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Abstract: Although children are particularly vulnerable to the adverse impacts of vehicular pollution
and spend significant portions of their time at school, previous studies have not examined or
compared school-level social inequities in exposure to both traffic-related air and noise pollution
in the same study area. We addressed this gap through a case study in Texas—the second-largest
US state based on total population and number of children. Vehicular pollution exposure was
measured using: (1) outdoor concentrations of nitrogen dioxide (NO2), a widely used proxy for
traffic-related air pollution; and (2) road noise estimates from the US Department of Transportation’s
National Transportation Noise Mapping Tool. These variables were linked to data on locations and
sociodemographic characteristics of children enrolled in Texas public schools. We found children
attending schools with the highest exposure to both NO2 and road noise (top 25%) were significantly
more likely to be Black, Hispanic, and eligible for free/reduced lunches (socioeconomically deprived).
Results from multivariable generalized estimating equations that control for spatial clustering and
other relevant factors revealed that schools with greater NO2 exposure were significantly more
likely to serve racial/ethnic minority and younger students, while schools with greater exposure to
road noise were significantly more likely to serve socioeconomically deprived and older students.
These findings underscore the urgent need to reduce both air pollution and noise exposure at school
locations, especially in schools attended by higher proportions of socially disadvantaged children
that are often additionally burdened with other challenges.

Keywords: children; environmental justice; air pollution; road noise; public schools

1. Introduction

Exposure to both air and noise pollution from transportation sources has been widely
recognized to be harmful to human health and wellbeing. Because of their unique biological
vulnerabilities and mobility patterns, children are more susceptible to the adverse effects
of environmental pollution exposure than adults, which potentially affects their health
and ongoing development into adulthood [1–4]. Although their residential locations are
relatively dispersed, children in the US are confined to school locations for an average
of 6.64 h a day and more than 1200 h every year [5]. Schools are often located near
heavily trafficked roadways that generate excessively high levels of vehicular air and
noise pollution [6–9]. Children’s exposure to both air pollutants and excessive noise has
been linked to lower student test scores, lower grade point averages, lower attention
retention, and chronic absenteeism [10–15], as well as negative health outcomes such as
respiratory illness, reduced lung function, diminished cognitive function, and mental health
problems [16–24].

An emerging body of research has applied a distributive environmental justice frame-
work to examine spatial and statistical associations between transportation-related pollu-
tion risks and sociodemographic characteristics of enrolled children in schools. Studies fo-
cusing on traffic proximity have found that schools with higher proportions of racial/ethnic
minority and socioeconomically disadvantaged students locate near major highways and
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roadways with elevated traffic volumes [7,25–28]. Studies focusing on traffic-related air
pollutants [29–31] and excessive road noise [8] also indicate that minority and socioeco-
nomically disadvantaged children are exposed to significantly greater pollution levels
than White and socioeconomically advantaged children at school locations. These findings
collectively point to environmental inequities that require more detailed investigation
using a comparative research approach which allows parallel analyses of both outdoor
concentrations of air pollutants and excessive noise from transportation sources. While
social disparities associated with exposure to air and noise pollution for school children
have been examined separately, previous studies have not attempted to analyze inequities
in exposure to both air and noise pollution in the same study area and thus provide a more
comprehensive understanding of the socio-spatial implications of transportation-related
health hazards in a particular place.

Texas is a particularly appropriate state for studying children’s exposure to vehicular
pollution since it ranks second in terms of total number of children (i.e., population under
18 years) and the first in number of children below poverty level among all US states [32].
Media reports also suggest that many schools and school districts in Texas suffer from
exceedingly high levels of transportation-related air and noise pollution [33]. A recent study
found greater proportions of racial/ethnic minority and socioeconomically vulnerable
children to live within school districts exposed to significantly higher levels of traffic
proximity and related air pollution emissions [4]. To our knowledge, no previous study
has analyzed exposure to vehicular air or noise pollution and related disparities for school
children statewide in Texas.

