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Abstract: The deteriorations of the thermal environment due to extreme land surface temperature
(LST) has become one of the most serious environmental problems in urban areas. The spatial
distribution of urban biophysical composition (UBC) has a significant impact on the LST. Therefore, it
is essential to understand the relationship between LST and biophysical physical composition (BPC)
to mitigate the effects of UHIs. In this study, an attempt was made to understand the relationship
between LST and BPC in a hot desert coastal megacity (Jeddah megacity) in Saudi Arabia. Principal
component analysis (PCA) was used to understand the factors affecting LST based on remote
sensing indices. Correlation and regression analyses were carried out to understand the relationship
between LST and BPC and the impact of BPC on LST. The results showed that, in Jeddah city from
2000 to 2021, there was a substantial increase in the built-up area, which increased from 3085 to
5557.98 hectares. Impervious surfaces had a significant impact on the LST, and green infrastructure
(GI) was negatively correlated with LST. Based on the PCA results, we found that the GI was a
significant factor affecting the LST in Jeddah megacity. The findings of this study, though not
contributing to further understanding of the impact of BPC on LST, will provide planners and policy
makers with a foundation for developing very effective strategies to improve the eco-environmental
quality of Jeddah megacity.

Keywords: urban heat island; megacity; urban biophysical composition; principal component
analysis; eco-environmental quality

1. Introduction

The world has experienced rapid urban expansion in the last few decades [1,2]. Thus,
land use and land cover change (LULC) due to rapid urban expansion has emerged as one
of the most significant drivers for the increase in land surface temperature (LST) in urban
areas [3–5]. LULC has been recognized as one of the main causes of increased LST [6,7].
LULC largely affects the biophysical conditions of the relevant area [8–10]. Moreover, the
rapid rate of urbanization has led to significant transformations of natural landscapes, such
as vegetation cover and waterbodies, into impervious surfaces [11,12]. This phenomenon
ultimately affects urban ecosystems, local climates, and energy flow [13]. Thus, under-
standing the relationship between biophysical indices and LST is crucial for mitigating
local climate impacts in cities [14,15]. One of the most serious problems in urban areas area
is an increase in temperature due to conversion of the natural landscapes (such as vegeta-
tion cover and water cover) into impervious surface cover [16] as well as the conversion
of vegetation cover into agricultural and open land. Previous studies have shown that
LULC resulting from the conversion of natural to artificial lands has substantial impacts on
the LST [17,18]. LULC includes both physical and biological components on the Earth’s
surface, and LST is closely linked to the spatial distribution of the physical and biophysical
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components over the surface [19]. The physical and biological components have differ-
ent moisture, thermal, and radiative properties, and these properties are strongly linked
with the surrounding environment. Thus, LST has a significant connection with the soil
moisture, greenness, and wetness of surfaces [20,21]. Continuous urban expansion causes
deterioration of waterbodies and vegetation cover, leading to significant alterations in the
biophysical environments of urban areas [22,23]. Therefore, it is essential to understand the
interrelationships between biophysical components and the urban environment [24]. Thus,
in this study, an attempt was made to understand the relationship between the biophysical
environment and LST.

In the context of Saudi cities, unprecedented urban expansion with a rapid increase in
impervious surfaces could impact the LST and lead to deterioration of the urban thermal
environment [25–27]. The application of remote sensing indices offers significant oppor-
tunities to understand the relationship between biophysical indices and LST [28,29]. In
previous literature, a number of remote sensing technologies were used to estimate the
impact of the biophysical environment on LST through such indices as the normalized
difference vegetation index (NDVI), normalized difference built-up index (NDBI), normal-
ized difference bareness index (NDBaI), normalized difference water index (NDWI), and
modified normalized difference water index (MNDWI) [30–32]. With this background, a
fundamental question emerges: why does this study focus on the LST as one of the most
significant parameters to determine impacts on biophysical parameters? LST is considered
a significant component in enhancing the quality of urban health [33–35]. Increases in
impervious surfaces and the deterioration of the natural landscapes result in an increase in
the LST and a deterioration of the thermal comfort level in urban environments [36–38].
According to Yao et al. [39], LST is considered one of the most significant parameters
for monitoring urban ecological quality. The NDVI, NDBI, MNDWI, and NDWI have a
close association with LST [19,40]. A continuous increase in LST ultimately leads to the
urban heat island (UHI) phenomenon [41,42]. In previous studies, it was recognized that
temperatures are higher in urban than rural areas [43,44]. This phenomenon is known as
the urban heat island (UHI) effect [43]. The UHI phenomenon is also closely related to the
urban biophysical composition (UBC) [44]. Therefore, it is important to understand the
relationship between LST and biophysical composition, particularly in a hot desert climate
similar to that in Saudi Arabia.

