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Abstract: Under Executive Order 12898, the U.S. Environmental Protection Agency (EPA) 

must perform environmental justice (EJ) reviews of its rules and regulations. EJ analyses 

address the hypothesis that environmental disamenities are experienced disproportionately 

by poor and/or minority subgroups. Such analyses typically use communities as the unit of 

analysis. While community-based approaches make sense when considering where 

polluting sources locate, they are less appropriate for national air quality rules affecting 

many sources and pollutants that can travel thousands of miles. We compare exposures and 

health risks of EJ-identified individuals rather than communities to analyze EPA’s Heavy 

Duty Diesel (HDD) rule as an example national air quality rule. Air pollutant exposures are 

estimated within grid cells by air quality models; all individuals in the same grid cell are 

assigned the same exposure. Using an inequality index, we find that inequality within 

racial/ethnic subgroups far outweighs inequality between them. We find, moreover, that the 

HDD rule leaves between-subgroup inequality essentially unchanged. Changes in health 

risks depend also on subgroups’ baseline incidence rates, which differ across subgroups. 

Thus, health risk reductions may not follow the same pattern as reductions in exposure. 

These results are likely representative of other national air quality rules as well. 
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1. Introduction 

―Environmental justice‖ (EJ) has become a pressing social, scientific, and political issue in the U.S. 

over the last decade. The 1994 Executive Order 12898 (Federal Action to Address Environmental 

Justice in Minority Populations and Low-Income Populations), requires agencies to perform EJ 

reviews of programs, policies, and activities in order to determine their effects on minority and  

low-income populations. The U.S. Environmental Protection Agency (EPA) defines ―environmental 

justice‖ as ―the fair treatment and meaningful involvement of all people regardless of race, color, 

national origin, or income with respect to the development, implementation, and enforcement of 

environmental laws, regulations, and policies.‖ EPA further defines ―fair treatment‖ to mean that ―no 

group of people should bear a disproportionate share of the negative environmental consequences 

resulting from industrial, governmental and commercial operations or policies.‖ 

This definition provides very general guidance on the concept of EJ, but does not supply specifics 

and directions for applying this concept to EPA’s programs and activities. In this paper, we focus on 

the benefits of national air quality rules and propose a comprehensive set of methods that can be used 

to examine several EJ questions relevant to the context: 

 Are different socio-demographic population subgroups being exposed to different pollution 

levels before a rule is implemented (baseline scenario)? 

 When a given rule is implemented, do different subgroups benefit differentially? That is, do 

some subgroups enjoy greater reductions in pollution levels than others? 

 Do some subgroups enjoy greater reductions in health risks as a result of a given rule 

or regulation? 

 As a result of a given rule, do the pollutant exposures (and associated health risks) experienced 

by different subgroups become less unequal? 

We use EPA’s Heavy Duty Diesel rule [1] (henceforth, the HDD rule) as a case study. There are 

several socio-demographic population subgroups that may be of interest from the EJ standpoint. EJ 

subgroups can be defined by age, sex, race, ethnicity, education, and/or income and should not overlap. 

We focus on race and ethnicity in our EJ analysis of the HDD rule, with the recognition that the 

method we describe could similarly be used with other categorizations.  

Many studies have explored the validity of the EJ hypothesis that environmental disamenities are 

experienced disproportionately by poor and/or minority subgroups. The two most common types of EJ 

research are: (1) proximity-to-hazards studies and (2) exposure and health risk analysis. The first 

category evaluates how the distribution and proximity of hazards (e.g., Superfund sites, toxic 

emissions, and existing waste facilities) relate to community socio-demographics [2-6]. Residential 

proximity to a waste site or other hazards is often used as a surrogate measure for exposure to 

contaminants found at those sites. The second category of EJ research, exposure and risk analysis, 

examines the distributions of exposures and health risks among different EJ subgroups [7-12]. 

Regardless of whether they are proximity-to-hazards studies or exposure and health risk studies, 

most EJ analyses have taken as their unit of analysis some geographical measure of community, such 

as county [13,14], neighborhood [15], census tract [3,8,9,11,14], or zip code [16]. Recent studies have 
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examined associations between a defined EJ measure (e.g., percentage of minorities in the community) 

and ambient pollution levels as well as health risks [8,9,11]. 

While community-based approaches make sense for considering where particular polluting (point) 

sources locate, national air quality rules target thousands of emissions sources and pollutants that can 

travel many miles. The ambient pollutant concentrations to which people are exposed depend on many 

possibly distant sources and complex air chemistry. This is true of fine particulate matter (particles 

with a mean aerodynamic diameter less than or equal to 2.5 µm, denoted PM2.5) analyzed in the HDD 

rule. PM2.5 can form so-called ―secondary‖ reactions in the atmosphere, many miles from the original 

sources of the precursor emissions. Thus, the issue of location decisions by particular emissions 

sources is less relevant. In this context, the questions of primary interest are whether the members of 

one EJ subgroup are exposed to higher ambient pollutant concentrations as compared to the members 

of other subgroups, and whether a national air quality rule will benefit some subgroups 

disproportionately. Communities—whether they are defined as census tracts, counties, zip codes, or 

any other unit of geographic area—are artificial analytical constructs that are not necessary to answer 

these questions. In fact, we are interested in all African Americans, regardless of where they live, 

compared with all Whites, all Hispanics, etc. 

An individual-level conceptualization permits application of methods that are well tailored for 

exploration of the EJ questions relevant to benefits assessment of national air quality rules. The  

central object of analysis for these methods is an empirical distribution of the quantity of interest  

(e.g., exposure) over all individuals belonging to a given subgroup. Individual-level air pollution 

exposures and health risks have previously been used to construct inequality indices for examining 

efficiency-equity tradeoffs in air quality control policies [10,17,18], and to compare distributions of 

exposures to toxic air emissions among EJ subgroups [13].  