This paper aims to address previous gaps and extend research on environmental
injustices imposed on children by analyzing exposure inequities associated with both air
pollution from transportation sources and excessive noise from roadways, at public schools
in Texas. Our study seeks to answer two research questions:

1. Are schools that are disproportionately exposed to higher levels of traffic-related
air and noise pollution characterized by significantly greater percentages of racial/ethnic
minority and socioeconomically deprived students?

2. How do the racial/ethnic and socioeconomic characteristics of schools, as well as
the grade level of students served by schools, relate to levels of traffic-related air and noise
pollution exposure, after accounting for spatial clustering and other relevant factors?

We measured exposure to traffic-related air pollution at the school level using average
annual concentrations of nitrogen dioxide (NO2), a key contributor and widely used proxy
for vehicular air pollution. Exposure to roadway noise is measured using data from the
US Department of Transportation (USDOT)’s National Transportation Noise Mapping
Tool. Statistical analyses are based on bivariate comparisons and multivariable generalized
estimating equations that account for geographic clustering of public schools within school
districts in Texas.

2. Materials and Methods

Public schools in Texas represent the unit of analysis for this study. The geographic
locations of 8428 schools for the 2016–2017 school year were downloaded from the Texas
Education Agency (TEA) Public Open Data portal [34] as a geographic information system
(GIS) map layer. Data on school enrollment characteristics (2016–2017) were obtained from
the National Center for Education Statistics, using the ELSi Table Generator tool [5].

2.1. Dependent Variables

The first dependent variable is average annual concentrations of NO2, a well-documented
indicator of vehicular air pollution [35–37] that has been utilized in recent research on envi-
ronmental injustices for children [4,31]. We used estimates of outdoor NO2 concentrations
developed by the Center for Air, Climate and Energy Solutions (CACES), as described in
Kim et al. [38]. Their empirical models are based on concentration measurements from US
Environmental Protection Agency (EPA) regulator monitors, and combine land-use regression
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and satellite-derived estimates to predict concentrations for criteria air pollutants. For this
study, census block-group-level values of predicted NO2 spatial concentrations and locational
coordinates of block-group centroids were downloaded from the CACES Land Use Regres-
sion database for 2011 to 2015 (latest year available). Mean annual concentrations for this
five-year timeframe (2011–2015) for all block groups in Texas were estimated and used, as
recommended by recent studies utilizing this data source [6,39]. For each Texas public school,
NO2 exposure was then calculated using values from the block group in which the school’s
geographic coordinates were located.

Our second dependent variable, exposure to roadway transportation noise, was based
on data from the National Transportation Noise Mapping Tool (NTNMT), developed by
the USDOT’s Bureau of Transportation Statistics, which has also been utilized in recent
noise-related environmental justice studies [8,40]. Data on road noise levels in the NTNMT
in 2016 (earliest year available) for Texas were extracted and downloaded as a GIS raster
map layer, available at a 30 m by 30 m pixel resolution. Noise measures are generated
using a 24 h equivalent sound level (LAeq,24) metric and measured in A-weighted decibels
(dB(A)), representing estimated average noise energy from transportation noise sources
over a 24 h period at specified receptor locations. The NTNMT assumes that 24 h roadway
traffic and aircraft-related noise levels below 45 dB(A) are not harmful. Noise measures are
thus estimated in the NTNMT for Texas locations with modeled LAeq,24 values greater
than or equal to 45 dB(A) from road transportation sources; zero values are assigned for
other locations. More details on data sources and methodology employed by the NTNMT
to develop road noise estimates for 2016 are available in USDOT [41].

The dependent variable representing exposure to road noise was estimated using
a 500 m circular buffer around each public school, following previous studies on noise
exposure [8,40,42]. We calculated the average noise level (LAeq,24) in dB(A) for all 30 m
by 30 m pixels from the NTNMT whose centroids were located within a 500 m radius of
each Texas public school, and used this measure as the dependent variable for road noise
exposure.