In this study, Jeddah megacity in Saudi Arabia was analyzed to understand the rela-
tionship between LST and biophysical indices. After a quick review of previous research
studies, a few notable research gaps were identified. Firstly, most studies in Saudi Arabia
have focused on the relationship between LULC and LST, whereas very few sought to
understand the relationship between biophysical indices and LST. Secondly, biophysical
indices not only help in understanding the urban thermal environment but also play a
significant role in understanding the eco-environmental quality in urban areas. In many
previous studies, biophysical indices were used for eco-environmental modeling, such as
the modeling of ecological quality [45,46], ecological vulnerability [47,48], and environmen-
tal quality [49]. Therefore, studying the relationship between biophysical parameters and
LST using remote sensing indices will not help us understand the thermal environmental
quality but rather the eco-environmental quality of the city. Thirdly, Saudi Arabia is located
in a hot desert climate where the temperature during summer reaches above 40 ◦C. There-
fore, it is essential to understand the relationship between LST and biophysical indices for
policy implications. However, very few studies focus on this factor. These research gaps
highlight the need to conduct a study on the relationship between LST and biophysical
parameters to achieve sustainable urban environmental development for human wellbeing.

2. Materials and Methods
2.1. Study Area

In recent years, Saudi cities have experienced rapid growth in population due to
large-scale migration. Cities such as Jeddah, Dammam, and Riyadh have experienced rapid
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urban expansion in the last 40 years [49]. For this study, Jeddah megacity was selected to
understand the relationship between LST and urban biophysical indices Figure 1. Jeddah
is one of the most populous megacities in Saudi Arabia and is located in the western part
of the country on the western coast of the Red Sea. The total geographical area of this
megacity is about 1600 km2, with a population density of 5400 person/km2. This megacity
has a dry and hot desert climate with a maximum temperature above 40 ◦C during summer
and average rainfall of approximately 45 mm.
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Figure 1. Location map of the study area (Jeddah megacity in Saudi Arabia).

2.2. Data Source

In this study, multi-temporal satellite images were used to create LULC maps and
biophysical indices. LULC maps were developed for the years of 2000 and 2021, and both
LANDSAT 5 TM and LANDSAT 8 OLI were used. The biophysical indices were developed
for the year 2021 using LANDSAT 8 OLI images. Data related to the LULC and biophysical
indices were extracted from the United State Geological Survey (USGS) with a spatial
resolution of 30 m. Details of the data sources are presented in Table 1.

Table 1. Details of the data sources used in this study.

Year Date of
Acquisition Path/Row Sensor Source Purpose

2000 30 September 2000

170/45

LANDSAT TM
USGS

(https://earthexplorer.
usgs.gov/)

LULC map

2010 2 April 2010 LANDSAT TM LULC map

2021 16 September 2021 LANDSAT OLI LULC map and
biophysical indices

2.2.1. Image Preprocessing

In this study, the collected data were preprocessed in the arcGIS environment (version
10.3). Bands were extracted from the satellite images to develop the biophysical indices,
including NDVI, NDBI, and NDWI. NDBaI, an LST map, was developed from the thermal
band (band 10 for LANDSAT OLI).

2.2.2. Extraction of Land Surface Temperature (LST)

LST is one of the most significant parameters for representing the thermal condition in
any area [50]. Particularly in urban areas, assessment of the LST is crucial to understanding

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/


Int. J. Environ. Res. Public Health 2023, 20, 5025 4 of 16

the spatial patterns of LST and implementing effective strategies for its management [51,52].
There are a few basic steps necessary to extract LST from satellite images. These steps are
as follows.

