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Abstract: Good water quality safeguards public health and provides economic benefits through
recreational opportunities for people in urban and suburban environments. However, expanding im-
pervious areas and poorly managed sanitary infrastructures result in elevated concentrations of fecal
indicator bacteria and waterborne pathogens in adjacent waterways and increased waterborne illness
risk. Watershed characteristics, such as urban land, are often associated with impaired microbial
water quality. Within the proximity of the New York–New Jersey–Pennsylvania metropolitan area,
the Musconetcong River has been listed in the Clean Water Act’s 303 (d) List of Water Quality-Limited
Waters due to high concentrations of fecal indicator bacteria (FIB). In this study, we aimed to apply
spatial stream network (SSN) models to associate key land use variables with E. coli as an FIB in
the suburban mixed-land-use Musconetcong River watershed in the northwestern New Jersey. The
SSN models explicitly account for spatial autocorrelation in stream networks and have been widely
utilized to identify watershed attributes linked to deteriorated water quality indicators. Surface water
samples were collected from the five mainstem and six tributary sites along the middle section of the
Musconetcong River from May to October 2018. The log10 geometric means of E. coli concentrations
for all sampling dates and during storm events were derived as response variables for the SSN mod-
eling, respectively. A nonspatial model based on an ordinary least square regression and two spatial
models based on Euclidean and stream distance were constructed to incorporate four upstream
watershed attributes as explanatory variables, including urban, pasture, forest, and wetland. The
results indicate that upstream urban land was positively and significantly associated with the log10

geometric mean concentrations of E. coli for all sampling cases and during storm events, respectively
(p < 0.05). Prediction of E. coli concentrations by SSN models identified potential hot spots prone
to water quality deterioration. The results emphasize that anthropogenic sources were the main
threats to microbial water quality in the suburban Musconetcong River watershed. The SSN modeling
approaches from this study can serve as a novel microbial water quality modeling framework for
other watersheds to identify key land use stressors to guide future urban and suburban water quality
restoration directions in the USA and beyond.

Keywords: fecal indicator bacteria; land use; microbial water quality modeling; spatial autocorrelation;
spatial stream network models; urban and suburban water quality

1. Introduction

Good water quality ensures the well-being of urban and suburban residents, as it
safeguards public health and provides economic benefits through recreational opportuni-
ties [1,2]. However, microbial water quality is often impaired due to expanded impervious
areas and the improper management of sanitary infrastructures, such as combined sewer
overflows and failing septic tanks, resulting in elevated concentrations of fecal indicator
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bacteria and waterborne pathogens in urban and suburban waterways [1]. Therefore, it is
essential to monitor microbial water quality regularly. Microbial water quality is assessed
using fecal indicator bacteria (FIB), such as E. coli, fecal coliform, and enterococci. These
FIBs originate from the gastrointestinal tract of human or warm-blooded animals and are
introduced into the urban and suburban waterbodies through fecal matter [3]. Although
FIBs are not pathogens per se, their presence indicates the potential cooccurrence of true
pathogens [4]. Water quality criteria were hence established to protect public health based
on epidemiological studies that investigate the relationships between the rates of gastroin-
testinal illness among swimmers and the levels of FIBs [5–8]. For example, the most recent
USEPA’s Recreational Water Quality Criteria uses a geometric mean of 126 CFU of E. coli
per 100 mL to indicate an estimated illness rate of 36 per 1000 primary contact recreators
in fresh water [4]. Exceedance of the water quality threshold indicates an elevated risk of
waterborne illness, and the waterbody is deemed impaired and needs to be listed on the
List of Impaired Waters (i.e., Clean Water Act 303 (d) List). Water quality restoration plans,
such as total maximum daily load (TMDL) plans, are then to be developed to help guide
pollution reduction efforts in order to attain water quality standards [9]. Development of a
TMDL plan requires identifying and quantifying sources of pollutants and determining the
degree of reduction needed to meet the applicable water quality standards [10].