Descriptive statistics for our dependent variables are provided in Table 1. Although
no public school (0%) in Texas experienced NO2 exposure that exceeded the EPA’s annual
average standard of 53 ppb, road noise levels were higher than the USDOT’s definition of
harmful noise (45 dB(A)) in 7810 or 92.7% of all public schools in Texas.

Table 1. Summary statistics for variables analyzed.

Min. Max. Mean SD

Dependent variables:
Air pollution exposure: mean NO2 concentration in
parts per billion in census block group of school

location: 2011–2015
1.327 17.676 6.338 2.664

Noise exposure: road noise level in A-weighted
decibels (dB(A)) within 500 meters of school: 2016 0.000 62.828 48.919 13.977

Independent variables:
Total number of students 1 5947 634 523

% Students: White 0.000 100.000 50.930 29.687
% Students: Hispanic or Latino 0.000 100.000 50.930 29.687

% Students: Black or African-American 0.000 100.000 12.085 16.132
% Students: Asian or Pacific Islander 0.000 84.570 3.110 7.042

% Students: multi-racial or other minority race 0.000 33.333 2.688 2.384
% Students: free or reduced lunch eligible 0.000 99.849 55.262 26.708

Highest grade served: pre-elementary (early
education–1st) 0.000 1.000 0.003 n/a

Highest grade served: elementary (2nd–6th) 0.000 1.000 0.530 n/a
Metropolitan (RUCA code of census tract: 1–3) 0.000 1.000 0.800 n/a
Micropolitan (RUCA code of census tract: 4–6) 0.000 1.000 0.090 n/a
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2.2. Independent Variables

For each school, we obtained the number of students who were White, Black or
African-American, and Hispanic. Asian and Pacific Islander students were combined into a
single Asian/Pacific Islander category due to their smaller counts. Students who were of
more than one race or belonged to other non-White races were also combined to comprise
the multiracial/other-race category. Following previous studies on exposure disparities at
school locations [8,12,30,31], we used students who qualify for free or reduced lunches as a
proxy for socioeconomic deprivation in schools, since student families must be at or below
185% of the federal poverty line to become eligible.

For the second research question, which involves multivariable modeling, the to-
tal number of enrolled children was used to estimate respective percentages for these
racial/ethnic and socioeconomic categories; the White student percentage was excluded
as the reference group. Our analysis for this research question also included dichotomous
variables that represent the grade level of students served in each school using data on the
highest grade offered at the school. These binary indicators comprise schools that serve
children at or below the first grade (pre-elementary) and schools with the highest grade
being second through sixth (elementary). We excluded schools serving seventh or higher
grades as their highest grade (i.e., junior-high and high schools) from our models as the
reference group, since older children are less vulnerable to the harmful effects of air and
noise pollution than younger children [1,14,30]. To account for urban–rural differences in
school location, we used Rural–Urban Commuting Area (RUCA) codes developed by the
US Department of Agriculture [43]. Our models included dichotomous variables to identify
schools located in metropolitan (RUCA codes 1–3) and micropolitan (RUCA codes 4–6)
census tracts. Schools from tracts located in small towns and rural areas (RUCA codes 7–10)
served as the reference group. School size, or the total number of enrolled students, was also
used as an additional control variable, following studies that have previously examined air
pollution [30] or noise exposure [8] at the school level.

The names and summary statistics for independent variables used in this study are
provided in Table 1.

2.3. Statistical Analysis

For the first research question, we first identified public schools located in the four
quartiles for both NO2 and road noise exposure. We then estimated the percentages of
students attending public schools in Texas belonging to each racial/ethnic category and eli-
gible for free/reduced-price lunches, in each quartile. A z-test for difference in proportions
was implemented to determine if the percentages of racial/ethnic minorities and socioeco-
nomically deprived students in the highest quartile (top 25%) significantly exceeded those
in other Texas schools (bottom 75%) and the first quartile (bottom 25%), separately for NO2
and noise exposure. These children-level bivariate comparisons included 5,340,966 stu-
dents attending all 8428 Texas public schools with at least one enrolled student and no
missing data.

