factors on adsorption and the adsorption mechanism were considered. The results 

indicated that the HGCTS could concentrate and separate Cr(VI) at pH 4.0; the adsorption 

equilibrium time was 80 min; the maximum adsorption capacity was 205 mg/g. The 

adsorption isotherm and kinetics were investigated, equilibrium data agreed very well with 

the Langmuir model and the pseudo second-order model could describe the adsorption 

process better than the pseudo first-order model. A novel method for speciation of Cr(VI) 

and Cr(III) in environmental water samples has been developed using HGCTS as adsorbent 

and FAAS as determination means. The detection limit of this method was 20 ng/L, the 

relatively standard deviation was 1.2% and the recovery was 99%~105%. 
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1. Introduction  

Chromium is one of the major trace heavy metal pollutants in the environment. Chromium in 

environmental waters typically comes from industrial pollution sources, including tanning factories, 

steel works, wood preservation and artificial fertilizers. It is widely known that the toxicity and 

biological activity of the element not only depends on the total amount, but also on its chemical  

form [1,2]. Chromium species exist mainly in two different oxidation states in environmental water: 

Cr(VI) and Cr(III), which have contrasting physiological effects. Cr(III) is considered as an essential 

trace element for the maintenance of an effective glucose, lipid, and protein metabolism in mammals [3]. 

On the other hand, Cr(VI) can be toxic for biological systems and cancerogenic in humans [4,5]. 

Therefore, speciation of Cr(VI) and Cr(III) is necessary for evaluating the toxicological behavior of 

chromium. In recent years, more and more papers [6–8] about chromium speciation were reported. 

Chromium is usually present at trace levels in environmental water samples, therefore very sensitive 

techniques are used for the determination of chromium in water samples such as flame atomic absorption 

spectrometry (FAAS) [9], graphite furnace atomic absorption spectrometry (GFAAS) [10], inductively 

coupled plasma-atomic emission spectrometry (ICP-AES) [11] and inductively coupled plasma-mass 

spectrometry (ICP-MS) [12]. But these modern instrumental techniques can only yield total amount of 

chromium. As a result, a preliminary species preconcentration and separation step is often required. 

Selection of an high efficient preconcentration reagent shows its importance here.  

The methods used for preconcentration and separation include chemical precipitation [13], ion 

exchange [14], solvent extraction [15] and adsorption [16]. Among these methods, adsorption has been 

proved to be an efficient and economical technique. Activated carbon and silica gel are the two most 

popular adsorbents [17] in trace element analysis, but they are relatively expensive materials since the 

higher the quality, the greater they cost. The search for alternative adsorbents has intensified in recent 

years. At present, the focus is on chitosan. Chitosan is prepared from chitin by deacetylating its 

acetamido groups to different degrees. Chitosan has both hydroxyl and amine groups that can be 

chemically modified [18–20] by reactions such as cross-linking, grafting, alkylating, esterification, etc. 

Chemical modifications can offer a wide spectrum of tools to enhance the sorption properties of chitosan 

for metals. They may increase the chemical stability of the sorbent in acid media and, especially, decrease 

the solubility in most mineral and organic acids. They also increase its resistance to biochemical and 

microbiological degradation. The use of chitosan and its derivatives as adsorbents for metal ions [21], as 

flocculants [22], and carriers for medicine [23] have been reported, but reports about using chitosan and 

its derivatives to preconcentrate and separate Cr(VI) and Cr(III) in environmental water samples are rare. 