Step 1: Conversion of the digital number to spectral radiance (Lλ)
Every object with a temperature above 0 K emits thermal electromagnetic energy [53].

Radiance from the sensors can be received from the thermal sensors [54]. Thus, the spectral
radiance (Lλ) can be calculated using the following equation:

Lλ = Lminλ

[
Lmaxλ − Lminλ

QCALmax −QCALmin
×QCAL

]
(1)

where L refers to the spectral reflectance derived from the sensor; Lmaxλ and Lminλ refer to
the maximum and minimum spectral radiance from the thermal band (6 for TM and 10
for OLI 8); QCAL refers to the digital number (DN) of the pixel; and QCALmax and QCALmin
refer to the maximum (255) and minimum (0) DN values, respectively.

Step 2: Converting spectral radiance (Lλ) to brightness temperature (Tβ):
In the second step, it is necessary to transform the spectral radiance (Lλ) to reflectance

to correct the emissivity. As per the estimations of [55], the vegetated areas were attributed
a value of 0.92, and non-vegetated areas were 0.95. The emissivity can be extracted from
the following equation:

Tβ =
K2

In
(

K1
Lλ

+ 1
) − 273.15 (2)

where Tβ refers to the brightness temperature (K); Lλ refers to the spectral radiance
of the sensor (Wm−2sr−1µm−1); and K1 and K2 refer to the calibration constant (K1 =
60.776 mWcm−msr−rµm−m and K2 = 1260.56 for the LANDSAT band). Absolute zero is
used to convert the temperature into degrees Celsius.

Step 3: Correction of the emissivity through NDVI (Pv)
In step 3, it is necessary to correct the spectral emissivity of the retrieval temperature

value. Spectral emissivity is calculated using NDVI; the proportion of NDVI can then be
calculated (Pv). The following equation is used to calculate Pv:

Pv =

(
NDVI − NDVIsoil

NDVIveg + NDVIsoil

)2
(3)

where NDVIsoil and NDVIveg refer to the soil and vegetation pixel values, respectively.
The threshold values of soil and vegetation are 0.70 and 0.20 [56].

Step 4: Emissivity (δ )
Land surface emissivity (LSE) is important to estimate LST and is considered as the

proportionality factor of Plank’s law. The LSE is calculated using the following equation:

δλ = δveg.λPv + δsoil(1− Pv) + Cv (4)

where δveg and δveg.λ refer to the vegetation and soil, respectively, and C refers to the
surface representation.

Step 5: Land surface temperature (LST):
Finally, LST can be calculated using the following equation:

LST =
Tβ[

1 +
{(

λ.
Tβ

ρ

)
In.δλ

}] (5)

where LST refers to the land surface temperature in degrees Celsius; Tβ refers to the
brightness temperature of the sensor; λ refers to the wavelength of the emitted radiance



Int. J. Environ. Res. Public Health 2023, 20, 5025 5 of 16

(λ = 10.895); and δλ refers to the emissivity. The emissivity is calculated using the following
equation:

ρ = h
C
α
= 1.438× 10−2mK (6)

where α refers to the Boltzmann constant, which is 1.38× 10−23 JK−1; h refers to Planck’s con-
stant, which is 6.626× 10−34 JK−1; and C refers to the velocity of light (2.998× 10−8 ms−1).

2.2.3. Accuracy Assessment

In this study, the accuracy levels of the LULC maps were calculated for the years of
2000, 2010, and 2021. The accuracy of the LULC maps indicates the difference between
classified maps and reference data. The overall accuracy (OA), user accuracy (UA), producer
accuracy (PA), and kappa statistics derived from the error matrix were used to determine
the accuracy level of the classified LULC maps. The following equation is used to derive
the accuracy level of the classified LULC maps:

OA =
Number o f the true positive + Number o f the true negative

Pixel in the groud truth

UA measures the commission error representing the probability of the classified pixels
over the ground, and PA represents the fit of the classification.

UA =
Row elementsdiagonal

Rowtotal

PA =
Column elementsdiagonal

Columntotal

Finally, the kappa coefficient is used to measure the accuracy of the classified LULC
images as follows:

K =
Row elementsdiagonal

Rowtotal
.