For the second research question, we employed generalized estimating equations
(GEEs), a multivariable statistical technique that extends the generalized linear model to
accommodate clustered data, to predict the two dependent variables representing NO2
and road noise exposure, respectively. To ensure stable percentages for all independent
variables, 176 schools with fewer than 30 children were excluded. Our multivariable
analysis thus encompasses 8252 schools with no missing data for our variables. GEEs
are suitable here because our data are clustered (e.g., schools within school districts) and
because they relax several assumptions of traditional regression (e.g., normality). These
models assume that observations from different clusters are not related to each other, while
observations within a cluster (e.g., schools belonging to the same school district) are related.
For each dependent variable and GEE, we selected model specifications that provided the
best statistical fit based on the quasi-likelihood under the independence model criterion.
Both models control for clustering utilizing the school district where the school was located
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(8252 schools in 1202 districts). All continuous independent variables were standardized
before inclusion in the GEEs, and two-tailed p-values from the Wald Chi-square test were
used to test the statistical significance of each variable coefficient. Diagnostic testing, based
on variance inflation factor, tolerance, and condition index criteria, confirmed that the
models were not affected by multicollinearity.

3. Results

The spatial distributions of the two dependent variables are shown in Figure 1, where
all Texas public schools are grouped into four quartiles based on their respective values of
NO2 concentrations (Figure 1a) and road noise (Figure 1b). Tracts in the highest quartile
(top 25%) for both NO2 and noise exposure are located mainly within or adjacent to the
three largest metropolitan areas (Dallas, Houston, and San Antonio) and along interstate
highways that connect these areas. In contrast, schools in the lowest quartile (bottom
25%) for both dependent variables can be observed mainly in rural districts with fewer
schools. However, a large proportion of schools in the highest quartile of road noise
exposure are also located along secondary highways that intersect smaller metropolitan
areas (e.g., Austin, Beaumont, and Lubbock) of Texas.
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For the first research question, we compared the characteristics of enrolled students
across the four quartiles depicted in Figure 1. These results are presented in Table 2.
Students attending schools in the highest quartile (Q4) for NO2 concentration levels are
significantly more likely to be Hispanic, Black, or Asian/Pacific Islander, and be eligible for
free/reduced lunches, when compared to other schools in Texas and the lowest quartile
(Q1), in particular. The largest disparities with respect to highest quartile were observed
for Hispanic students and those eligible for free/reduced lunches. However, students
attending schools in the highest quartile (Q4) for NO2 exposure are significantly less
likely to be White or multi-racial/other race. The percentage of White students is highest
and substantially larger in the lowest quartile (Q1) for NO2 exposure, compared to other
quartiles. We found similar disparities for road noise exposure, in terms of significantly
greater percentages of Black, Hispanic, and socioeconomically deprived students attending
schools in the highest quartile (Q4) than other schools or the first quartile. However, these
percentage differences were considerably smaller compared to those observed earlier for
NO2 exposure. Additionally, students attending schools in the highest quartile (Q4) for road
noise exposure are significantly less likely to be Asian/Pacific Islander or multi-racial/other
race. The percentage of White students is again highest in the lowest quartile (Q1) for road
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noise exposure, but their percentages in the highest quartile (Q4) do not differ significantly
from those in other Texas schools.

Table 2. Distribution of Texas public school students across traffic-related air and noise pollution
exposure quartiles.