Mathematic models are heavily involved in the process of TMDL development for
pollutant load estimation and source allocation in order to identify and quantify the degree
of contamination in a waterbody for better remedial plans [11]. Mechanistic models that
are based on underlying hydrological and biogeochemical processes, such as streambed
bacterial deposition and decay in the natural system, have been widely utilized for TMDL
development, such as Soil and Water Assessment Tool (SWAT) and Hydrological Simula-
tion Program-FORTRAN (HSPF) [10,12,13]. These process-based models often demand
more expertise in understanding detailed mechanisms and require more time in developing
models [11]. On the other hand, empirical models that are based on statistical approaches to
estimate pollutant loads or identify associations between stressors and response variables
are also widely used in practice [11]. Without needing to first understand the underlying
complex processes regarding the fate and transport of contaminants, empirical approaches
serve as a statistical alternative to support TMDL development [11]. A variety of regression
models have been applied to identify key environmental variables linked to deteriorating
water quality indicators, including linear, logistic, and Poisson regressions [14–17]. Linear
regressions are highly accessible, easy to implement and have been widely applied in water
quality data analysis. They are broadly accepted among water resource stakeholders [18].
Building a valid regression model, however, often requires a relatively large number of
observations and enhanced knowledge to identify the relationships between the response
and input variables. While the latter can often be established under a theoretical framework
and multivariate and/or nonparametric exploration, acquiring a large number of obser-
vations could prove to be difficult, especially when sample collection and processing are
costly and take a long time. Oftentimes, compromises have to be made, accepting a larger
variance for the sake of a relatively small sample size to proceed with the intended analysis.
In addition, linear regression assumes no heteroscedasticity among the residuals and the
independence of observations [19]. In reality, since “near things are more related than
distant things” [20], observations from adjacent geographic locations tend to have similar
characteristics. The term “spatial autocorrelation” or “autocovariance” describes the simi-
larity of measurements as a function of the distance separating them [21,22]. Studies that
consider spatial autocorrelation often use Euclidean distance to measure the straight-line
distance between measurements and apply it in the terrestrial ecosystems [22]. However,
due to the constraints of movement of aquatic organisms and materials within stream
channels, for stream water quality modeling, along-channel in-stream distance might be
more appropriate [22].

Modeling water quality with stream distance had not previously been well explored
until the last decade. Money and Carter [23] developed a predictive model of E. coli based
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on turbidity data with river-based distance. In addition to turbidity, other water quality
and quantity parameters and watershed characteristics, such as land use type and locations
of point source pollutions, often play essential roles in affecting microbial water quality,
and have been widely considered in TMDL implementation plan development [24]. To
take into consideration the potential spatial autocorrelation in the modeling process, spatial
stream network (SSN) models were developed and applied in recent studies [21,25–28].
An SSN model employs a pre-established ArcGIS toolset and open source R package to
provide an empirical approach to modeling stream water quality in response to watershed
attributes with the consideration of spatial autocorrelation to better reflect stream char-
acteristics [29,30]. Autocovariance of the SSN models was constructed based on moving
average functions to address spatial autocorrelation and measure the degree of dependence
among observations in the stream systems [29]. The conventional autocovariance model
assumes isotrophy, indicating that the autocorrelation among observations depends only
on the distance separating them, but not on the direction [31]. Moving average functions
address the direction-based autocorrelation in the stream systems in tail-up or tail-down
models [29,31]. Since SSN modeling relies less on understanding underlying hydrological
and biogeochemical processes contributing to water quality but utilizes readily available
land use/land cover (LULC) data, it provides greater potential for wider applications by
stakeholders engaging in water quality issues in urban and suburban environments with
limited resources [22,26]. SSN modeling can also predict FIB at a predetermined interval
along the stream channel, providing opportunities to identify hot spots for further water
quality monitoring and restoration plans [32].