2.2.4. Extraction of the Biophysical Parameters

In this study, the impact of the biophysical indices on the LST was assessed. These
indices were NDVI, NDWI, NDBI, NDBaI, and MNDWI. In previous studies, several
biophysical parameters were analyzed to understand their impact on the LST, but these
studies failed to comprehensively capture the thermal patterns and their impacts [42].
Therefore, it remains essential to analyze the impacts of biophysical parameters on the
thermal environment in urban areas [57]. Although an individual spectral parameter
can quantify surface characteristics, it is difficult to comprehensively assess the surface
characteristics without using a variety of thermal properties related to the biophysical
parameters. Thus, in this study, a number of spectral indices were used to characterize the
impact of biophysical parameters on the thermal patterns in Jeddah megacity. The details
of the biophysical indices are discussed in the following sections:

Normalized Difference Vegetation Index (NDVI)

The vegetation status of any area can be represented by the NDVI, which indicates
the health of the vegetation [58]. Thus, NDVI is a very useful parameter to quantify the
greenness of any region [59]. In previous studies, NDVI was widely used as a significant
parameter for analyzing urban growth patterns and microclimatic conditions in urban
areas. The value of NDVI ranges from −1 to +1, where a value close to +1 represents
healthy vegetation, and a value close to −1 indicates poor vegetation health status. A high
value of NDVI indicates vegetation cover, a low positive value indicates built-up and bare
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lands, and a negative value of NDVI indicates water bodies [60]. The following equation is
used to calculate NDVI:

NDVI =
NIR− R
NIR + R

(7)

where NIR (near infrared band) indicates band 4 for LANDSAT TM and band 5 for OLI 8,
whereas R (red band) indicates band 3 for LANDSAT TM and band 4 for OLI 8, respectively.

Normalized Difference Water Index (NDWI)

NDWI is the remote sensing parameter used to denote the water level in any area. The
value of NDWI ranges from −1 to +1, representing low and high water levels, respectively.
The value of the NDWI is more significant than NDVI, mainly due to a lack of sensitivity to
atmospheric effects [51]. The following equation is used to calculate NDWI:

NDWI =
G− NIR
G + NIR

(8)

where G (green band) represents bands 2 and 3 for LANDSAT 5 and OLI 8, whereas NIR
(near infrared band) represents bands 4 and 5 for LANDSAT 5 and OLI 8, respectively.

Normalized Difference Built-Up Index (NDBI)

The nature of imperviousness is one of the most significant parameters affecting
thermal patterns in urban environments. NDBI is a common remote sensing parameter
used to denote built-up areas or impervious surface areas in any area. The middle infrared
(MIR) and near infrared (NIR) band values are used to calculate the NDBI for impervious
surface extractions. The following equation is used to extract NDBI:

NDBI =
MIR− NIR
MIR + NIR

(9)

where MIR (middle infrared band) corresponds to bands 5 and 6 for LANDSAT TM and
OLI 8, whereas NIR (near infrared bans) corresponds to bands 4 and 5 for LANDSAT TM
and OLI 8, respectively. The value of NDBI ranges from −1 to +1, with a value close to ‘0′

indicating vegetation cover; a negative value indicates waterbodies, and a positive value
represents impervious surface areas (i.e., built-up areas).

Modified Normalized Difference Vegetation Index (MNDWI)

MNDWI is one of the most significant remote-sensing-based parameters used to
estimate waterbodies without vegetation noise and built-up areas. In previous studies,
MNDWI was widely used to estimate waterbodies and to understand their impacts on
the thermal environment in urban areas [61]. The following equation is used to estimate
the MNDWI:

MNDWI =
G−MIR
G + MIR

(10)

where G (Green band) represents bands 2 and 3 for LANDSAT 5 and OLI 8, whereas MIR
(middle infrared band) represents bands 5 and 6 for LANDSAT TM and OLI 8, respectively.