Q1: Lowest
25% Q2 Q3 Q4: Highest

25%
Q4-Other
Schools 1

Q4–Q1:
Difference

NO2 concentration in parts per billion:
% Students: White 49.36% 34.06% 22.92% 14.71% −18.49% ** −34.64% **

% Students: Hispanic or Latino 39.46% 47.63% 52.42% 65.11% 17.49% ** 25.65% **
% Students: Black or

African-American 6.75% 11.27% 16.00% 13.74% 1.63% ** 6.99% **

% Students: Asian or Pacific Islander 1.46% 4.02% 5.85% 4.36% 0.21% ** 2.90% **
% Students: multi-racial or

other minority 2.97% 3.02% 2.82% 2.08% −0.85% ** −0.89% **

% Students: free or reduced
lunch eligible 46.74% 45.66% 51.65% 65.06% 16.70% ** 18.32% **

Road noise level in dB(A):
% Students: White 30.45% 26.25% 27.89% 28.13% −0.01% −2.32% **

% Students: Hispanic or Latino 50.41% 52.06% 53.03% 54.13% 3.50% ** 3.07% **
% Students: Black or

African-American 12.11% 11.02% 11.98% 15.18% 2.30% ** 3.72% **

% Students: Asian or Pacific Islander 4.18% 4.78% 4.45% 3.39% −1.09% ** −0.79% **
% Students: multi-racial or

other minority 2.85% 2.71% 2.65% 2.56% −0.18% ** −0.28% **

% Students: free or reduced
lunch eligible 51.16% 53.00% 53.82% 53.77% 1.11% ** 2.61% **

Note: ** p < 0.01, based on two-sample z-test of proportions; 1 Other schools represent public schools in the lowest
75% for NO2 exposure and road noise level, respectively.

For the second research question, we used multivariable GEE models. Results from
the GEE model for NO2 exposure are summarized in Table 3. The numbers in the Exp(Beta)
column represent the percentage change in NO2 concentration for every one standard
deviation increase in each of the independent variables, and can be used to interpret the
observed statistical associations.

Table 3. Multivariable generalized estimating equation (GEE) for predicting NO2 exposure in Texas
public schools.

Beta Lower 95% CI Upper 95% CI Exp(Beta) p-Value

Total number of students 0.006 −0.005 0.017 1.006 0.294
% Students: Hispanic or Latino 0.307 0.279 0.336 1.359 <0.001

% Students: Black or
African-American 0.163 0.135 0.192 1.177 <0.001

% Students: Asian or
Pacific Islander 0.114 0.091 0.137 1.121 <0.001

% Students:
multi-racial/other minority 0.048 0.026 0.069 1.049 <0.001

% Students: free/reduced
lunch eligible −0.065 −0.094 −0.036 0.937 <0.001

Pre-elementary school 0.053 0.012 0.094 1.054 0.011
Elementary school 0.022 0.002 0.042 1.022 0.030

Metropolitan 0.316 0.267 0.366 1.372 <0.001
Micropolitan 0.017 −0.034 0.069 1.017 0.509

Intercept 1.535 1.499 1.572 <0.001
Scale 0.017

Note: GEE is based on an inverse Gaussian distribution with a logarithmic link function and an independent
correlation matrix; N = 8252 schools with at least 30 enrolled students.
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After controlling for clustering by school district (boundaries depicted in Figure 1) and
other independent variables, the percentages of Hispanic, Black, Asian/Pacific Islander, and
multi-racial/other-race children indicated a statistically significant and positive relationship
with NO2 exposure (p < 0.001). Specifically, a one standard deviation increase in the
percentage of Hispanic, Black, Asian/Pacific Islander, and multi-racial/other-race students
is associated with 35.9%, 17.7%, 12.1%, and 4.9% increases in NO2 concentration levels,
respectively. The relationship with socioeconomic deprivation (free/reduced-price lunches),
however, was negative (p < 0.001). Both pre-elementary and elementary schools as well
as those located in metropolitan tracts also showed significantly greater NO2 exposure
(p < 0.05).