The Musconetcong River, from which we took water samples for the current study, is
located in northwestern New Jersey and forms part of the National Wild and Scenic River
System in recognition of its remarkable recreational resources [33,34]. Urban and suburban
water recreation provides opportunities to promote physical and mental health among
residents, foster environmental stewardship and community engagement, and support
tourism and the local economy [2,34]. However, the water quality of the Musconetcong
River has been historically impaired due to intensive urbanization and roadway develop-
ment [33]. In fact, it has been listed in the New Jersey Integrated Water Quality Monitoring
and Assessment Report (303 (d) List) due to the high abundance of fecal coliforms in
northwestern New Jersey. Historically, human wastewater was not connected to sewer
systems in the watershed, and various types of domestic and industrial wastewater efflu-
ents were discharged into the river through dysfunctional septic tanks. Other non-point
source originated from livestock operations, wildlife, etc., contributing considerably to
fecal contaminations throughout this mixed-land-use watershed [35]. In 2003, a TMDL
plan was established to address microbial water quality deterioration here, requiring a 93%
reduction in fecal coliforms [35]. Since then, various water quality restoration projects have
been undertaken, including riparian buffers, prescribed grazing, herd reduction, sinkhole
closure, and green infrastructure [33]. In 2018, a water quality monitoring study concluded
that there had been a significant improvement in microbial water quality over the past
decade; however, further reductions in E. coli loads were still required to meet the TMDL
goal [33]. Local water quality stakeholders have been developing additional monitoring
strategies and water quality restoration plans, with delisting of the Musconetcong River
from the 303 (d) List as the goal.

In this study, we aimed to develop empirical models with consideration of the spatial
autocorrelation and associated key watershed variables with fecal indicator bacteria in the
suburban mixed-land-use Musconetcong River watershed. Specifically, our goal was to an-
alyze patterns of E. coli concentrations in response to upstream land use attributes through
spatial stream network models. We hypothesize that the elevated E. coli concentrations in
the Musconetcong River were strongly associated with the upstream urban land use. The
results from this study will not only provide insights into identifying key land use stressors
to guide future water quality restoration directions in this suburban Musconetcong River
watershed, but also serve as a potential water quality modeling framework for different
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watersheds in the USA and beyond when resources are limited to urban and suburban
water quality stakeholders.

2. Materials and Methods
2.1. Water Quality, Land Use and Precipitation Data

E. coli was used as a fecal indicator bacterium as it is more reflective of recent fecal con-
tamination from warm-blooded animals compared to fecal coliforms or total coliforms [4].
Surface water samples were collected twice a month from May to October 2018, with
three additional samplings from June to August for a total of 21 events at 5 mainstem
and 6 tributary sites located throughout the middle section of the Musconetcong River
watershed (Figure 1). No samples were collected when stream channels were dry. The sites
were selected based on past water quality monitoring activities showing the significant
potential of fecal contaminations. Grab samples were collected aseptically into 1 L sterilized
polypropylene bottles and were placed immediately in a cooler during transit. Enumera-
tion of E. coli was based on an EPA-approved method using mColiBlue24® Broth (Hach
Method 10029). In brief, samples were filtered through mixed cellulose ester membrane
filters (0.45 mm, 47 mm, Hach, Loveland Colorado) and then soaked with mColiBlue24®

Broth selective medium. The filters were subsequently incubated at 35 ◦C for 24 h. After
incubation, colonies showing a blue/indigo color were recorded as E. coli. Tentative E. coli
colonies were further verified using brilliant green bile (BGB) and lauryl tryptose broth
(LTB). The final results were reported as colony forming units (CFU) per 100 mL of water
samples. After the processing of the samples, we checked the weather data on the days
when samples were collected and determined if certain samples were collected during a
storm event based on the weather data. All E. coli data were uploaded to the Water Quality
Portal (https://www.waterqualitydata.us/, accessed on 5 December 2021).