In this study, correlation analysis was carried out after normalization of the parameters.
The following equation was used for the normalization of the parameters used in this study:

Positive =
A−Amin

Amax −Amin
(11)

Negative =
Amax−A

Amax −Amin
(12)

where A indicates the actual value of the parameter, and Amax and Amin refer to the
maximum and minimum value of the parameter.
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2.3. Statistical Analysis

In this study, descriptive (mean and standard deviation) and inferential (correlation
and regression) statistical analyses were carried out to understand the overall scenario
regarding the impact of biophysical parameters on LST. Spearman’s correlation coefficient
(r) was used to understand the relationship between LST and the biophysical indices. The
biophysical indices have a significant impact on the LST [25], and the pattern of the thermal
environment in urban areas varies spatially due to variation in the surface properties [62].
Therefore, it is essential to understand the relationship between LST and biophysical
parameters. PCA was also used to identify the factors affecting LST. All the statistical
analyses were carried out using SPSS software (version 22).

3. Results
3.1. LULC Dynamics in Jeddah

In Jeddah, there have been substantial variations in LULC over the last 20 years. For ex-
ample, in 2000, the built-up area totaled 3085 hectares, which increased to 4763.69 hectares
in 2010 and 5557.98 hectares in 2021. Thus, the built-up area increased by about 80% from
2000 to 2020. On the other hand, open land totaled 18,494 hectares in 2000, which decreased
to 15,782.32 hectares in 2021, representing a decline from 82.85% to 74.96% (Table 2 and
Figure 2). From 2000 to 2021, the vegetation area increased from 26.23 to 34.66 hectares (an
increase of about 32%). As per the kappa statistic, it was found that the average accuracy
of LULC maps was 82%. The spatial distribution of LST in Jeddah megacity is shown in
Figure 3.

Table 2. LULC in Jeddah megacity for the indicated years.

LULC Type 2000 % 2010 % 2021 %

Built up 3085.64 14.05 4763.96 19.85 5557.98 22.12
Open land 18,191.44 82.85 16,519.87 76.91 15,782.32 74.96

Water 653.51 2.98 673.47 3.14 578.46 2.75
Vegetation 26.23 0.12 22.66 0.11 34.66 0.16
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3.2. Pattern of the Biophysical Indices in Jeddah

Table 3 provides the descriptive statistics of the biophysical indices in Jeddah city for
the year of 2021. The maps show significant variation in biophysical parameters across
the city. The mean value MNDWI was found to be −0.138, with a maximum, minimum,
and standard deviation of 0.309, −0.479, and 0.0485, respectively. The mean NDVI value
was 0.041, with a maximum, minimum, and standard deviation of 0.4328, −0.399, and
0.0248, respectively. In the case of NDBI, the mean value was 0.048, with a maximum,
minimum, and standard deviation of 0.461, −0.342, and 0.048, respectively. In the case
of the spatial variation of the biophysical indices, it was found that the areas with high
NDVI are mainly scattered. High values of NDVI were mainly concentrated in the middle–
western parts of the city (along the sea). High NDVI values were mainly observed in the
northern, southern, and middle eastern parts of the city. These areas are characterized by
open impervious surfaces. In the case of NDWI, the areas along the sea are characterized
by high NDWI values. The areas in the southern, northern, and middle eastern parts of
the city are characterized by having the lowest NDWI and bare impervious surfaces. The
details of NDBaI, SAVI, and MNDWI are presented in the maps (Figure 4).

Table 3. Descriptive statistics of the biophysical indices.

Biophysical Indices Max Min Mean SD

MNDWI 0.309 −0.479 −0.138 0.0485
NDBI 0.461 −0.342 0.048 0.0289
NDVI 0.431 −0.238 0.0401 0.0248
NDWI 0.277 −0.399 −0.09 0.0377
SAVI 0.648 −0.057 0.06 0.0372
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3.3. Impact of Biophysical Parameters on the LST

The biophysical indices have a significant impact on the LST [44]. In this study, the cor-
relation between LST and biophysical indices was determined using Spearman’s correlation
coefficient (r) (Table 4). The correlation results showed that LST has a positive relationship
with NDBI (r = 0.665) and NDBaI (r = 0.367), and a very weak positive relationship with
NDVI and SAVI. On the other hand, MNDWI and NDWI have a negative relationship with
LST (Figure 5). This result clearly indicates that the areas with higher water coverage are
characterized by lower LST. These findings agree well with previous literature.

Table 4. Correlation between LST and the biophysical indices.