We extend the methods in these papers to demonstrate the insights that may be gained about the EJ 

questions relevant to benefits assessment of national air quality rules by carrying out a distributional 

analysis of exposures and health risks. This analysis consists in comparing EJ subgroup-specific 

distributions over individuals. Information contained in empirical distributions permits a broader 

assessment of differences among subgroups in exposures and health risks. Because exposures and 

health risks are highly variable, an analysis that explores associations between central tendencies (as 

many community-based analyses tend to do) would miss out on many interesting and important 

insights. For instance, we can analyze the differences in exposures between Whites and African 

Americans at the 95th percentile of the distribution of exposures. This comparison would be 

impossible through a community-based analysis that focuses on correlations between exposure or 

health risk levels and aggregate community characteristics (e.g., median household income or the 

proportion of African Americans). 

It is not feasible to measure individual-specific air pollution exposures for benefits assessments of 

national air quality rules: such assessments are generally conducted for a future year and involve 

hypothetical policy scenarios. Therefore, they use modeled exposures rather than measured exposures 

to the ambient air pollutant. Air quality models generate estimates of pollutant concentrations on a grid 

that spans the entire country. All individuals projected to reside within the same grid cell are assigned 

the same air pollutant concentration [1,19]. We follow this procedure. Because people are mobile, a 
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modeled grid cell-level air pollutant concentration may provide a reasonable approximation to average 

individual-specific exposures.  

However, there will always be some degree of uncertainty about actual exposures whenever 

modeled data and projections are used. Furthermore, regardless of the analytical unit chosen (an 

individual or a community), any analysis that uses modeled ambient air pollutant concentrations is 

limited by the spatial resolution of the model. 

Although EPA refers to ―fair treatment,‖ observed differences in exposures to air pollutants on a 

national or regional level do not necessarily imply unfair treatment in the normal sense of that  

term—i.e., unfair intent. While air pollutants are generated to some extent by stationary sources  

(e.g., power plants), where someone had to decide where to locate the source of pollution, these 

pollutants can travel great distances. The juxtaposition of population subgroups relative to areas of 

poor air quality may also reflect the choices people make of where to live. In general, it is more 

difficult to discern the why of any observed differences among subgroups for regional air pollutants 

than for local pollutants. The methods that we propose for distributional benefits analyses of national 

air quality rules are not intended to answer the question of why there are differences in the levels of air 

pollution to which different subgroups are exposed, but only whether there are differences.  

2. Distributional Benefits Analysis of EPA’s Heavy Duty Diesel Rule in 2030 

EPA’s HDD rule, published in 2001, is a part of EPA’s comprehensive national control program to 

regulate the heavy-duty vehicle and its fuel as a single system [1]. The HDD rule included new 

standards for particulate matter (PM), the oxides of nitrogen (NOx), and non-methane hydrocarbon 

(NMHC) emissions by heavy-duty highway engines and vehicles. Because the exhaust emission 

control devices required by the HDD rule could be damaged by sulfur, EPA also regulated refiners and 

the fuel distribution chain to make diesel fuel with low sulfur content available for highway vehicles.  

This nationwide program is expected to result in emission levels of PM and NOx that are 90 percent 

and 95 percent, respectively, below the current National Ambient Air Quality Standards for these air 

pollutants [20]. EPA analyzed the expected benefits of this rule in the years 2020 and 2030. We use the 

modeled air quality data for 2030. 

We define our EJ subgroups in terms of race and ethnicity. Following the nomenclature of the U.S. 

Census Bureau, we consider four racial subgroups—Asian American, African American, Native 

American, and White—as well as two ethnic subgroups (Hispanic and non-Hispanic). For individuals 

in each racial subgroup as well as for individuals in (mutually exclusive) subgroups defined by 

combinations of racial, ethnic, and age characteristics, we examine: 

 The ambient PM2.5 concentrations to which they are expected to be exposed in the 2030 baseline 

(i.e., in the absence of the rule); 

 The reductions in ambient PM2.5 concentrations they are expected to experience in 2030 as a 

result of the rule; and 

 The corresponding reductions in all-cause mortality they are expected to experience as a result of 

the rule. 
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2.1. Estimating Baseline Pollutant Exposures and Reductions in Exposure as a Result of the HDD Rule 

Our distributional analysis of the HDD rule consists in carrying out what is essentially a standard 

EPA benefit analysis separately for each subgroup and then comparing the subgroup-specific results. 

For national air quality regulations, EPA relies on the Environmental Benefits Mapping and Analysis 

Program (BenMAP) to estimate the health impacts and economic benefits associated with changes in 

ambient air pollution [21,22]. The changes in air pollution are typically calculated with the help of air 

quality models that use air pollution emissions data and meteorological data in a complicated series of 

calculations representing the formation and movement of air pollution in the atmosphere. Air quality 

modeling is necessary because it can provide estimates of air pollution levels in areas of the country 

where actual air pollution monitoring data are not available (e.g., rural areas) and because it can 

generate projections of air pollution levels for hypothetical policy scenarios. 

Air quality models calculate air pollution levels separately for each cell in a grid that spans the 

country. Figure 1 shows a portion of the grid with the baseline air quality estimates used in the HDD 

rule. The grid cells for that analysis were roughly 36 kilometers by 36 kilometers.  

Figure 1. A Portion of the Baseline Air Quality Grid (Over Florida) Used in the HDD rule 

Benefit Analysis. 

 

Source: U.S. EPA Final Regulatory Impact Analysis: HDD rule. 

More recent national analyses, such as the EPA’s Locomotive and Marine Rule [19], are using grid 

cells that are roughly 12 kilometers by 12 kilometers. In general, the resolution of air quality models is 

increasing over time due to improvements in data processing ability. It is currently possible to have 

even more refined analyses with grid cells that are 1 kilometer by 1 kilometer (or smaller) for local 

analyses, such as analyses of individual metropolitan areas. 

