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Abstract: Emission of heavy metals from traffic activities is an important pollution source 

to roadside farmland ecosystems. However, little previous research has been conducted to 

investigate heavy metal concentrations of roadside farmland soil in mountainous areas. 

Owing to more complex roadside environments and more intense driving conditions on 

mountainous highways, heavy metal accumulation and distribution patterns in farmland 

soil due to traffic activity could be different from those on plain highways. In this study, 

design factors including altitude, roadside distance, terrain, and tree protection were 

considered to analyze their influences on Cu, Zn, Cd, and Pb concentrations in farmland 

soils along a mountain highway around Kathmandu, Nepal. On average, the concentrations 

of Cu, Zn, Cd, and Pb at the sampling sites are lower than the tolerable levels. 

Correspondingly, pollution index analysis does not show serious roadside pollution owing 

to traffic emissions either. However, some maximum Zn, Cd, and Pb concentrations are 
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close to or higher than the tolerable level, indicating that although average accumulations 

of heavy metals pose no hazard in the region, some spots with peak concentrations may  

be severely polluted. The correlation analysis indicates that either Cu or Cd content is 

found to be significantly correlated with Zn and Pb content while there is no significant 

correlation between Cu and Cd. The pattern can be reasonably explained by the vehicular 

heavy metal emission mechanisms, which proves the heavy metals’ homology of the traffic 

pollution source. Furthermore, the independent factors show complex interaction effects on 

heavy metal concentrations in the mountainous roadside soil, which indicate quite a different 

distribution pattern from previous studies focusing on urban roadside environments. It is 

found that the Pb concentration in the downgrade roadside soil is significantly lower than 

that in the upgrade soil while the Zn concentration in the downgrade roadside soil is 

marginally higher than in the upgrade soil; and the concentrations of Cu and Pb in the 

roadside soils with tree protection are significantly lower than those without tree protection. 

However, the attenuation pattern of heavy metal concentrations as a function of roadside 

distance within a 100 m range cannot be identified consistently. 

Keywords: heavy metal (Cu, Zn, Cd, and Pb); roadside farmland soil; mountainous 

highway; Nepal 

 

1. Introduction 

The risk posed by heavy metals to food safety and the environment are of great concern to 

governments and society in many countries. Heavy metal pollution in agricultural soils is becoming 

serious with the rapid industrialization and urbanization in developing countries [1]. This is a typical 

environmental issue due to anthropogenic activities in the countries in the Third Pole region which 

consists of the Tibetan Plateau and surrounding mountains. The Third Pole region covers parts of eight 

countries, consisting China, India, Russia, Bhutan, Myanmar, Nepal, Pakistan and Afghanistan, in 

which a fifth of the World’s population live [2]. Though the Third Pole region is relatively 

underdeveloped, it has undergone rapid economic growth and booming tourism in recent years, which 

have brought an increase of transportation activities and related pollution. The pressure on the unique 

ecosystem in the anthropogenic living areas of the Third Pole region is predictably increasing [3]. 

Traffic activities are one of the major sources leading to heavy metal contamination in roadside soils 

due to their long-term accumulation. Therefore, the local contamination resulting from transportation 

activities is receiving increasing attention in the Third Pole countries.  

As one of the developing counties in the Third Pole region, Nepal’s agriculture has been the 

mainstay of the economy, accounting for 40 percent of GDP and 60 percent of the labor force. In 

Nepal, overland transportation is the major transportation mode but road density is low at 11.4 km of 

road per 100 km2 and 0.71 km per 1,000 population, mainly because of the country’s complex 

mountainous topography and insufficient resources. Although traffic volume is generally low in the 

remote rural areas in Nepal, the cumulative contamination effect of long-term exposure to traffic 
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activities cannot be neglected. More importantly, the roadside farmland soil is associated with the food 

chain and public health. 