In this work, a new type of chitosan grafted with 2-hydroxyethyltrimethyl ammonium chloride 

(HGCTS) was synthesized, which has quaternary ammonium groups. Then, using HGCTS as sorbent, 

and FAAS as determination means, the adsorption of Cr(VI) on HGCTS was studied, and a novel 

method for speciation of Cr(VI) and Cr(III) in environmental water samples was developed. 
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2. Experimental 

2.1. General 

Chitosan (deacetylation degree 90%) and 2-hydroxyethyltrimethyl ammonium chloride were 

purchased from Shanghai National Reagent Company (Shanghai, China). Acetic acid (analytical grade, 

Beijing Chemical Engineering Factory, Beijing, China), alcohol (analytical grade, Third Reagent 

Factory of Shanghai, Shanghai, China) and isopropanol (analytical grade, Shanghai Yonghua 

Chemistry Reagent Factory, Shanghai, China) were provided by the chemistry laboratory of JiuJiang 

University (Jiujiang, China). 0.1 mol/L HCl and 0.1 mol/L NaOH were used to control the pH values 

of the solutions, 1 g/L Cr(VI) and Cr(III) stock solution were prepared by dissolving the appropriate 

amount of K2Cr2O7 and CrCl3·6 H2O in doubly distilled water, which was used throughout the entire 

experiment. Chromium was determined on a FAAS model AA6300C (Shimadzu, Kyoto, Japan) with a 

chromium hollow cathode lamp and deuterium background correction. Its operating conditions are 

given in Table 1. pH values was measured on a model PHS-3C pH meter (Shanghai Precision 

Instrument Company, Shanghai, China). The IR spectrum of the product was recorded on a model 

Vertex70 infrared spectrometer (Bruker, Karlsruhe, Germany) using KBr discs. The Scanning Electron 
Microscope (SEM) imaging was performed on a SEM model VegaⅡ (Tescan, Brno, Czech). The 

surface areas of the CTS and HGCTS were measured on a model ASAP 2010 surface analyzer 

(Micromeritics, Atlanta, USA) with the Brunauer-Emmett-Teller (BET) method. 

Table1. FAAS operating conditions. 

FAAS parameters   
Lamp current(mA)  10 
Slit width(nm)  0.7 
Flow rate of acetylene(L/min)  2.8 
Flow rate of air(L/min)  15.0 
Analytical wavelength(Cr, nm)  357.9 

2.2. Preparation of 2-Hydroxyethyltrimethyl Ammonium Chloride Grafted Chitosan  

The preparation of the HGCTS grafted chitosan is outlined in Scheme 1. 

Scheme 1. Preparation of HGCTS. 
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CTS (3.0 g) was dissolved in 1% aqueous acetic acid (60 mL) for 30 min. Alcohol  

(10 mL) was added to dilute the solution. Then 2-hydroxyethyltrimethyl ammonium chloride (9.0 g) 

and isopropanol (50.0 mL) were added to the solution in turn. The mixture was stirred with water bath 

heating at 70 °C for 8 h until the product was obtained. The solid product obtained was filtered off and 

washed several times with ethanol, followed by distilled water. Then the product was dried at 60 °C in 

a vacuum drying oven. 

The degree of substitution of free amino groups was represented by the concentration of quaternary 

amine groups on the HGCTS, and the concentration of quaternary amine groups was estimated by 

colloid titration [24]. HGCTS (0.1 g) was dissolved in distilled water (100 mL), and an aliquot of this 

solution (10 mL) was transferred into a conical flask, toluidine blue solution (0.1%, 0.5 Ml0 was added 

as indicator, AND then the sample solution was titrated with  polyvinyl alcohol potassium sulfate 

standard solution. The end point was obtained when the color of the solution changed from blue to red. 

The volume of the titrant was recorded. At the same time, the blank solution titration was performed. 

The concentration of quaternary amine groups was calculated by the equation below:  

1 2( )C V V
Q

W




 
(1)

where Q (mmol/g) is the concentration of quaternary amine groups, C (mol/L) is the concentration of 

titrant, V1 and V2 (mL) are the volume of the solution of titrant for the sample and blank solution 

titration respectively, W (g) is the weight of HGCTS. The concentration of quaternary amine groups 

was found to be 3.65 mmol/g. 