Figure 2 shows a map of projected annual average ambient PM2.5 concentrations in the 2030 

baseline (i.e., without the regulation). The air quality data files for the HDD rule also contain projected 

annual average ambient PM2.5 concentrations in the 2030 control scenario: the scenario of future 

conditions with the regulation in place (i.e., after air pollution controls have been implemented). For 

each grid cell we calculate the reduction in ambient PM2.5 concentration (that is projected to occur as a 

result of the HDD rule) as the difference between the baseline and the control scenario modeled PM2.5 
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concentrations. Figure 3 shows the projected reductions in ambient PM2.5 concentrations across the 

U.S. Note that, for regions that have high baseline PM2.5 concentrations, the reductions expected to 

result from the HDD rule are also relatively large. This indicates that the HDD rule tends to target the 

most polluted areas. 

Figure 2. Projected 2030 Baseline Annual Average Ambient PM2.5 Concentrations (µg/m
3
). 

 

Figure 3. Projected 2030 Reductions in Annual Average Ambient PM2.5 Concentration (µg/m
3
). 

 

The version of BenMAP used for this distributional analysis as well as for the original benefits 

assessment of the HDD rule relies on 2000 Census of Population and Housing block-level data. 

BenMAP uses the embedded population growth projections for EJ subgroups [23] to extrapolate the 

2000 EJ subgroup-specific population counts in each block to 2030, the analysis year. The procedures 

used to create the projections are detailed in the BenMAP user manual [21]. 

Figure 4 shows maps of EJ subgroup-specific projected population distributions by state. A 

comparison of the projected population distribution maps (Figure 4) with the map of projected baseline 

ambient PM2.5 concentrations (Figure 2) gives a ―broad brush‖ picture of which EJ subgroups are 

projected to live in areas of high versus low PM2.5 concentrations. For example, the high PM2.5 

concentrations are mostly in the Eastern half of the U.S. and, to a lesser extent, in southern 

California—areas in which most African Americans and Asian Americans are projected to live. In 
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contrast, Native Americans are projected to be concentrated largely in the Southwest, where projected 

PM2.5 concentrations are low, and to some extent in California.  

Figure 4. Projected 2030 Spatial Population Distributions for EJ Subgroups by State. 

 

Air quality model grid cells typically cross territorial units that the U.S. Census Bureau defines  

for purposes of taking a population census. To calculate the EJ subgroup-specific projected 2030 

population in each grid cell, BenMAP aggregates projected census block population data. Although 

census blocks vary in size, 99 percent are smaller than 4 kilometers by 4 kilometers, which is much 

smaller than the grid cells in all but the highest resolution grids. Thus, a grid cell will have several to 

many census blocks that fall completely within it. For those census blocks that straddle two or more 

grid cells, BenMAP assigns the block population to the grid cell in which the census block center  

is located. 
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The modeled ambient PM2.5 concentration in each grid cell is then assigned to all individuals in that 

grid cell. Reductions in ambient PM2.5 concentrations due to the HDD rule are similarly assigned. All 

individuals are identified by the EJ subgroup to which they belong. We use the projected data on EJ 

subgroup-specific 2030 population counts and modeled PM2.5 concentrations in each grid cell to 

construct empirical distributions of pollutant exposures over individuals in each EJ subgroup. 

Empirical distributions of reductions in PM2.5 concentrations due to the HDD rule over individuals in 

EJ subgroups are constructed analogously. 

Figures 5 and 6 show EJ subgroup-specific cumulative empirical distributions of baseline PM2.5 

concentrations and reductions in PM2.5 concentrations as a result of the HDD rule, respectively. In 

Figure 5, any point (x, y) along each cumulative distribution shows that 100*y percent of that EJ 

subgroup is exposed to more than x µg/m
3
 baseline PM2.5 concentration. Figure 6 is interpreted 

similarly. In both cases, the closer the cumulative distribution is to a vertical line, the less inequality 

there is in exposures (or reductions in exposure) among individuals in the subgroup. We can see 

immediately that for any baseline PM2.5 concentration, the percent of Native Americans exposed to at 

least this level is the smallest across all subgroups. The opposite is true for African Americans for 

baseline concentrations up to about 25 µg/m
3
. Greater percentages of Asian Americans are exposed to 

the highest baseline PM2.5 concentrations. About 65 percent of African Americans are projected to be 

exposed to ambient PM2.5 concentrations in excess of the current National Ambient Air Quality 

Standard (NAAQS) for annual average PM2.5 (15 µg/m
3
) [24]; only about 20 percent of Native 

Americans are projected to live in areas with exposures that exceed the standard. In the remaining 

subgroups, the corresponding shares are between 35 and 55 percent.  

Figure 5. Racial and Ethnic Subgroup-Specific Distributions of 2030 Projected Baseline 

PM2.5 Concentrations. 
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Figure 6 shows that the distributions of absolute reductions in exposure levels due to the HDD rule 

largely mimic the distributions of baseline exposures themselves. For instance, Native Americans have 

the lowest reductions and the lowest baseline exposure levels, while African Americans and Asian 

Americans have the highest reductions as well as the highest baseline exposure levels. The similarity 

in patterns shown in Figures 5 and 6 implies that all the subgroups might enjoy similar relative 

reductions in exposure levels. That is, the likely effect of the HDD rule would be to scale down the 

baseline exposure levels by approximately the same factor. 

Figure 6. Racial and Ethnic Subgroup-Specific Distributions of 2030 Projected Reduction 

in PM2.5 Concentrations. 

 

 

Characteristics of the distributions shown in Figures 5 and 6—the means, standard deviations, and 

selected percentiles—are given in Tables 1 and 2, respectively. Table 2 shows these characteristics for 

both the absolute reductions in PM2.5 levels and the relative reductions, that is, the percent reductions 

from baseline levels.  