Biophysical Indices MNDWI NDBaI NDVI NDBI SAVI NDWI LST

MNDWI 1.000 −0.796 ** −0.160 * −0.848 ** −0.157 * 0.580 ** −0.620 **
NDBaI −0.796 ** 1.000 0.138 * 0.588 ** 0.131 −0.601 ** 0.367 **
NDVI −0.160 * 0.138 * 1.000 −0.143 * 0.998 ** −0.689 ** 0.049
NDBI −0.848 ** 0.588 ** −0.143 * 1.000 −0.146 * −0.204 ** 0.665 **
SAVI −0.157 * 0.131 0.998 ** −0.146 * 1.000 −0.688 ** 0.052

NDWI 0.580 ** −0.601 ** −0.689 ** −0.204 ** −0.688 ** 1.000 −0.203 **
LST −0.620 ** 0.367 ** 0.049 0.665 ** 0.052 −0.203 ** 1.000

** Correlation is significant at a 0.01 confidence level (2-tailed). * Correlation is significant at a 0.05 confidence
level (2-tailed).
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3.4. Factors Affecting LST

In this study, principal component analysis (PCA) was used to understand the factors
affecting LST in Jeddah in terms of remote-sensing-based biophysical indices (Table 5).
The results show that factor 1 could be explained by two indices: NDVI and SAVI. These
indices are related to the vegetation cover, clearing demonstrating that it plays a significant
role in determining the LST in the city. In previous studies, it was commonly reported that
areas with higher vegetation cover are characterized by lower LST and vice versa [63,64].
Thus, vegetation cover (green space) had significant impact on the cooling effect in urban
areas [65]. Factor 1 explained 70% of the total variance out of the five factors considered in
this study. In the case of factor 2, there were also two indices: NDBI and NDBaI. Factor 2
explained 20.72% of the variance. These indices were found to be strongly affected by
human activities. In the previous studies, it was documented that impervious surface areas
are characterized by high LST. These two factors explained more than 90% of the total
variance in the study.



Int. J. Environ. Res. Public Health 2023, 20, 5025 11 of 16

Table 5. PCA analysis of factors.

Biophysical Indices
Component

1 2 3 4 5

MNDWI −0.448 −0.684 −0.504 −0.226 0.160
NDBaI 0.295 0.423 0.846 0.134 0.018
NDVI 0.968 0.075 0.198 0.135 −0.007
NDBI −0.043 0.957 0.244 0.146 0.003
SAVI 0.968 0.076 0.195 0.140 −0.011

NDWI −0.706 −0.238 −0.564 −0.222 0.278
LST 0.391 0.581 0.247 0.669 −0.032

Variance explained (%) 70.42 20.72 5.62 2.29 0.88
Cumulative (%) 70.42 91.15 96.77 99.07 99.95

4. Discussion

Thus, from the results, it can be clearly recognized that built-up areas were character-
ized by higher LST than the areas covered with vegetation and water bodies. Ren et al. [66]
carried out a study in Zhengzhou (China) using the local climatic zones (LCZ) approach,
and their results showed that built-up areas were characterized by higher LST than the
natural landscapes (such as vegetation cover and water bodies). A similar kind of result
was reported by Chen et al. [67] in Liaoning Province (northeast China). The spatial vari-
ation of the thermal pattern in urban areas is influenced by a number of factors, such as
environmental, social and urban forms [67,68]. Kurniati and Nitivattananon [69], carried
out a study in Surabaya city (Indonesia) and stated that the surface properties and urban
forms of the urban areas, such as green cover use of asphalt, largely influence thermal
behaviour. A study was performed by Shi et al. [68] in the high-density city of Guangzhou
(China), and their findings showed that vegetation cover had a negative and building
density had a positive correlation on LST. In this study, although building density has
not been considered to find out the relationship with LST, NDBI showed that there was a
positive correlation between LST and NDBI. Similar findings werealso reported in other
previous studies [70,71]