Multivariable GEE results for excessive road noise exposure are shown in Table 4. After
adjusting for clustering by school district and other independent variables, the percentages
of Hispanic, Black, Asian/Pacific Islander, and multi-racial/other-race children did not
indicate a statistically significant association with road noise exposure (p > 0.05). However,
the relationship with socioeconomic deprivation was positive and significant (p < 0.001).
Specifically, a one standard deviation increase in the percentage of students eligible for
free/reduced lunches is associated with a 3.8% increase in road noise levels. Both pre-
elementary and elementary schools showed significantly lower noise levels compared to
higher grade schools, although the association with pre-elementary was non-significant
(p > 0.05). Schools in metropolitan tracts also indicated significantly greater road noise
exposure (p < 0.05).

Table 4. Multivariable GEE for predicting road noise exposure in Texas public schools.

Beta Lower 95% CI Upper 95% CI Exp(Beta) p-Value

Total number of students 0.001 −0.005 0.008 1.001 0.719
% Students: Hispanic or Latino −0.015 −0.032 0.002 0.985 0.088

% Students: Black or
African-American −0.002 −0.013 0.009 0.998 0.757

% Students: Asian or
Pacific Islander 0.005 −0.006 0.015 1.005 0.364

% Students:
multi-racial/other minority −0.007 −0.018 0.005 0.993 0.259

% Students: free/reduced
lunch eligible 0.037 0.019 0.055 1.038 <0.001

Pre-elementary school −0.012 −0.043 0.019 0.988 0.463
Elementary school −0.039 −0.054 −0.025 0.962 <0.001

Metropolitan 0.033 0.003 0.064 1.034 0.031
Micropolitan 0.018 −0.016 0.053 1.018 0.301

Intercept 3.882 3.854 3.910 <0.001
Scale 2.136

Note: GEE is based on a Tweedie distribution with a logarithmic link function and an independent correlation
matrix; N = 8252 schools with at least 30 enrolled students.

4. Discussion

This study focused on investigating racial/ethnic and socioeconomic inequities in
exposure to both traffic-related air and noise pollution across public schools in Texas. With
regard to our first question, schools exposed to the highest levels of both outdoor NO2 and
road noise (top 25%) were found to contain a significantly greater proportion of enrolled
students who are Black and Hispanic, with the Hispanic percentage showing the highest
deviations or greatest disparity, compared to other Texas schools (bottom 75%). In contrast,
the White student percentage was consistently higher in schools facing the lowest exposure
(bottom 25%). Socioeconomically deprived students were also significantly overrepresented
in schools with highest exposure (top 25%) to both NO2 and road noise.

Our second research question focused on analyzing exposure inequities based on
sociodemographic characteristics and grade level of schools, after adjusting for school size,
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urban/rural location, and spatial clustering of schools by school district. Multivariable
models revealed significantly higher percentages of Hispanic, Black, and Asian/Pacific
Islander to be associated with greater NO2 exposure. The strongest positive relationship
with outdoor NO2 concentration levels was observed for the Hispanic student percentage,
followed by the Black student percentage. While similar racial/ethnic disparities were
not observed for road noise exposure, a higher percentage of socioeconomically deprived
students was found to be significantly related to greater noise exposure levels. The non-
significant associations with Hispanic and Black percentages in our multivariable analysis
can be explained, in part, by higher road noise levels around schools in smaller metropolitan
areas (e.g., Abilene, Amarillo, Lubbock, and Midland) that are characterized by relatively
higher proportions of White students compared to the more racially/ethnically diverse
schools in the largest metropolitan areas (e.g., Dallas, Houston, and San Antonio) of Texas.
While public schools in these large urban areas may not be exposed to excessive traffic-
related noise, they could experience higher noise levels from various non-transportation
sources (e.g., construction and industrial).

Our results for the relationship between NO2 exposure and the proportions of His-
panic, Black, and Asian/Pacific Islander school children in Texas are consistent with those
from previous studies that reported racial/ethnic disparities in exposure to ambient air
pollution at school locations [26–31,44]. While limited environmental justice research on
road noise exposure has been conducted in the US, our results for socioeconomically de-
prived students are similar to previous studies that found greater noise levels in schools
with higher proportions of economically deprived students [8] or neighborhoods of lower
socioeconomic status [40,45,46]. These findings emphasize the need for additional empirical
research on exposure to vehicular air and noise pollution for socially disadvantaged school
children in other US cities and states, as well as in other countries of the world.