Heavy metals can directly harm public health by entering the body via soil and dust, dermal contact 

or breathing [4]. The typical elements Cd, Pb, Zn, and Cu in the roadside soils coming from traffic 

activity can be transported through the food chain into the human body and thus be very toxic to  

people. In agricultural areas, intake of heavy metals through the soil-crop system could play a 

predominant role in human exposure to heavy metals [5]. In general, heavy metals with high 

concentrations in the environment result in health problems adversely affecting the nervous, blood 

forming, cardiovascular, renal and reproductive systems. The consequences of heavy metal pollution 

include reduced intelligence, attention deficit and behavioral abnormality, as well as contribution to 

cardiovascular disease in adults [6]. Some trace metals (such as Cu and Zn) are harmless in small 

amounts, but the others (mainly Pb, As, Hg and Cd), even at extremely low concentrations, are toxic and 

are potential cofactors, initiators or promoters in many diseases, including increased risk of cancer [7,8]. 

However, it is not easy to remove heavy metals from the soils because of their irreversible 

immobilization within different soil components [9]. 

The mechanisms of heavy metal emission from vehicles consist of fuel consumption, engine oil 

consumption, tire wear, brake wear, and road abrasion [10–12]. Engine oil consumption is responsible 

for the largest emission for Cd, tire wear contributes the most important emission for Zn, and brake 

wear is the most important source of emissions for Cu and Pb [12]. Though the use of unleaded 

gasoline has caused a subsequent reduction in fuel emissions of Pb, it may still occur in exhaust gas 

and come from worn metal alloys in the engine [12]. Bitumen and mineral filler materials in asphalt 

road surfaces contain different heavy metal species, including Cu, Zn, Cd, and Pb [12]. Heavy metals 

can be transported into the roadside soils by atmospheric precipitation or road runoff [13,14]. 

Monitoring studies have been conducted in many cities and regions to investigate the roadside  

heavy metal contamination, including China’s Hong Kong [15–17], Beijing [18], and Shanghai [19], 

Mexico City [20], Turkey’s Elazig [21], England’s Yorkshire [22], Jordan’s Amman [23], Greece’s 

Kavala [24], etc. It was found that roadside heavy metal concentration is influenced by multiple  

factors, including traffic properties, highway characteristics, roadside terrain, roadside distance, wind 

direction, etc.  

Generally, the longer the highway usage history, the higher the concentration in the roadside soil [25], 

because it is positively related to traffic volume [18]. Normally, the heavy metal content in roadside soils 

has a belt-shaped distribution in terms of distance to road edge, decreasing exponentially with distance 

from road [26]. Compared to the background nature value of heavy metal content, the influential space 

of traffic pollution can be up to 50 m far from road but within 100 m [27,28]. In addition, most of the 

deposited metal particles remain in the 0–5 cm of the roadside surface soil depth [29]. The plants along 

roadside also have higher heavy metal content and can effectively lower the concentration of heavy 

metals in soil [30,31]. Few studies with factorial design analyses were focused on the heavy metal 

contamination in rural roadside farmland soils due to traffic activities. More importantly, no previous 

research was conducted to investigate the roadside soil heavy metal pollution in mountainous areas. 

This research aims to investigate the influence of transportation activities on farmland soils along a 

highway across mountainous areas in Nepal. Corresponding to the complex geographic feature of 
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distances to the highway edge are designated as 0 m, 10 m, 30 m, 50 m, and 100 m, assuming that 100 m 

samples represent the background heavy metal contents. Two types of roadside farmland terrains 

(upgrade or downgrade) are designated, assuming that drainage direction to the road corresponding to 

the roadside slope direction may affect the concentration distribution of heavy metals. Since trees 

intermittently grow along the Trishuli Highway, whether the trees have a protection effect on the 

heavy metal pollution was also investigated. 

Table 1. Description of four independent variables for MANOVA analysis. 

Independent Variable Variable Definition Discrete Level 

Altitude 
Elevation above mean sea level.  
Six levels are designated along the 
Trishuli Highway. 

Level 1: 800 m 
Level 2: 1,000 m 
Level 3: 1,200 m 
Level 4: 1,400 m 
Level 5: 1,600 m 
Level 6: 1,800 m 

Distance 
Distance from the soil sampling 
location perpendicular to the road 
edge. Five distances are designated. 

Level 1: 0 m 
Level 2: 10 m 
Level 3: 30 m 
Level 4: 50 m 
Level 5: 100 m 

Terrain 

Roadside farmland slope direction. 
Upgrade or downgrade is used to 
describe whether the roadside 
farmland gradually arise or going 
down from the road surface.  