Tables 1 and 2 also show the results of applying an inequality index to the empirical distributions of 

baseline PM2.5 exposures as well as of reductions in these exposures. This index characterizes the 

degree of inequality by assigning a single score to the distribution [25]. We use the Atkinson  

index, which was proposed by Levy et al. as the most appropriate inequality index for health risk  

analysis [17]. The Atkinson index is derived from a social welfare function [26]. It depends on an 

inequality aversion parameter, ε > 0. When ε < 1, the Atkinson index is more sensitive to changes in 

the top of the distribution. When ε > 1, the index is more sensitive to changes in the bottom of the 

distribution. This index has a maximum of 1, which indicates extreme inequality, and a minimum of 0, 

which indicates absolute equality. We report the Atkinson index for ε = 0.5 and ε = 1. 
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Table 1. Distribution Characteristics of 2030 Projected Baseline and Control PM2.5 

Exposures by Race and Ethnicity. 

Racial/Ethnic 

Subgroup 

Mean 

(µg/m
3
) 

SD 

(µg/m
3
) 

Percentiles (µg/m
3
) Atkinson Index 

5th 25th 50th 75th 95th  = 0.5  = 1 

Baseline PM2.5 Exposures 

Total Population 14.65 7.39 4.05 9.52 14.05 18.02 28.44 0.064 0.131 

Asian American 16.71 9.13 5.64 9.53 15.03 21.31 39.59 0.072 0.144 

African American 18.13 7.50 7.42 13.22 16.99 21.47 34.47 0.042 0.085 

Native American 10.22 6.97 2.47 4.43 9.17 13.74 22.61 0.106 0.207 

White Hispanic 13.39 8.21 3.38 6.78 12.40 17.28 29.32 0.088 0.176 

White non-Hispanic 14.07 6.45 4.16 9.61 13.89 17.22 25.35 0.054 0.113 

Within-Group Inequality 0.060 0.123 

Between-Group Inequality 0.004 0.009 

Ratio of Within-Group Inequality to Between-Group Inequality 15.0 13.7 

Control Scenario PM2.5 Exposures 

Total Population 14.01 7.07 3.84 9.15 13.52 17.22 27.41 0.063 0.131 

Asian American 15.94 8.80 5.21 9.15 14.33 20.14 38.24 0.073 0.146 

African American 17.34 7.17 7.05 12.75 16.34 20.61 32.35 0.042 0.085 

Native American 9.78 6.66 2.42 4.24 8.70 13.15 21.38 0.104 0.205 

White Hispanic 12.77 7.90 3.22 6.52 11.73 16.46 28.08 0.089 0.178 

White non-Hispanic 13.46 6.15 4.01 9.25 13.43 16.45 23.87 0.054 0.112 

Within-Group Inequality 0.060 0.123 

Between-Group Inequality 0.004 0.009 

Ratio of Within-Group Inequality to Between-Group Inequality 15.0 13.7 

Table 2. Distribution Characteristics of 2030 Projected Absolute and Relative Reductions 

in PM2.5 Exposures by Race and Ethnicity. 

Racial/Ethnic 

Subgroup 

Mean 

 

SD 

 

Percentiles  Atkinson Index 

5th 25th 50th 75th 95th  = 0.5  = 1 

Absolute Reductions in PM2.5 Exposure (µg/m
3
) 

Total Population 0.64 0.39 0.13 0.38 0.59 0.83 1.36 0.088 0.184 

Asian American 0.77 0.41 0.25 0.45 0.69 0.93 1.48 0.068 0.137 

African American 0.79 0.42 0.27 0.47 0.71 1.01 1.54 0.067 0.135 

Native American 0.44 0.35 0.04 0.13 0.37 0.62 1.05 0.167 0.344 

White Hispanic 0.62 0.37 0.11 0.34 0.59 0.83 1.35 0.096 0.202 

White non-Hispanic 0.61 0.37 0.13 0.36 0.55 0.78 1.35 0.088 0.182 

Within-Group Inequality 0.085 0.175 

Between-Group Inequality 0.004 0.010 

Ratio of Within-Group Inequality to Between-Group Inequality 21.3 17.5 

Relative Reductions in PM2.5 Exposures (% of Baseline) 

Total Population 4.39 1.55 2.25 3.40 4.15 5.12 7.16 0.030 0.060 

Asian American 4.86 1.56 2.90 3.61 4.52 5.92 7.86 0.025 0.050 

African American 4.33 1.38 2.55 3.40 4.09 5.12 6.90 0.024 0.048 

Native American 3.97 1.87 1.44 2.68 3.77 4.89 7.68 0.054 0.108 

White Hispanic 4.79 1.86 2.51 3.40 4.44 5.79 8.16 0.035 0.070 

White non-Hispanic 4.22 1.43 2.08 3.34 4.10 4.89 6.90 0.028 0.058 

Within-Group Inequality 0.029 0.059 

Between-Group Inequality 0.001 0.002 

Ratio of Within-Group Inequality to Between-Group Inequality 29.0 29.5 
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The Atkinson index is decomposable, which allows us to determine the extent to which the total 

inequality is attributable to inequality within non-overlapping population subgroups versus between 

them. Informally, a decomposable inequality index (I) can be computed as a combination of inequality 

indices for each subgroup (within-group inequality, Iw) and an inequality index that represents 

disparities across subgroups (between-group inequality, Ib). The between-group inequality is computed 

over arithmetic means of the subgroup-specific distributions. A formal definition of decomposability is 

provided by Cowell [27]. Although the Atkinson index can be decomposed, this decomposition is not 

additive: (1 – I) = (1 – Iw)·(1 – Ib) [28]. 

Table 1 shows that Native Americans are exposed to lower baseline PM2.5 levels, whereas African 

Americans and Asian Americans are exposed to higher baseline PM2.5 levels (as is also shown in 

Figure 5). The general patterns seen in the subgroup-specific means are also seen in the distributions as 

a whole. While African Americans and Asian Americans have the highest mean baseline PM2.5 

concentrations, for example, they also have the highest 75th and 95th percentile concentrations.  