2.3. Effect of PH 

The effect of pH on adsorption of Cr(VI) and Cr(III) was studied in pH range 1.0–10.0 at 25 °C by 

shaking dry HGCTS (10 mg) with Cr(VI) and Cr(III) solution (200 mL, 6 μg/mL) for 80 min at  

300 rpm. The desired pH was adjusted using 0.1 mol/L HCl and 0.1 mol/L NaOH. After filtration, the 

concentration of Cr(VI) and Cr(III) in solution was determined by FAAS. 

2.4. Kinetics of Adsorption 

Kinetic studies were conducted by placing HGCTS (10 mg) in a 250 mL flask containing  

Cr(VI) solution (200 mL, 6 μg/mL) at pH 4.0 and 25 °C. The mixture was stirred by a magnetic stirrer 

at 300 rpm. Samples of solution (10 mL) were withdrawn at scheduled time intervals and analyzed for 

Cr(VI) concentration after filtration. 

2.5. Adsorption Isotherm 

At 25 °C, 35 °C and 45 °C, a series of different concentrations of Cr(VI) standard solutions (200 mL) 

were prepared. The pH of the solution was adjusted to 4.0. HGCTS (10 mg) was added to the solution 

which was stirred at 300 rpm for 80 min, then filtered. After filtration, the concentration of Cr(VI) was 

determined by FAAS. The adsorption capacity was calculated according to: 
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where Qe (mg/g) is the adsorption capacity, C0 (μg/mL) is the initial concentration of Cr(VI),  

Ce (μg/mL) is the equilibrium concentration of Cr(VI), V (mL) is the volume of the solution of Cr(VI), 

W (mg) is the weight of HGCTS added. 

2.6. Adsorption,Desorption and Determination of Cr(VI)  

HGCTS (10 mg) was added to Cr(VI) solution (200 mL) at 25 °C. Then the pH of the solution was 

adjusted to be 4.0 with 0.1 mol/L HCl and 0.1 mol/L NaOH. The solution was filtered off after surging 

for 80 min. The HGCTS was washed several times with doubly distilled water. NaOH (0.1 mol/L, 5 mL) 

was used to elute Cr(VI) from the HGCTS. The final volume of eluting solution was 10 mL. The 

concentration of Cr(VI) was determined by FAAS 

2.7. Determination of Total Cr and Cr(III) 

1% K2S2O8 aqueous solution (5 mL) was added to a water sample to oxidize Cr(III) to Cr(VI) with 

heating. Then the procedure to determine total Cr was applied as described above. Cr(III) 

concentration was obtained as the respective difference between total Cr and Cr(VI) . 

3. Results and Discussion  

3.1. Characterization of HGCTS 

3.1.1. Physical Characteristics 

Some physical properties of CTS and HGCTS were measured in this work, and the results are listed 

in Table 2. It is useful for us to know the studied materials. 

Table2. Physical properties of CTS and HGCTS. 

Materials Surface area (m2/g) Average pore diameter (nm) 

CTS 
HGCTS 

1.45 
1.75 

5.10 
6.82 

3.1.2. FTIR Spectrum 

The IR spectrum of HGCTS shown in Figure 1 resembled closely that of CTS. The most striking 

difference between the two spectra is that the band at 1,597 cm−1 [24] attributed to a primary amine 

(N–H) of CTS disappeared and the band at 1,480 cm−1, which corresponds to the methyl groups of the 

quaternary hydrogen [25] appeared in the HGCTS spectrum. This indicated that the amine of CTS had 

reacted with 2-hydroxyethyltrimethyl ammonium chloride to form HGCTS. 
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Figure 1. IR spectra of CTS and HGCTS.  

 
3.1.3. SEM Image 

Figure 2 shows the SEM images of CTS and HGCTS. The images show that the surface of CTS 

was relatively smooth and the structure of CTS was compact. The surface of HGCTS was rough, with 

a lot of cavities on the surface and the structure of HGCTS was uncompact. The reticular structure of 

HGCTS could enlarge its surface area (the surface area of HGCTS was 1.75 m2/g, whereas that of CTS 

was 1.45 m2/g) and enhance its adsorption ability. 