Level 1: Upgrade—farmland 
elevation gradually increases from 
the road surface. 
Level 2: Downgrade—farmland 
elevation gradually decreases from 
the road surface. 

Tree 

Tree is designated to describe whether 
there are trees growing along the road 
edge or not, and test whether the trees 
can protect the farmland soil from 
metal pollution. 

Level 1: Tree—Trees exist between 
farmland and roads and the trees’ 
continues distance is at least 30m 
along the road direction. 
Level 2: No Tree—There are no trees 
between farmland and road. 

2.3. Soil Sampling 

A total of 342 topsoil samples from the depth of 0–5 cm were collected under dry weather 

conditions along the highway at the six levels of altitudes. Table 2 lists the sample distribution 

cross-tabulation by the independent variables of Altitude × Distance × Tree × Terrain. It was planned 

to collect three samples for each cell in order to achieve a full factorial design. However, limited to the 

on-site conditions, the cases of 1,200 m altitude, downgrade terrain with trees could not be found; the 

sample was not available in the case of 1,400 m altitude, downgrade terrain without trees at 0 m 

distance; and the farmland soil was not available in the case of 1,600 m altitude, upgrade terrain with 

trees at 100 m distance.  

As shown in Figure 2, at each sampling location, three sets of samples were collected in three 

sampling regions with spacing not less than 10 m to minimize their dependency. The sampling 
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distances to the highway edge were designated as 0 m, 10 m, 30 m, 50 m, and 100 m. For each sample, 

8–10 topsoil sub-samples were taken in an ‘S-shape’ pattern in a 10 m × 4 m plot and evenly mixed. 

Table 2. Sample distribution cross-tabulation by Altitude × Distance × Tree × Terrain. 

Grade Tree Distance 
Altitude (m) 

Total 
800 1,000 1,200 1,400 1,600 1,800 

Down grade 

No tree 

0 m 3 3 3 - 3 3 15 
10 m 3 3 3 3 3 3 18 
30 m 3 3 3 3 3 3 18 
50 m 3 3 3 3 3 6 21 

100 m 3 3 3 3 3 3 18 

Tree 

0 m 3 3 - 3 3 3 15 
10 m 3 3 - 3 3 3 15 
30 m 3 3 - 3 3 3 15 
50 m 3 3 - 3 3 3 15 

100 m 3 3 - 3 3 3 15 

Up grade 

No tree 

0 m 3 3 3 3 3 3 18 
10 m 3 3 3 3 3 3 18 
30 m 3 3 3 3 3 3 18 
50 m 3 3 3 3 3 3 18 

100 m 3 3 3 3 3 3 18 

Tree 

0 m 3 3 3 3 3 3 18 
10 m 3 3 3 3 3 3 18 
30 m 3 3 3 3 3 3 18 
50 m 3 3 3 3 3 3 18 

100 m 3 3 3 3 - 3 15 

Total 60 60 45 57 57 63 342 

Figure 2. Illustration of sampling method. Three sets of samples are collected in three 

sampling regions at each sampling location. In each sample region, five samples are taken 

with five sampling distances to the highway edge. For each sample, 8–10 sub-samples 

were taken in an ‘S-shape’ pattern and evenly mixed.  
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2.4. Sample Processing 

Each soil sample was air-dried in the laboratory, pulverized with an agate mortar and pestle, and 

then sieved through nylon sieve with diameter of ≤0.149 mm. 0.3 ± 0.0001 g sieved soil sample was 

then mixed with 6 mL HNO3–3 mL HCl–0.25 mL H2O2 in a tetrafluoroethylene (PTFE) beaker and 

heated in a microwave digestion system (GEM mars). After that, the digested solution was diluted to 

50 mL with ultra-pure water and filtered through 0.45 μm microporous membrane. Finally, 1.0 mL 

filtered solution was diluted to 10 mL for measurement of Pb, Cd, Cu and Zn by Inductively Coupled 

Plasma-Mass Spectrometry (ICP-MS, Thermo X Series 2). Besides, a series of standard samples were 

also prepared. Quality controls involved: (1) analysis of 14 random samples, 1 blank samples and 1 

national standard samples each time; and (2) random selection of samples to ensure that the relative 

standard deviation is less than ~10%. 