In terms of other explanatory factors, we found divergent exposure patterns for NO2
and roadway noise. Multivariate model results revealed that younger children (i.e., ele-
mentary school or earlier grade levels) are exposed to significantly higher outdoor NO2
concentrations than older children (i.e., junior-high or high school levels) while attending
public schools in Texas. These results are a cause for serious concern, since younger chil-
dren are more vulnerable to the effects of toxic air pollutants because of heavier exposures
(i.e., consuming more air and food per unit of body weight compared to older children
and adults), biologic sensitivity linked to their ongoing growth and development, and
their long future lifetimes since early insults can adversely impact their health and well-
being as adults [1,14,30,47]. With regard to road noise levels, however, elementary school
children indicated significantly lower exposure compared to older children who attend
junior-high or high schools. Although these results do not align with those reported by
the only national-scale environmental justice study of public schools in the US [8], another
noise-related study found children to be exposed to lower noise levels than individuals
aged more than 18 years [40].

While our study provides new insights on social inequities in traffic-related air pol-
lution and noise exposure across Texas public schools, it is important to consider three
limitations. First, our analysis of air pollution exposure at school locations is based on mod-
eled estimates of ambient, annual average NO2 concentrations. Ambient concentrations
of pollutants could differ from personal exposure estimates, especially when children do
not spend all of their time at schools and may also spend more time indoors than outdoors
while at school [31]. Consequently, our results represent surrounding outdoor air as a proxy
for exposure during school hours. Second, since children are only present at schools during
the day, it would have been more appropriate to examine average daytime instead of 24 h
road noise measures. Although previous studies have used 24 h average noise levels for
analyzing exposure disparities for schools, these metrics potentially underestimate daytime
traffic-related noise at school locations [8], especially during hours when traffic volume is
highest (i.e., rush hour). Third, the percentage of students eligible for free or subsidized
lunches may not serve as the most reliable indicator for poverty and should not be confused
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with direct measures of socioeconomic status that require more detailed information on
financial factors or household income for each enrolled student [31].

5. Conclusions

This paper contributes to the growing body of research on environmental injustices
experienced by children by presenting the first quantitative analysis of exposure to traffic-
related air and noise pollution at public schools in Texas—the second largest and one of the
most environmentally polluted US states. Unlike previous studies on schools that focus
either on air pollutants or noise levels, we utilized variables that encompass both these
dimensions and are based on the most geographically detailed estimates of air pollution
and noise exposure from transportation sources currently available. Our findings reveal
specific differences in the socio-spatial patterns of traffic-related air pollution and road
noise exposure across public schools in Texas, thus emphasizing the need to examine
inequities associated with both these environmental hazards. Schools burdened by greater
NO2 exposure are more likely to serve racial/ethnic minority and younger children (i.e., el-
ementary or lower levels) and locate in both metropolitan and micropolitan areas of the
state. In contrast, schools experiencing greater exposure to road noise are more likely to
serve socioeconomically deprived and older children (i.e., junior-high or high school levels)
in metropolitan areas of Texas.

These racial/ethnic and socioeconomic inequities associated with traffic-related air
and noise pollution have important policy implications, because children’s exposure to both
these hazards have been associated with adverse health outcomes that cause school absence,
poorer academic performance, increased probabilities of suboptimal health and diminished
achievement as adults, and perpetuation of intergenerational disenfranchisement and
poverty [2–4,21,48]. Our findings thus underscore the urgent necessity to develop and
implement appropriate mitigation strategies that focus on reducing school exposure to both
vehicular air and noise pollution, especially in schools attended by higher percentages of
racial/ethnic minority and socioeconomically deprived children that are often additionally
burdened with other challenges such as limited financial resources, smaller annual budgets,
and teacher shortages that negatively impact their students.
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