The inequality index results, however, put the differences across subgroup-specific means and 

percentile values in a broader context. Table 1 shows that within-subgroup inequality in baseline PM2.5 

exposures is much greater than between-subgroup inequality. This is true for control scenario 

exposures as well. For ε = 0.5, the ratio of within-group inequality to between-group inequality is 15 in 

both the baseline and the control scenario; for ε = 1, this ratio is 13.7 in both scenarios. Thus, the 

differences between subgroup-specific means and percentiles that we see in Table 1 seem much less 

substantial. The lack of change in the inequality index from the baseline to the control scenario, for 

either choice of ε, indicates that inequality in exposures among subgroups was unaffected by the HDD 

rule. The picture that emerges is one of relatively low inequality among subgroups in the baseline (as 

compared to within-subgroup inequality) and consistently decreasing exposures across subgroups as a 

result of the rule, rather than decreasing inequality of exposures across subgroups.  

For both choices of ε, we see that Native Americans have more inequality than any other subgroup 

under both the baseline and the control scenario, and African Americans have the lowest inequality. 

Combined with the distribution characteristics, this creates a picture of a relatively wider range of 

exposures among Native Americans, generally weighted towards the low end of the range of exposures, 

and a relatively narrow range of exposures among African Americans up towards the high end of the 

range of exposures. These patterns reflect the spatial distributions of these two subgroups. A high 

proportion of Native Americans lives in areas with very low levels of PM2.5 (i.e., in the Southwest and 

in the Northern Great Plains), while a small proportion lives in urban areas with high concentrations of 

air pollution. In contrast, most African Americans live in urban areas. 

Table 2 shows that Native Americans are predicted to experience substantially smaller absolute 

reductions in PM2.5 levels than the other subgroups, while African Americans and Asian Americans are 

predicted to experience larger absolute reductions. Again, however, only a relatively small share of the 

total inequality in absolute reductions in PM2.5 exposures among individuals in the total population is 

due to inequality across subgroups, for either choice of ε. The ratio of within-group inequality to 

between-group inequality in absolute reductions is 21.3 for ε = 0.5 and 17.5 for ε = 1; the 

corresponding ratios for relative reductions are 29.0 and 29.5, respectively. 

The relative reductions, shown in Table 2, are very similar across subgroups, on average. The 

values of the Atkinson index for relative reductions also suggest that there is very little variability in 
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relative reductions of exposure. Given that the Atkinson index is scale-invariant, essentially identical 

relative reductions in exposure would not affect inequality in exposure levels. Thus, the results in 

Table 2 corroborate the finding, shown in Table 1, that the HDD rule had little effect on the degree of 

inequality within and between subgroups. 

Although there is uncertainty about our results, there is no uncertainty due to sampling error 

surrounding the estimates in Tables 1 and 2, because these distribution characteristics are not based on 

samples but on a complete census of the population. Thus, the usual tests to determine whether 

estimated means are statistically significantly different from each other do not apply. 

2.2. Estimating Reductions in Health Effect Incidence Rates Corresponding to Reductions in PM2.5 

Exposure to PM2.5 has been associated with several adverse health effects, including premature 

mortality, non-fatal acute myocardial infarction, emergency room visits for asthma, and cause-specific 

hospital admissions [29-34]. Here we focus on premature mortality, but the approach described below 

would be similar for all other health effects. 

We use two estimated concentration-response (C-R) relationships describing the association 

between PM2.5 concentrations and premature mortality: one for infants [33] and another for adults age 

30 and older [34]. The epidemiological literature does not currently provide estimated C-R 

relationships for PM2.5 concentrations and premature mortality for ages 1–29. Because the available  

C-R relationships are not EJ subgroup-specific, our analysis implicitly assumes that the C-R 

relationship is the same across EJ subgroups. Both C-R relationships have the exponential form: 

xey    (1)  

where x is the ambient PM2.5 level, y is the incidence of mortality corresponding to x, β is the 

coefficient of ambient PM2.5 concentration (describing the extent of change in y with a unit change  

in x), and parameter α is the incidence when there is no ambient PM2.5. Each epidemiological study 

provides b—an estimate of β. 

Let x0 denote the baseline (upper) level of ambient PM2.5 and x1 denote the control scenario (lower) 

level of ambient PM2.5. In addition, let y0 denote the baseline incidence (corresponding to the baseline 

ambient PM2.5 level, x0) and y1 denote the incidence after the rule is implemented. Equation (1) can be 

used to derive the following relationship between the absolute reduction in ambient PM2.5 level,  

Δx = (x0 – x1), and the corresponding reduction in mortality incidence, Δy: 

   xbeyyyy  1010  (2)  

We use Equation (2) to estimate the reductions in mortality incidence in each grid cell. Baseline 

mortality incidence y0 is calculated as the product of the mortality incidence rate and the population in 

each grid cell. We derive baseline mortality incidence rates from county-level mortality data for  

1996–1998 provided by the U.S. Centers for Disease Control (CDC). Age range-specific death count 

data are available for three race subgroups: White, African American, and ―other.‖ Having calculated 

age- and county-specific mortality rates for these three race subgroups [21], we assign the ―other‖ 

mortality rate to the Native American and Asian American subgroups. Baseline mortality rates are 

projected to 2030 [21]. Given that CDC does not provide mortality data by ethnicity, in this section we 

consider EJ subgroups defined by race only. 
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Table 3 presents the reduction in mortality incidence rate alongside the reduction in PM2.5 

concentration that each racial subgroup is predicted to experience as a result of the HDD rule. This 

juxtaposition makes it easier to see the correspondence or lack thereof between the two. For each racial 

subgroup, we consider three age categories: infants (age 0), adults (age 30–64), and elderly (age 65+). 