3. Results and Discussion 

3.1. Average Concentrations of Heavy Metals in Roadside Soils 

The basic statistical descriptions of heavy metal concentrations (mg/kg) in roadside soils are listed 

in Table 3. On average, the concentrations of Cu (19.99 mg/kg), Zn (76.30 mg/kg), Cd (0.36 mg/kg), 

and Pb (22.57 mg/kg) in the mountainous rural farmland topsoil are lower than the tolerable levels, 

which are considered as phytotoxically excessive: 100 mg/kg of Cu, 300 mg/kg of Zn, 3 mg/kg of Cd, 

and 100 mg/kg of Pb [33]. However, the maximum Zn, Cd, and Pb concentrations in a few sites are 

close to or higher than the tolerable levels. The observations indicate that although the average 

accumulations of heavy metals pose no hazard in the region, some spots with peak concentrations may 

be severely polluted. For example, the maximum Pb concentration at the edge of highway with 800 m 

altitude, upgrade terrain, and no tree protection is up to two times higher than the tolerable level. 

Table 3. Descriptive statistical results of heavy metal concentrations (mg/kg) in 

mountainous rural roadside farmland topsoil.  

Variable Level N 
Cu Zn Cd Pb 

Mean S.D. Max Mean S.D. Max Mean S.D. Max Mean S.D. Max 

Altitude 

800 m 60 18.01 5.29 32.4 60.57 55.61 300 0.34 0.32 1.81 34.75 40.3 210 

1,000 m 60 22.17 4.68 30 97.63 57.12 436 0.54 0.72 4.97 30.15 24.83 146 

1,200 m 45 17.08 4.2 31 77.61 32.46 159 0.36 0.41 1.75 14.97 11.21 51.8 

1,400 m 57 13.73 6.05 31.3 38.78 20.17 120 0.35 0.39 1.87 10.4 8.57 40.2 

1,600 m 57 23.15 6.2 44.5 93.64 60.49 404 0.25 0.27 1.25 19.19 15.28 86 

1,800 m 63 24.66 7.26 45.8 88.27 48.14 272 0.3 0.45 3.07 23.26 15.22 83.2 

Distance 

0 m 66 19.75 7.11 45.8 69.52 37.85 179 0.38 0.37 1.75 28.83 37.16 210 

10 m 69 19.98 6.58 38 81.28 62.1 404 0.35 0.44 1.87 22.91 21.7 128 

30 m 69 20.53 7.11 44.5 81.74 59.23 436 0.36 0.4 1.81 22.23 19.62 94.3 

50 m 72 19.32 7.59 36.5 71.42 46.55 272 0.36 0.7 4.97 17.67 14.49 83.2 

100 m 66 20.39 6.14 31.9 77.49 53.35 308 0.33 0.28 1.14 21.67 20.04 95.8 

Terrain 
Down 165 19.77 6.98 45.8 85.26 63.28 436 0.34 0.4 3.07 18.23 13.97 86 

Up 177 20.18 6.85 41.4 67.94 38.36 230 0.37 0.51 4.97 26.62 29.71 210 

Tree 
No tree 180 22.05 7.61 45.8 83.18 56.9 436 0.34 0.41 3.07 23.71 27.91 210 

Tree 162 17.69 5.16 32.4 68.65 46.21 300 0.37 0.52 4.97 21.31 18.22 95.8 

For All Samples 342 19.99 6.91 45.8 76.3 52.54 436 0.36 0.46 4.97 22.57 23.81 210 
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In order to assess roadside soil quality for heavy metals, pollution index (Pi) is calculated for 

comparing the heavy metal concentrations of roadside samples within 50 m distance (Ci) to the 

average concentrations of soil samples taken from 100 m for each altitude as the local background 

values (Xa). The pollution index (Pi) is calculated as Ci divided by Xa. Table 4 summarizes the 

descriptive statistical results of heavy metal concentrations comparison between roadside samples and 

local background values. On average, the Pi values of Cu, Zn, Cd, and Pb fluctuate around one, which 

do not indicate serious pollution owing to traffic emission. However, the maximum values of Pi are 

much higher than 1. The maximum roadside concentrations of Cu, Zn, Cd, and Pb are up to 1.99, 5.69, 

12.52, and 7.75 times of the local background values. It is found that there is a clear trend that both 

average and maximum Pi values of Pb are decreasing with the roadside distance. Additionally, the Pi 

values of heavy metals in the samples without tree protection tend to be higher than those with tree 

protection, except for Cd. 