The 2015 land use/land cover data were acquired from the New Jersey Department
of Environmental Protection (NJDEP), Bureau of Geographic Information Systems. A
modified Anderson coding system was used to categorize land use data [36]. The total
drainage area for the whole Musconetcong River watershed was 120,941.71 acres, with
53.2% forest, 21.2% urban, and 14.0% agricultural land. Four land use categories were
extracted as explanatory variables for spatial stream network (SSN) modeling, including
urban (1000), pasture (2120), forest (4000) and wetland (6000). Due to the sampling cost
and length, the sample size in the current study was not particularly large (21 events).
While more detailed land use land cover products, such as the USGS’s Multi-Resolution
Land Characteristics (MRLC) land cover, are available, to avoid losing too many degrees
of freedom in the empirical study, we elected to use the relatively coarse land use land
cover categorization. Urban land use classification covered land use characteristics from
rural single units to high-density multiple residential dwellings, commercial buildings, and
industrial areas. Houses with various dwelling units or a high density in the study area
were all connected to septic tanks instead of sewage pipes for waste disposal (Personal
Communication with the Musconetcong Watershed Association). The study’s purpose
was to investigate in general how urbanization within a watershed impacts water quality.
The pasture subgroup was selected from the agricultural land use categories (2000), as
failing septic systems and poor livestock management practices were previously listed as
major threats to microbial water quality [35]. Precipitation data were obtained from NJDEP,
the Department of Water Monitoring & Standards (https://njdep.rutgers.edu/rainfall/,
accessed on 5 December 2021). The rainfall threshold for a storm event was defined as
12.7 mm (0.5 inch) within 36 h, the same definition used in the Watershed Restoration and
Protection Plan for the Musconetcong River Watershed created by the Rutgers Cooperative
Extension Water Resources Program [37]. A summary of analytical methods and data
sources used in this study is shown in Table 1.

https://www.waterqualitydata.us/
https://njdep.rutgers.edu/rainfall/
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Figure 1. Sampling locations and adjacent land use types in the Musconetcong River watershed in
this study. Sampling locations are denoted by yellow dots. The gray area on the map inlet indicates
the New York–New Jersey–Pennsylvania metropolitan area (Source: United State Census Bureau).

Table 1. Analytical methods and data sources used in this study.

Data Sources/Methods

E. coli EPA approved Hach mColiBlue24®

Urban land use NJDEP, Bureau of Geographic Information Systems
Pasture land use NJDEP, Bureau of Geographic Information Systems
Forest land use NJDEP, Bureau of Geographic Information Systems
Wetland land use NJDEP, Bureau of Geographic Information Systems
Precipitation NJDEP, Department of Water Monitoring & Standards

2.2. Spatial Stream Network Modeling

To explore the impact of land use in the watershed on water quality, we extended
from traditional regression analysis to adopt the spatial stream network model in this
study [22,38,39]. Spatial stream network models are generalized linear mixed models
allowing explanation of variance in observations with both fixed and random effects due
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to spatial autocorrelation among geographically observed events [40,41], which can be
expressed as follows:

y = Xβ + z + ε

where y is a vector of observations, X is a matrix for fixed effects that explain the variance of
the observations that can be captured by general spatial patterns, β is a vector of coefficients
for X, z accounts for random effects resulting from spatial autocorrelation that cannot be
explained by fixed effects, and ε is a vector of independent random errors [21,32]. The
spatial autocorrelation structures that describe the random effects can be modeled with
linear with sill, Mariah, exponential, Epanechnikov, and spherical models [29]. Parameters
for spatial autocovariance functions include nugget, partial sill, and range. The nugget
of the autocovariance function describes the portion of variance that cannot be explained,
the partial sill accounts for the variance that depends on the distance among observations,
and the range indicates the minimal distance at which observations are no longer spatially
correlated [32]. SSN models can also incorporate autocovariance models based on Euclidean
distance, accounting for terrestrial and atmospheric factors that are stream-independent [22].
Both tail-up and tail-down autocovariance structures were established to estimate spatial
autocorrelation. In tail-up models, moving average functions run upstream only and split at
confluences. Spatial weights are required to estimate the proportion of upstream tributary
influence based on flow volume, watershed area, or other relevant attributes [22]. Tail-up
models are only applicable to flow-connected sites, where water directly flows from an
upstream to a downstream site characterized by passive downstream movement, e.g.,
temperature, bacteria, or sediment [22]. In tail-down models, moving average functions
run in the downstream direction unilaterally until reaching the most downstream location
of the stream network, indicating the possibility of autocorrelation among all locations [29].
In addition to flow-connected sites, tail-down models can be applied to flow-unconnected
sites, where some upstream movement is expected to facilitate the connectivity for a given
attribute, e.g., fish or macroinvertebrates [22].