Figure 2. SEM images of (A) CTS and (B) HGCTS. 

(A)       (B) 

3.2. Effect of pH on Adsorption of Cr(VI) and Cr(III) 

Figure 3 shows that HGCTS adsorbed Cr(VI) strongly under acid conditions. The adsorption 

efficiency of Cr(VI) achived its maximum value (97%) at pH 4.0, whereas the adsorption efficiency of 

Cr(III) was 5%. Thus, at pH 4.0, the separation of Cr(VI) and Cr(III) could be realized.  
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The adsorption mechanism of Cr(VI) on chitosan and its derivatives is electrostatic attraction and 

ion exchange, whereas which of Cr(III) is chelation [26]. The Cr(III) cation has an empty orbit, and the 

amine group on HGCTS has an isolated pair of electrons, so when HGCTS reacts with Cr(III), a 

chelated complex was formed by coordination. In acid solutions, Cr(VI) exists mainly as HCrO4
– and 

Cr2O7
2–, which have negative charges. Amido groups on HGCTS react with H+, producing –NH3

+, 

groups which adsorb Cr(VI) anion strongly through electrostatic attraction. When Cr(VI) anion reaches 

the surface of HGCTS, an ion exchange reaction occurred, that could be represented as follows: 

 

 

Figure 3. Effect of pH on the adsorption of Cr(VI) and Cr(III). 

 

On the other hand, more than 90% of the active sites of CTS are protonated in the low pH range [26], 

the chelation of Cr(III) becomes weak, and the adsorption of Cr(III) is less probable. The observed 

decrease in the uptake value of Cr(VI) at pH < 4.0 may be attributed to the higher concentration of Cl- 

which competes with the chromate anions’ interaction with the protonated amine active sites [25]. 

Above pH = 4.0, the adsorption efficiency of Cr(VI) decreases as pH increases. This may be explained 

on the basis of the lower extent of protonated amido groups with rising pH. 

3.3. Kinetic Studies 

The kinetic study results show that the adsorption of Cr(VI) on HGCTS increased with increasing 

contact time and attained equilibrium at about 80 min. In order to investigate the adsorption kinetic 

process, the pseudo first-order and pseudo second-order kinetic models were applied in this study. The 

pseudo first-order model is expressed as [27]: 

1log( )= log ( )
2.303e t e

k
q q q t   (3)

CTS-N+(CH3)3Cl- + HCrO4
-

CTS-N+(CH3)3HCrO4
- + Cl-

2CTS-N+(CH3)3Cl- + Cr2O7
2-

(2CTS-N+(CH3)3)Cr2O7
2- + 2Cl-
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where qe and qt (mg/g) are the amounts of Cr(VI) adsorbed on HGCTS at equilibrium and at time t, 

respectively, and k1 is the pseudo first-order rate constant (min−1) of adsorption. The rate constant, k1 and 

correlation coefficient, R2 were determined by plotting log(qe−qt) versus t. The pseudo second-order 

model is expressed as [28]: 

2
2

1 1
( )

t e e

t
t

q k q q
   (4)

where k2 is the pseudo second-order rate constant(g mg−1 min−1) of adsorption. The rate constant, k2 

and correlation coefficient, R2 were determined by plotting t/qt versus t. The kinetic models for Cr(VI) 

adsorption are shown in Figures 4 and 5. The parameter values of the kinetic models are presented in 

Table 3. According to Figures 4 and 5 and based on the correlation coefficients in Table 3, the pseudo 

second-order model could better describe the adsorption of Cr(VI) on HGCTS than the pseudo first-

order model. This suggests that the rate-limiting step may be chemical adsorption [16].  

Figure 4. Pseudo first-order kinetic plots for the adsorption of Cr(VI).  

 

Figure 5. Pseudo second-order kinetic plots for the adsorption of Cr(VI). 
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Table 3. Kinetic parameters for Cr(VI) adsorption on HGCTS.  