Table 4. Descriptive statistical results of heavy metal concentrations comparison between 

roadside samples and local background values. 

Variable Level 
Pi _Cu Pi _Zn Pi _Cd Pi _Pb 

Mean Max Mean Max Mean Max Mean Max 

Altitude 

800 m 0.89 1.64 1.09 5.29 1.06 5.51 1.35 7.75 
1,000 m 0.94 1.20 1.34 5.69 1.46 12.52 1.19 5.57 
1,200 m 0.96 1.76 1.15 2.30 1.22 5.73 1.02 3.51 
1,400 m 0.83 1.87 1.16 3.48 1.17 6.15 1.14 4.28 
1,600 m 1.03 1.97 0.77 3.47 0.86 4.46 0.57 1.77 
1,800 m 1.09 1.99 0.68 2.28 0.80 8.65 1.01 3.62 

Distance 

0 m 0.94 1.99 0.91 2.30 1.13 5.73 1.21 7.75 
10 m 0.97 1.87 1.12 5.29 1.05 6.15 1.10 4.73 
30 m 1.00 1.97 1.15 5.69 1.10 4.67 1.04 3.51 
50 m 0.92 1.61 0.91 3.00 1.07 12.52 0.85 3.62 

Terrain 
Down 0.95 1.99 1.13 5.69 1.00 8.65 0.88 4.28 

Up 0.96 1.80 0.92 3.00 1.16 12.52 1.20 7.75 

Tree 
No tree 1.05 1.99 1.07 5.69 1.05 8.65 1.13 7.75 

Tree 0.86 1.76 0.96 5.29 1.13 12.52 0.96 3.51 

Table 5. Correlation analysis of the dependent variables. 

 Cu Zn Cd Pb 

Cu 1.000 0.375 ** 0.092 0.259 ** 
Zn  1.000 0.202 ** 0.217 ** 
Cd   1.000 0.307 ** 
Pb    1.000 

** Correlation is significant at the 0.01 level (2-tailed). 

Except for vehicle emissions, the concentrations of heavy metals in soil can be influenced by other 

local factors, such as the use of agricultural fertilizers and pesticides, climate and anthropogenic 

activities. The correlation analysis of the typical soil heavy metals associated with traffic activities will 

contribute to understand the homology of pollution source. As shown in Table 5, the correlation analysis 



Int. J. Environ. Res. Public Health 2012, 9  1723 

 

 

of the dependent variables shows that either Cu or Cd content in roadside soil is significantly correlated 

with Zn and Pb content while there is no correlation between Cu and Cd. This finding can be reasonably 

explained by vehicular heavy metal emission processes. Almost 100% of Cu emission comes from brake 

wear while 83% of Cd emission comes from engine oil consumption [12]. However, Pb and Zn emissions 

are rather equally distributed in the mechanisms of fuel consumption, engine oil consumption, brake wear, 

or tire wear. The correlation pattern indicates that the heavy metal concentrations in roadside soils are 

associated with traffic contamination although the daily traffic volume in the Trishuli Highway is very low. 

In the subsequent statistical analyses, a MANOVA is used to investigate differences between 

factors (see Table 6). The hypothesis testing in the following analysis is based on a 0.05 significance 

level. The result indicates that the independent factors are complicatedly associated with the 

concentrations of Cu, Zn, and Pb. The Cu concentration is significantly influenced by Altitude (p < 0.001), 

Tree (p < 0.001), and their two-way interaction (p < 0.001); the Zn concentration is significantly 

influenced by Altitude (p < 0.001), two-way interaction between Altitude and Tree (p < 0.001), and 

two-way interaction between Terrain and Tree (p = 0.025); and the Pb concentration is significantly 

influenced by Altitude (p < 0.001), Terrain (p < 0.001), Tree (p = 0.015), two-way interaction between 

Altitude and Distance (p = 0.012), two-way interaction between Altitude and Terrain (p < 0.001), 

two-way interaction between Altitude and Tree (p < 0.001), and two-way interaction between Tree and 

Distance (p = 0.004). However, except for Altitude (p = 0.039), no other factors have a significant 

effect on concentration of Cd. Meanwhile Cd is the least correlated with other heavy metals. 