In order to perform spatial stream network (SSN) modeling, an SSN object was first
created using STARS geoprocessing toolset [21] in ArcGIS 10.8 (ESRI, Redlands, CA, USA).
STARS is used to build a landscape network (LSN) as a personal geodatabase to represent
spatial relationships, such as flow connectivity, direction, and distance [29] and transform
the geometry, attribute data, and topological relationships among features of GIS datasets
into an SSN object that can be easily accessed and analyzed in R statistical software with
the ssn package [30] for SSN modeling. The process included building a landscape network
(LSN), creating reach contributing areas [42], calculating RCA attributes and area, accumu-
lating watershed attributes, incorporating the sampling locations into the LSN, calculating
watershed attributes, and calculating upstream distance, segment proportion influence,
and additive function [43]. In the watershed of the current study, we obtained a total of
427 nodes in the stream network. The entire process of generating the SSN object was
automated, and once generated in ArcGIS, the SSN object was then exported to R statistical
software [44] for SSN modeling.

In this study, the ssn package in R [30,39] was used to fit spatial stream network models
to the observation data based on 11 sampling locations. Two models were established
and calibrated. The first model used the geometric mean concentrations of E. coli for all
sampling events as the response variable; the second model used the geometric mean
concentrations of E. coli during storm events only as the response variable. Shapiro–Wilk
tests were used to test the normality of the distributions of the original values [45]. If the
normality assumption was not satisfied, the values of geometric mean concentrations were
log-transformed. A nonspatial model based on an ordinary least squares regression and two
spatial models based on Euclidean and stream distance, respectively, were established to
incorporate four upstream watershed attributes as explanatory variables, including urban,
pasture, forest, and wetland. Percentage upstream land use values were derived from
dividing the total accumulated area of upstream land use by the total upstream catchment
area processed and generated via the STARS toolset. Variance inflation factors (VIF) were
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calculated to check multicollinearity among the four land use variables. Tail-up models
were applied in the spatial autocovariance functions for the SSN modeling based on stream
distance, as the movement of bacteria along the stream networks is characterized by passive
downstream transport [22]. Likelihood approaches were utilized to estimate the regression
coefficients b for the matrix of fixed effects [46]. Maximum likelihood (ML) estimators
have been shown to be greatly biased when the number of observations is small [47], and
thus restricted maximum likelihood (REML) was used. An alpha value of 0.05 was used
to evaluate whether the relationship between watershed variables (urban, agricultural,
forest, or wetland) and E. coli concentrations in the models was statistically significant. The
root mean square prediction error (RMSPE) of the leave one out cross validation (LOOCV)
was used as the criterion to compare the predictive capability among models. LOOCV
was performed by excluding one observation at a time. Submodels were calculated and
compared with the excluded samples [48]. A lower RMSPE of the LOOCV indicated a
better model performance [32]. The coefficient of determination (R2) was used to measure
the proportion of variance in the observations explained by the fixed or random effects of
each model.