We show the mean absolute reduction in PM2.5 exposure that each age/ racial subgroup is predicted to 

experience as well as the mean absolute reduction in mortality rate. We also show the reduction in 

PM2.5 exposure relative to the mean reduction for the total population in the age category and the 

corresponding relative reduction in mortality rate. The relative reduction allows us to see at a glance 

how one subgroup is expected to fare relative to others, in terms of both the reduction in PM2.5 

concentration and mortality rate. 

Table 3. Absolute and Relative Reduction in Mean PM2.5 Concentrations and Incidence of 

All-Cause Mortality (per Million Population). 

Age/Race 

Baseline 

Incidence per 

Million 

Population 

Absolute 

Reduction in 

PM2.5 Level 

(µg/m
3
) 

Relative 

Reduction in 

PM2.5 Level * 

Absolute 

Reduction in 

Incidence per 

Million Population 

Relative 

Reduction in 

Incidence * 

Infants (Age 0) **      

Asian American 2,907 0.71 1.2 13.7 0.7 

African American 9,543 0.74 1.2 47.1 2.3 

Native American 4,166 0.38 0.6 9.1 0.4 

White 4,005 0.57 0.9 15.3 0.8 

Total 

Population 4,816 0.61 -- 20.2 -- 

Adults (30–64) ***      

Asian American 1,771 0.69 1.2 6.6 0.6 

African American 5,183 0.73 1.2 21.7 2.0 

Native American 2,587 0.40 0.7 4.7 0.4 

White 3,027 0.55 0.9 9.7 0.9 

Total Population 3,225 0.58 -- 11.1 -- 

Elderly (65 +) ***      

Asian American 20,411 0.67 1.2 77.6 0.6 

African American 39,783 0.74 1.3 170.2 1.4 

Native American 25,344 0.39 0.7 52.9 0.4 

White 37,945 0.54 1.0 119.7 1.0 

Total Population 36,863 0.57 -- 121.4 -- 

*  Reductions relative to the mean reduction for the total population in the age category;  

**  Reductions in incidence based on the concentration-response relationship in Woodruff et al.  

 [33] with b = 0.007339;  

*** Reductions in incidence based on the concentration-response relationship in Pope et al. [34] 

with b = 0.005827. 

 

Asian Americans are predicted to experience about 20 percent greater PM2.5 exposure reductions, 

on average, than the total population (i.e., a relative reduction of 1.2), while African Americans are 

predicted to experience from 20 percent to 30 percent greater PM2.5 exposure reductions, on average, 
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depending on the age subgroup considered. Native Americans, on the other hand, are predicted to 

experience smaller reductions in PM2.5 exposure than the total population, on average—about 

70 percent of the reduction for the total population. Finally, Whites are predicted to experience 

reductions in PM2.5 exposure that are basically the same as those of the total population (relative 

reduction of 0.9 for infants and ages 30–64, and 1.0 for the elderly). 

As shown in Table 3, the relative reductions in PM2.5 exposure predicted to be enjoyed by the 

different racial subgroups do not necessarily translate into the same relative reductions in mortality. 

This is because the reductions in mortality depend, in addition, on the baseline mortality incidence 

rates, and these differ substantially across the racial subgroups. For example, both African American 

and Asian American infants are predicted to experience about 20 percent greater reductions in PM2.5 

exposure than the total population of infants, on average. However, because the mortality rate among 

African American infants is so much higher than that among Asian American infants (9,543 vs. 

2,907 deaths per million), African American infants are predicted to experience a much greater relative 

reduction in mortality rate than Asian American infants (over 230 percent versus only 70 percent). 

This reflects the greater underlying vulnerability of African American infants, relative to the general 

population (or, for that matter, to any other subgroup). 

Table 4 characterizes distributions of mortality risk reductions due to the HDD rule over individuals 

in subgroups defined by race and age. For ε = 0.5, the ratio of within-group inequality to  

between-group inequality in mortality risk reductions is 1.6 for infants and 3.0 for adults. In the case of 

the distribution of absolute reductions in PM2.5 exposure, this ratio is much higher: with identical 

choice of ε it is 21.3 (reported in Table 2). Thus, in the case of mortality rate reductions, differences 

among racial subgroups tend to contribute more to overall inequality. This, of course, is largely driven 

by the across-subgroup differences in baseline mortality incidence rates that reflect the underlying 

vulnerabilities of these populations and may have little to do with the effects of the HDD rule. 

 

Table 4. Distribution Characteristics of 2030 Projected Reduction in All-Cause Mortality 

Rate (Deaths per Million People) by Race. 

Racial/Ethnic 

Subgroup 

Mean 

 

SD 

 

Percentiles  Atkinson Index  

5th 25th 50th 75th 95th  = 0.5  = 1 

Infants (Age 0) * 

Total Population 20.2 14.7 2.8 9.6 17.0 26.5 50.1 0.158 0.305 

Asian American 13.7 9.8 3.2 7.4 11.3 17.4 33.8 0.105 0.224 

African American 47.1 26.6 11.3 26.2 41.4 67.2 97.0 0.084 0.175 

Native American 9.1 8.4 1.3 3.0 6.8 12.2 25.4 0.170 0.343 

White 15.3 10.2 2.3 7.8 13.6 20.1 35.3 0.111 0.230 

Within-Group Inequality 0.101 0.210 

Between-Group Inequality 0.064 0.121 

Ratio of Within-Group Inequality to Between-Group Inequality 1.6 1.7 
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Table 4. Cont. 