Comparing the sums of correlation coefficient values among the heavy metals, Cd (0.601) is lower 

than Cu (0.726), Zn (0.794), and Pb (0.783), which suggests that the Cd distribution in Kathmandu 

region might be affected by some other resources. For example, the phosphorus fertilizer use can add 

heavy metals to farmland soil [34]. 

Table 6. MANOVA result for metal concentrations of Cu, Zn, Cd, and Pb. 

Source df 
Cu Zn Cd Pb 

F Sig. F Sig. F Sig. F Sig. 

Altitude 5 23.916 0.000 ** 6.525 0.000 ** 2.378 0.039 * 11.127 0.000 ** 
Terrain 1 0.344 0.558 3.846 0.051 1.719 0.191 13.898 0.000 ** 
Tree 1 15.136 0.000 ** 1.772 0.184 0.027 0.869 5.931 0.015 * 
Distance 4 0.164 0.686 0.005 0.942 0.391 0.532 1.761 0.185 
Altitude × Distance 20 1.878 0.098 2.193 0.055 0.433 0.826 2.966 0.012 * 
Altitude × Terrain 5 1.790 0.115 0.508 0.770 2.171 0.057 10.100 0.000 ** 
Altitude × Tree 5 14.348 0.000 ** 5.430 0.000 ** 0.895 0.484 5.896 0.000 ** 
Terrain × Distance 4 3.683 0.056 1.172 0.280 0.657 0.418 3.827 0.051 
Tree × Distance 4 1.413 0.236 0.158 0.691 0.089 0.766 8.423 0.004 * 
Terrain × Tree 1 0.217 0.641 5.097 0.025 * 2.362 0.125 2.284 0.132 

* Correlation is significant at the 0.05 level (2-tailed); ** Correlation is significant at the 0.01 level (2-tailed). 

3.2. Concentrations of Heavy Metals Distribution by Altitude 

The percentage of oxygen in the atmosphere decreasing with the increment of altitude can 

influence the efficiency of gas consumption and vehicular emission mechanism. Previous research 



Int. J. Environ. Res. Public Health 2012, 9  1724 

 

 

focusing on the effect of altitude on vehicle on-road emissions indicated that vehicular emissions at 

high altitude can be much higher than observed at sea level [35–37]. As shown in Figure 3, among the 

six levels of altitude, the Cu concentrations at 1,400 m (M = 13.73 mg/kg; S.D. = 6.05 mg/kg) and 

1,200 m (M = 17.08 mg/kg; S.D. = 4.20 mg/kg) are significantly lower than the other levels; the Zn 

concentration at 1,400 m (M = 38.78 mg/kg; S.D. = 20.17 mg/kg) is almost half of the other levels; 

and there is a similar trend for Pb distribution by altitude also. It should be noted that the highway 

segments for sampling at 1,400 m and 1,200 m have large elevation variations. Especially for the 1,400 m 

segment, it increases 70 m in height within a length of 1,000 m. Such a topographic feature can cause 

rainfall runoff to carry more heavy metal contaminants down to the lower highway segments or out of 

the highway through its drainage system. The results indicate that altitude is an important block factor in 

identifying the other factors effects. However, because the sampling region in this study is fully covered 

by vegetation, there is no significant difference in percentage of oxygen between the sampling locations 

with increasing altitudes. Therefore, the assumed pattern that the increasing altitudes may lead to 

consistently increasing roadside heavy metal concentration level cannot be captured in this study.  

Figure 3. Variations in soil heavy metal concentrations with altitude. 