Thus, based on the previous studies, it is well documented that socioeconomic, envi-
ronmental, and spatial forms largely influence thermal patterns in an urban environment.
Therefore, urgent action needs to be taken to ensure the sustainability of urban environmen-
tal development [72,73]. A continuous increase in LST ultimately leads to the emergence of
UHI effects [74,75] Therefore, city planners and policy makers must adopt technical and
nature-based solutions (NBS), such as innovative urban landscape planning and adoption
strategies related to green infrastructure, to mitigate the effects of UHIs. Previous studies
have examined a number of strategies that were implemented to mitigate UHI effects, such
as the development of green infrastructure [76,77] and applications of highly reflective
pavements [78] and sustainable urban morphological design [79], and found that they
largely mitigate UHI effects by modifying surface energy [80]. The effectiveness of UHI
mitigation depends on the eco-environmental conditions of urban areas. For example, areas
with green infrastructure act as sink areas for temperature, and impervious surface areas
act as sources of UHI phenomena [81].

Among all these strategies, NBS has been recognized as one of the most significant
measures to mitigate UHI effects [82–84]. NBS was successfully implemented in urban areas
to mitigate a series of urban challenges such as climate change and UHI phenomena [85].
In the context of Saudi cities, an emphasis should be placed on urban greening to mitigate
UHI effects. The applications of green roofs, vertical greenery, and green facades have
emerged as some of the most significant strategies to mitigate UHI effects [86,87]. In many
previous studies, the relationship between green infrastructure and local temperature was
explored to design mitigation strategies [70]. The impacts of green infrastructure have been
well documented in previous literature [88,89]. The areas with higher impervious surfaces
were characterized by higher LST, indicating that these areas are subject to strong UHI
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effects. Therefore, in these areas, greenness can be increased to reduce the impact of UHI
and mitigate heat stress in a city.

Although this study showed an interesting assessment to understand the relationship
between LST and biophysical indices in a megacity located in a hot desert climate, it
has a few limitations, e.g., this study has not assessed the relationship between LST and
biophysical indices on a temporal basis. Therefore, in a future study, temporal analysis
can be more effective to help us understand the relationship between LST and biophysical
indices. Secondly, a few remote sensing indices were used to find out the relationship
between LST and biophysical indices. In future studies, more remote sensing indices can
be utilized for a better interpretation of the relationship.

5. Conclusions

In this study, an attempt was made to understand the relationship between biophysical
indices and land surface temperature (LST) in a hot desert megacity (Jeddah) in Saudi
Arabia using remote sensing. Six remote-sensing-based indices were used to understand
the relationship between biophysical indices and LST in this Saudi megacity, and a few
notable findings were recorded. First, from 2000 to 2021, the built-up area in Jeddah
megacity increased by about 80% while open or bare area decreased from 82.85% to 74.96%.
Second, there were substantial spatial variations in biophysical indices across the megacity,
and most parts of the megacity were found to be characterized by impervious surface
(covered with built-up and bare or open land). Third, NDBI demonstrated a strong positive
correlation with LST, indicating that the areas with high NDBI are characterized by high
LST. On the other hand, MNDWI and NDVI were negatively and very poorly positively
correlated with LST, respectively. This result clearly indicates that reductions in LST in the
megacity could be achieved by expanding green infrastructure. Fourth, the PCA results
show that vegetation cover plays a significant role in affecting LST in Jeddah. In addition
to this, the imperviousness of the surface cover also influences LST in Jeddah megacity.

Thus, based on the overall results, we determined that most of the areas in Jeddah
megacity are characterized by very high LST. Moreover, urban green infrastructure can
decrease LST, based on the very poor positive correlation with NDVI. These analyses
suggest the protective implications of green infrastructure strategies that are needed to
mitigate increased LST in Jeddah megacity. In many developed and developing countries,
the implications of urban green infrastructures have been largely promoted to mitigate
heat in urban areas. Urban green infrastructure planning strategies have been prioritized
in particular, for example in Copenhagen [70], Nanjing [88], and Berlin [89]. Thus, green
infrastructures can be a very effective measure to mitigate heat. In Saudi Arabia, the
Ministry of Municipal and Rural Affairs (MoMRA) has adopted a number of strategies to
improve green spaces in cities. The MoMRA has invested huge financial support in the
sustainable planning of green spaces in Saudi Arabia. Therefore, green spaces at the city as
well as neighborhood scale need to be planned and designed properly.
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