Adults (30–64) ** 

Total Population 11.1 7.4 1.6 5.6 9.8 14.5 24.8 0.129 0.261 

Asian American 6.6 3.8 1.6 4.0 5.9 8.8 12.4 0.078 0.159 

African American 21.7 11.8 5.4 13.4 19.2 29.3 44.0 0.077 0.163 

Native American 4.7 3.9 0.8 1.7 3.7 6.5 11.7 0.148 0.287 

White 9.7 6.3 1.5 4.9 8.8 13.1 22.3 0.109 0.230 

Within-Group Inequality 0.099 0.209 

Between-Group Inequality 0.033 0.066 

Ratio of Within-Group Inequality to Between-Group Inequality 3.0 3.2 

Elderly (65+) ** 

Total Population 121.4 79.7 18.1 62.2 107.9 160.4 278.6 0.115 0.239 

Asian American 77.6 44.5 16.1 45.7 70.4 101.6 164.7 0.086 0.179 

African American 170.2 92.9 41.3 97.9 157.8 231.3 328.9 0.079 0.164 

Native American 52.9 47.9 6.2 14.7 40.3 75.5 158.2 0.185 0.362 

White 119.7 80.7 17.3 57.9 105.5 160.1 283.5 0.114 0.238 

Within-Group Inequality 0.109 0.226 

Between-Group Inequality 0.008 0.018 

Ratio of Within-Group Inequality to Between-Group Inequality 14.1 12.8 

* Reductions in incidence based on the concentration-response relationship in Woodruff et al. [33] 

with b = 0.007339;  

** Reductions in incidence based on the concentration-response relationship in Pope et al. [34] with 

b = 0.005827. 

3. Discussion 

EJ analyses were originally developed to address a common hypothesis that environmental 

disamenities locate disproportionately in poor or predominantly minority communities in part because 

of the socio-demographic makeup of those communities. Executive Order 12898 later mandated that 

federal agencies carry out EJ reviews of their programs, rules, and regulations. National air quality 

rules present a different set of issues from the location issues originally posed. As noted above, 

observed inequalities in air pollutant exposures at a regional or national level do not necessarily imply 

injustice in the normal sense of that word. While air pollutants are generated to some extent by 

stationary sources (e.g., power plants), where someone had to decide where to locate the source of 

pollution, these pollutants can travel great distances and can be formed by reactions in the atmosphere, 

many miles from the original sources of the precursor emissions. This is an important consideration, 

particularly in interpreting the results of a distributional benefits analysis of national air quality 

regulations. If we see differences in pollutant concentrations to which the members of one subgroup 

are exposed versus those in other subgroups, it does not necessarily follow that these differences are 

the result of unfair intent. 

The juxtaposition of subpopulations relative to areas of poor air quality may also reflect the choices 

people make of where to live. The location of poorer individuals in areas of higher pollution may, to 

some extent, reflect tradeoffs made by these individuals—i.e., some may choose to live in higher 

pollution areas if the housing there is more affordable [35]. Residential location decisions may also 
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reflect the historical patterns of settlement of different ethnic subgroups coming to the U.S. over time. 

For example, Asian Americans historically settled disproportionately in large urban areas [36,37], 

where traditional ―ports of entry‖ were located. More than 60 percent of Asian Americans live in eight 

large metropolitan areas and more than 40 percent of Asian Americans live in New York, Los Angeles, 

and San Francisco metropolitan areas [37]. Coincidentally, these areas also have relatively poor air 

quality (Figure 1). Thus, the exposure of Asian Americans to relatively poorer air quality may reflect 

the effects of national immigration policies that regulated settlement patterns [38].  

The distributional benefits analysis method we propose for national air quality rules is intended to 

answer the question of whether there are differences, but not why there are differences in the levels to 

which various subgroups are exposed. Similarly, we are not asking why different subgroups may 

benefit differentially from a rule or regulation, but simply whether or not they do benefit 

differentially—in terms of the reductions in air pollution they experience as a result of the rule and in 

terms of the health risk reductions they enjoy as a result of the reductions in air pollution.  

However, because there are differences in pollutant exposures (or reductions in exposures as a result 

of a rule) among individuals within subgroups, the question of whether there are differences between 

subgroups is best answered by a comparison of subgroup-specific distributions of exposures (or 

reductions in exposures) over individuals. We believe that such an approach, discussed and illustrated 

above, generates more interesting insights about the context-relevant EJ questions than those 

obtainable with a community-based approach. Using subgroup-specific distributions, we can get a 

fuller picture of inequality (or lack thereof) both between subgroups and within them. We saw, for 

example, that the inequality in baseline PM2.5 concentrations predicted to be experienced by different 

subgroups, as illustrated by comparisons of their means, is very small compared with the inequality of 

exposures within subgroups, as shown by decomposition of the Atkinson index (Table 1). We saw also 

that, while both African Americans and Asian Americans are predicted to experience higher baseline 

PM2.5 concentrations than the other subgroups, greater proportions of Asian Americans are predicted to 

experience the highest baseline PM2.5 concentrations of over about 25 µg/m
3
 (Figure 5). 

We saw that, for a national air quality rule, those subgroups that are exposed to higher baseline 

pollutant concentrations, on average, tend to enjoy greater absolute reductions in pollutant concentrations 

as a result of the rule. This is not surprising, since many rules tend to target the areas of worst pollution 

levels. Furthermore, all EJ subgroups experience similar relative reductions in baseline exposures. As  

a result, neither the between-group inequality nor within-group inequality would be affected by the 

HDD rule. 

We also saw that the reduction in air pollutant concentrations did not necessarily translate into an 

equivalent reduction in health effect incidence rate in the different subgroups—e.g., the subgroup that 

experiences the largest reduction in pollutant concentration as a result of a rule does not necessarily 

also experience the largest reductions in incidence rates of adverse health effects associated with the 

pollutant. This is because another factor—the baseline incidence rate of the adverse health effect—

affects each subgroup’s population health response to a reduction in pollutant concentration, and these 

baseline incidence rates vary substantially across racial and ethnic subgroups. 

We note also that the type of distributional analysis we describe addresses only one of several 

possible distributional effects of an air quality rule or regulation, i.e., the distribution of benefits across 

defined subgroups. Fullerton describes several types of distributional effects, i.e., price changes, 
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scarcity rents, benefits effects, capitalization effects, and transition costs [39]. While, in theory, one 

should consider all distributional effects together to get the ―full picture,‖ in practice that would be 

very difficult to do. Although there are several kinds of distributional effects that could occur, we are 

not aware of any empirical paper that actually includes all of these effects or even most of them.  