   
(a) (b) 

   
(c) (d) 

3.3. Concentrations of Heavy Metals Influenced by Terrain 

Terrain displays a complex impact on Pb concentration in the soil but have no effect on the other 

metals, except that there is an interaction effect with Tree on Zn, as shown in Table 6. It was found 

that the Pb concentration in the downgrade roadside soil (M = 18.23 mg/kg; S.D. = 13.97 mg/kg) is 
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significantly lower than that in the upgrade soil (M = 26.62 mg/kg; S.D. = 29.71 mg/kg), as shown in 

Figure 4(a). This finding is consistent with the previous conclusion that near roadways terrain 

morphology affects the distribution of Pb contamination and higher concentration values in the 

upgrade roadside soils as a consequence of obstructed dispersion [38]. This trend is especially 

significant at the altitude levels of 800 m, 1,000 m, and 1,200 m, as shown in Figure 4(b). The 

concentration of Pb in the top layer of soils differs between upgrade and downgrade farmland possibly 

because of the deposition and accumulation of atmospheric particulates from vehicle emission. Road 

emission was reported as the largest resource for Pb contamination for European countries and lead 

concentrations in topsoil are spatially heterogeneous [39]. The upgrade roadside soil would serve as a 

windward slope exposed to the deposition of atmospheric particulates generated from vehicle emission. 

This effect is further illustrated by Figure 4(c), which indicates that the Pb concentration decreases 

with the distance from road in the upgrade side of farmland, but it is uniformly distributed in the 

downgrade side. The rain runoff can also cause lead to transfer from further roadside soil to closer 

roadside soil since lead is immobilized by the soil [40].  

Figure 4. Variation in soil heavy metal concentrations with terrain. 

  
(a) (b) 

  
(c) (d) 

On the contrary, Zn concentration in the downgrade roadside soil (M = 85.26 mg/kg;  

S.D. = 63.28 mg/kg) is marginally higher than that in the upgrade soil (M = 67.94 mg/kg;  

S.D. = 38.36 mg/kg), as shown in Table 6 (p = 0.051). Zn contaminants due to vehicle emissions are 

mainly from engine oil, tire wear, and brake wear [12], and their deposition to roadside soils are 

greatly influenced by the road surface runoff process. The road surface and roadside runoff process in 
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mountainous terrain is significantly different from that in the flat highways [41]. Therefore, the rain 

runoff may carry more Zn contaminants to the downgrade farmland soil than the upgrade farmland soil. 

Intuitively, roadside trees can block more contaminants transferring the contaminants through water to 

the upgrade farmland, as shown in Figure 4(d). 

3.4. Effect of Tree Protection on Heavy Metal Contamination 

It is found that roadside trees show a positive effect on the heavy metal concentration control, and 

concentrations of Cu and Pb in the roadside soils are statistically lower than those without tree protection, 

as shown in Figure 5. The interactive effects between altitude and tree for Cu, Zn, and Pb show that for 

some cases, the heavy metal concentrations with roadside trees may be equivalent to or higher than 

without trees, as shown in Figure 6, which might be caused by unknown local environmental factors that 

were not covered by this experiment. Planting trees can effectively prevent the pollution particles from 

depositing on roadside farmland so that more heavy metal contaminants can be expelled into drainage 

facilities. In addition, trees can be used to remove, transfer, or stabilize heavy metal soil contaminants to 

render them harmless [42]. In recent studies, phytoremediation has been considered as a promising new 

countermeasure for in situ cleanup of heavy-metal contaminated soils [43,44]. 

Figure 5. Variation in soil heavy metal concentrations with tree protection. 

  
(a) (b) 

Figure 6. Interaction between altitude and tree. 

   
(a) (b) 
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Figure 6. Cont. 

   
(c) (d) 

Figure 7. Variation in soil heavy metal concentrations with distance. 

 

3.5. Effect of Distance to Road Edge on Heavy Metal Contamination 

Generally, the heavy metal content in roadside soil has a belt-shaped distribution in terms of 

distance to road edge, decreasing exponentially with increment of roadside distance [26]. However, in 

this study such a distribution pattern by roadside distance is not available, as shown in Figure 7. Even 

graphically checking the samples site by site, no more than 20 percent of cases display a gradually 

decreasing distribution by roadside distance. The phenomenon can be explained by several reasons. 