Metal ion Pseudo first-order Pseudo second-order 

k1 (min−1) R2 k2 (g mg−1 min−1) R2 

Cr(VI) 0.063 0.9935 0.0016 0.9983 

3.4. Adsorption Isotherm of Cr(VI) on HGCTS 

Figure 6 shows the adsorption isotherm of Cr(VI) on HGCTS and the maximum adsorption capacity is 

about 205 mg/g. The experimental data in Figure 6 were treated by the Langmuir and Freundlich 

equations to examine the relation between sorption and metal ion concentration at equilibrium. The 

Langmuir model, which is widely used for monolayer sorption on a surface, is presented as: 

1e e

e

C C

Q Q Qb
   (5)

where Qe (mg/g) is the adsorption capacity of Cr(VI) at equilibrium concentration, Q (mg/g) is the 

maximum adsorption capacity, Ce (μg/mL) is the equilibrium concentration of Cr(VI), b (mL/μg) is the 

Langmuir constant. Q and b can be calculated by plotting Ce/Qe versus Ce. For the Langmuir model, it 

is estimated by a dimensionless separation factor whether the sorption is favorable or not. The 

separation factor, RL is defined as: 

0

1

1LR
bC




 (6)

where C0 (μg/mL) is the initial concentration of Cr(VI), b (mL/μg) is the Langmuir constant. Values of 

0 < RL < 1 indicates that the sorption is favorable. The values of RL in this study lie in the range of 

0.017 and 0.148 for Cr(VI), which shows that the adsorption of Cr(VI) on HGCTS is favorable.  

Figure 6. Adsorption isotherm of Cr(VI) on HGCTS. 
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The Freundlich model, which is widely used for sorption on a heterogeneous surface, is given by: 

1
log log loge F eQ K C

n
   (7)

where KF and n are Freundlich constants related to adsorption capacity and intensity, respectively. KF 

and n can be determined from a linear plot of logQe versus logCe. The constants of two model along 

with correlation coefficient (R2) values are presented in Table 4. It is found that the Langmuir model 

fit the data better than the Freundlich model, which indicates that the adsorption of Cr(VI) on HGCTS 

is a type of monolayer sorption. 

Table 4. Parameters of Langmuir and Freundlich models for Cr(VI) adsorption.  

Temperature(°C ) Langmuir model Freundlich model 

Q (mg/g) b (mL/ug) R2 KF (mg/g) n R2 

25 
35 
45  

204 
189 
181 

2.88 
1.61 
1.19 

0.9978 
0.9912 
0.9852 

147.2 
122.5 
100.5  

7.34 
5.75 
4.29 

0.9672 
0.9720 
0.9848 

To obtain the thermodynamic parameters of the adsorption, the values of b at different temperatures 

were processed according to van’t Hoff equation: 

S
ln b

RT R

  
 

 
(8)

where ∆H° and ∆S° are enthalpy and entropy changes, respectively, R is the universal gas constant 

(8.314 J/mol·K) and T is the absolute temperature (in Kelvin). Plotting lnb against 1/T gives a straight 

line with slope and intercept equal to –∆H°/R and ∆S°/R, respectively. Gibbs free energy of adsorption 

(∆G°) was calculated by the following equation: 

-TG H S       (9)

The values of ∆H°, ∆S° and ∆G° are given in Table 5. The negative values of ∆H° indicate the 

adsorption process is exothermic and the negative values of ∆G° show that it is spontaneous.  

Table 5. Thermodynamic parameters for Cr(VI) adsorption.  

Temperature (°C) ∆H° (kJ/mol) ∆G° (kJ/mol) T∆S° (kJ/mol) 

25 
35 
45 

−24.58 
−24.58 
−24.58 

−22.71 
−21.96 
−21.21 

−1.87 
−2.62 
−3.37 

3.5. Effects of Foreign Ions 

The influences of some ordinary ions typically present in water were investigated. Various amounts 

of ions were added to a 2 μg/mL Cr(VI) standard solution (50 mL) and the described procedure was 

followed.  