As we note above, in the assignment of pollutant concentrations, or reductions in pollutant 

concentrations as a result of the HDD rule, our analysis could only approximate an individual-level 

analysis, because modeling truly individual-specific pollutant exposures is not feasible. Available air 

quality models convert projected emissions from various sources to ambient pollutant concentrations 

in cells of a grid that spans the country. As is done in standard analyses of national air quality rules, we 

assign the same baseline (and control) scenario pollutant concentration to all individuals within a grid 

cell. Whether this method of estimating exposures for individuals is adequate depends on the extent of 

intra-grid cell variability in pollutant concentrations. This is likely to be less of a problem for regional 

pollutants, such as PM2.5 and ozone, than for more local pollutants, such as carbon monoxide, whose 

concentrations tend to vary more within any given grid cell. Analysis of mobile source rules, such as 

the HDD rule, may pose a particular challenge, because these rules target pollutant sources along 

transportation corridors within grid cells. It is unclear to what extent this pollution dissipates, and if so, 

how quickly. 

Because intra-grid cell differences between subgroups are also obscured by this method of exposure 

assignment, there are special implications of using it in the context of an EJ analysis (be it  

individual-based or community-based). If intra-grid cell heterogeneity follows patterns that are 

dependent on an EJ characteristic, any approach that depends on grid cell-level pollutant estimates, 

may understate differences across EJ subgroups. This may partly explain why our distributional 

analysis of the baseline exposure levels and reductions in them (due to the HDD rule) finds low 

between-group inequality.  

The accuracy of inequality assessment could be improved through increasing spatial resolution of 

the air quality models. However, because people are mobile, extremely small grid cell sizes will 

introduce other biases. The problem of the optimal grid cell size is shared by standard and EJ-oriented 

air quality benefits analyses. It would be instructive to progressively reduce the grid cell size in an EJ 

analysis and observe how it affects the results. 

To assess whether pollution affects some subgroups disproportionately, some studies [8,40] have 

applied regression techniques and statistical tests to what appear to be complete censuses rather than 

random samples (e.g., all the census tracts in a given state), and have reported ―statistically significant‖ 

results. ―Statistical significance,‖ however, is a meaningful concept only when an analysis is based on 

a random sample (rather than the entire population of interest). ―Statistical significance‖ suggests that 

what we observe in the sample indicates something real about the population, rather than being due to 

random chance (i.e., to the particular sample we randomly drew from the population). If we are 

observing the entire population (e.g., all the census tracts in a state), then we should not use statistical 

tests, as ―statistical significance‖ is meaningless. This does not imply that there is no uncertainty in an 

EJ analysis that uses the entire population, only that there is no uncertainty due to sampling error 

associated with sampling from the population. All of the uncertainty in air quality benefits analyses—

including the uncertainty surrounding air quality model estimates of exposure and population 
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projections, as well as the uncertainty surrounding estimated concentration-response relationships—

applies to the corresponding EJ analyses as well. Most of this uncertainty is difficult to quantify. 

Even if there were no uncertainty in our results, there is a legitimate question as to what magnitude 

of differences between subgroups constitutes ―environmental injustice.‖ Since it is highly improbable 

that all subgroups would have exactly the same baseline pollutant concentrations or reductions in 

pollutant concentrations, there will necessarily be differences between subgroups. Rather than 

―statistical significance,‖ the relevant question is whether observed differences between populations 

(e.g., between minorities and non-minorities) are worthy of concern. At what point should any 

observed differences be considered disproportionate? This is more likely a policy decision, rather than 

a question that economics can necessarily answer. There is no objective degree of difference beyond 

which we definitively conclude that there is ―environmental injustice‖ or inequality worthy of concern. 

4. Conclusions 

EJ analyses address the hypothesis that environmental disamenities are experienced disproportionately 

by poor and/or minority subgroups. EJ analyses have typically used communities as the unit of 

analysis. While community-based approaches make sense when considering where polluting sources 

locate, they are less informative for analysis of national air quality rules affecting multiple sources and 

pollutants with long-range transport. We extend the methods and ideas in [10,17,18] and carry out a 

distributional benefits analysis of the HDD rule [1], which is a national rule that will impact ambient 

PM2.5 concentrations. Our distributional analysis consists in derivation of and comparisons across EJ 

subgroup-specific empirical distributions (over individuals) of exposure levels and/or changes in these 

levels resulting from the HDD rule. Using this approach, we consider a variety of characteristics of 

these distributions—e.g., their means or their 95th percentile values. Using the Atkinson index, a 

decomposable inequality index, we assess how much of the inequality across individuals is explained 

by an EJ subgroup characteristic (race). Finally, we make inferences about the potential effects 

national air quality rules may have on the inequality of exposures overall and within EJ subgroups.  

We find that those subgroups that are exposed to the highest pollutant concentrations in the absence 

of the HDD rule will enjoy the greatest absolute reductions in exposure, on average, as a result of the 

rule. Because EPA rules tend to target high pollutant concentration areas, this result is likely to be 

representative of other national air quality rules as well. We find, however, that the HDD rule affects 

neither between-group inequality nor within-group inequality (as measured by the Atkinson index), 

because all EJ subgroups enjoy similar relative reductions in baseline exposures. Finally, inequality in 

exposure levels (and reductions in them) across individuals from different EJ subgroups is minor 

compared with the inequality among individuals within EJ subgroups. 

Because changes in the corresponding health risks depend, in addition, on the subgroups’ baseline 

incidence rates for the health effects, and these differ across subgroups, the health risk reductions 

resulting from the reductions in exposure do not follow the same pattern. We find that Asian 

Americans and African Americans enjoy the largest absolute reductions in exposure to PM2.5 (out of 

all racial subgroups considered). However, compared to African Americans, Asian Americans receive 

smaller mortality risk reductions because their baseline mortality rates are much lower. 
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