Firstly, frequent farming activities such as irrigation, plough, and fertilization may mix the farmland 

top soil spatially and disturb the roadside heavy metal distance-distribution pattern. Secondly, the 

crops in roadside farmland may have various abilities to assimilate heavy metal soil contaminants. 

Thirdly, the complex local terrain and environments, such as rain runoff and drainage, wind direction 

and speed, and other non-crop plants might change the heavy metal contaminants’ distribution patterns 

in terms of roadside distance. Very few previous studies on roadside farmland soil contamination 

explored the relationship between heavy metal concentrations and roadside distance. According to  

the recent research focusing on Pb concentrations in roadside farmland soils, the Pb accumulation due 

to traffic activities is restricted to within 10 m of the motorway and 3 m of the minor road [45].  

At distances greater than these, the other sources make the dominant contribution to the Pb 
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concentration in farmland soil. Therefore, selecting 100 m as the maximum roadside sampling distance 

in this study would sufficiently cover the vehicle pollution’s scope. However, in nonagricultural land 

soils, the influential roadside distance of traffic pollution is generally less than 50 m but may be up to 

100 m [27,28]. Even, Pb as the most adapted tracer of highway contamination may have an impact on 

roadside soil up to 320 m [13].  

4. Conclusions 

This study involving factorial design analyses was focused on heavy metal accumulation in 

roadside farmland soils along a highway across mountainous areas in Nepal. It was observed that 

although the average concentrations of Cu, Zn, Cd, and Pb at the sampling sites are lower than the 

tolerable levels, a few maximum Zn, Cd, and Pb concentrations are close to or higher than the tolerable 

level. It indicates that some roadside spots may be severely polluted. Furthermore, the correlation 

analysis showed that either Cu or Cd content is significantly correlated with Zn and Pb content but no 

significant correlation between Cu and Cd was identified. The pattern can be reasonably explained in 

terms of vehicle emission mechanism, which suggests the heavy metals’ homology of the traffic 

pollution source. 

Due to the complex terrain characteristics of the representative environments, it is a challenging 

task for the experimental design to identify the most important factors associated with heavy-metal 

contamination from traffic activities. Based on a careful investigation on the roadside features of the 

Trishuli Highway, altitude, roadside distance, terrain, and tree protection are selected as four typical 

factors for this experiment. The MANOVA results indicate that the factors are complicatedly 

associated with the concentrations of Cu, Zn, and Pb, except for Cd. The heavy metal concentrations 

vary at the different altitude levels but display a similar variation pattern. Although altitude is not 

meaningful for explanation of heavy metal contamination, as a block factor it plays an important role 

in identifying the other factors effects. It was found that Pb concentration in the downgrade roadside 

soil is significantly lower than that in the upgrade soil, but Zn concentration in the downgrade roadside 

soil is marginally higher than that in the upgrade soil. This opposite trend might be due to the 

difference in deposition forms between Pb and Zn contaminants, where Pb is mainly transferred 

through air deposition while Zn is more likely to be carried through water runoff.  

The analysis indicates that trees growing linearly along roadways can effectively reduce the heavy 

metals’ concentrations in the roadside farmland. Therefore, planting trees may be considered as an 

effective countermeasure for existing crop plots that are close to roadways. Furthermore, in this study 

it was not found that the heavy-metal concentrations in the rural farmland soils are consistently 

decreasing with the increment of roadside distance. This conclusion differs from most of the finding in 

the previous urban roadside soil studies, primarily because of the lower traffic volume on the Trishuli 

Highway. On the other hand, the spatial distribution of heavy-metal contaminants in the roadside 

farmland topsoil could be disturbed by the frequent farming activities, crop growth distribution, and 

complex local terrain and environments. Therefore, it is suggested for the future roadside farmland 

studies to do more detailed sampling in the first 10 m from road edge for capturing the spatial 

heavy-metal distribution pattern.  

Finally, the findings of this study would be useful for understanding how the heavy-metal content in 
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rural farmland roadside soil is influenced by traffic activities and helpful in making policies for 

avoiding hazardous heavy metal contaminants in agricultural soils in mountainous areas of the Third 

Pole region. 
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