The results of this study are given in Table 6, from which we know that the major matrix ions show 

no obvious interference with the adsorption and determination of Cr(VI). 
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Table 6. Influences of some foreign ions on the recoveries of Cr(VI) (n = 3). 

Ion Added as Concentration (μg/mL) Recovery (%) 
Na+ 
K+ 

Mg2+ 
Ca2+ 
Zn2+ 
Cu2+ 
Fe3+ 
Cl− 

NO3
− 

NaCl 
KCl 

MgCl2 
CaCl2 
ZnCl2 
CuCl2 
FeCl3 
NaCl 
KNO3 

1,000 
1,000 
1,000 
300 
100 
50 
50 

1,000 
1,000 

99.6 
99.5 
98.8 
98.5 
98.2 
97.4 
97.8 
96.8 
96.3 

Data are expressed as mean of three replicates. 

3.6. Characteristics and Application of the Proposed Method 

Under the optimal experimental conditions, the ten replicates of the blank solution were determined. 

The detection limit, based on three times the standard deviation of the blank, was 20 ng/L and the 

relative standard deviation was 1.2% (n = 6). Table 7 compares the adsorption capacity of HGCTS 

used in this method with other adsorbents reported in the literature. From these sources, we can see 

that the adsorption capacity of HGCTS is comparable to those adsorbents reported in the literatures. 

Table 7. Comparison of adsorption capacity for Cr(VI) on HGCTS with other adsorbents. 

Adsorbents Adsorption Capacity (mg/g) Refs 

GCCTS 
Fe-CCTS 
MCCTS 
HGCTS 

215 
295 
150 
205 

[26] 
[29] 
[25] 

This work 

GCCTS: Glutaraldehyde Cross-linked Chitosan; Fe-CCTS: Fe- Cross-linked Chitosan; MCCTS: Magnetic 

Cross-linked Chitosan. 

Table 8. Speciation of Cr(VI) and Cr(III) in environmental water samples (n = 3). 

Water 
Samples 

Cr(VI) (μg/L) Cr(III) (μg/L) 

Found  Spiked Recovered Recovery 
(%) 

Found Spiked Recovered Recovery 
(%) 

Pond 
water 

4.210 0.20 4.420 105 0.880 0.20 1.084 102 

Lake 
water 

2.250 0.20 2.458 104 0.420 0.20 0.618 99 

Tap water 0.410  0.20 0.612 101 0.150 0.20 0.352 101 

Data are expressed as mean of three replicates. 

In order to apply the proposed method, speciation of Cr(VI) and Cr(III) in some environmental 

water samples (the pH value of water sample was adjusted to 4.0), including pond water, lake water, 

and tap water from Jiujiang University, China, were determined. At the same time, in order to validate 

the accuracy of the proposed method, different amounts of chromium were spiked in these 
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environmental water samples. The results are given in Table 8. Good agreement was obtained between 

the added and the determined Cr(VI) and Cr(III) types. The recovery values calculated for the standard 

additions were in the range of 99–105%. The proposed method could thus be applied successfully for 

the separation and speciation of trace amounts of chromium in environmental water samples. 

4. Conclusions  

In this work, a new type of grafted chitosan adsorbent (HGCTS) was synthesized using 

2-hydroxyethyltrimethyl ammonium chloride. The adsorption of Cr(VI) on HGCTS was studied, and 

both adsorption equilibrium and adsorption kinetics were investigated. The adsorption isotherm could be 

well fitted by the Langmuir equation and the adsorption process could be best described by a pseudo 

second-order kinetic model. The result shows that the adsorption of Cr(VI) on HGCTS is favorable. 

Then, using HGCTS as adsorbent and FAAS as determination method, a novel and useful speciation 

technique for Cr(VI) and Cr(III) was offered. The presented procedure has been successfully applied for 

the separation and speciation of Cr(VI) and Cr(III) in environmental water samples with acceptable 

accuracy and precision. 
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