2.3. Predicting E. coli Concentrations

One of the practical uses for establishing the empirical SSN model for the Musconet-
cong River watershed is that we can use the model to predict the concentration of E. coli
along the river. Predictions were performed for the geometric mean concentrations of
E. coli for all sampling events and during storm events based on Euclidean distance and
stream distance models, respectively. A total of 816 predictive sites were assigned evenly
across the Musconetcong River stream network at a 300-m interval. Determination of
predictive sites was conducted using the STARS geoprocessing toolset [21] in ArcGIS 10.8.
Predictions of E. coli concentrations were performed in the R statistical software [44] with
SSN package [30]. The results were illustrated on stream maps illustrating both the log10
geometric mean concentrations of E. coli. The capability of predicting the concentration
of E. coli provides both a means to assess modeling performance and a supplement to the
regular sampling routine for water quality monitoring and management.

3. Results
3.1. Microbial Water Quality and Land Use

All 21 sampling events were recorded for most of the locations, except for T1 (3) and
T3 (19). Among them, three were defined as storm events (accumulated rainfall within
36 h was 13.2, 22.9, and 41.9 mm, respectively), except for T1 (one event, accumulated
rainfall was 22.9 mm). The geometric mean concentrations of E. coli for all sampling
events among the mainstem sites were similar (240 to 296 CFU/100 mL), while those
among the tributary sites had a greater variation (73.3 to 1355.6 CFU/100 mL). Four of
the six tributary sites exceeded the geometric mean threshold of E. coli (126 CFU/100 mL)
compared to one of the five mainstem sites for all sampling events (Figure 2). During storm
events, the geometric mean concentrations of E. coli among the mainstem sites ranged from
303 to 811 CFU/100 mL), while those among the tributary sites also had a greater variation
(585.7 to 7300 CFU/100 mL). All of the sites exceeded the geometric mean threshold of E. coli
(Figure 2). The upstream land use characteristics of sampling locations were similar among
the mainstream sites, while those of tributary sites exhibited a greater variety as each site
demonstrated unique patterns in this suburban mixed-land-use watershed (Figure 3). The
percentage of upstream urban land ranged from 21.3% to 22.5% and from 8.2% to 57.4% for
the mainstem and tributary sites, respectively. The percentage of upstream pasture varied
from 0.0% to 0.2% and 0.1% to 20.3% for the mainstem and tributary sites, respectively. The
percentage of upstream forest ranged from 41.0% to 42.9% and from 14.6% to 58.7% for the
mainstem and tributary sites, respectively. The percentage of upstream wetland ranged
from 6.3% to 6.7% and 0.3% to 6.4% for the mainstem and tributary sites, respectively.
Overall, pasture land dominated the study area, with urban lands clustered toward the
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upper portion. Forest land is concentrated toward the upstream area of tributaries in the
study area (Figure 1).
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Figure 3. Percentage of each land use for each site in this study. Only the land use classifications
used for the spatial stream network (SSN) models in this study are shown, including urban (red),
pasture (light green), forest (dark green), and wetlands (blue). M indicates mainstem sites, whereas T
indicates tributary sites of the sampling locations.

3.2. Spatial Stream Network Modeling

Three individual spatial stream network (SSN) models with three distinct autoco-
variance structures were constructed for each response variable in this study, including
no spatial correlation (ordinary least squares), straight-line distance (Euclidean distance),
and along-channel in-stream distance (stream distance). Variance inflation factors (VIF)
for all four land use variables were below 2, indicating that no multicollinearity among
them was detected. The original values of the geometric mean concentrations of E. coli
were not normally distributed. Therefore, the original values were log-transformed to
satisfy the normal distribution assumption. Table 2 shows the SSN model autocovari-
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ance structures, coefficients for explanatory variables, and performance. Applying SSN
models identified that upstream urban land was positively and significantly associated
with the log10 geometric mean concentrations of E. coli for all events and during storm
events, respectively (p < 0.05). Upstream pasture land was positively and significantly
correlated with the log10 geometric mean concentrations of E. coli during storm events only
(p < 0.05). Although insignificantly, the geometric mean concentrations of E. coli for all
sampling events demonstrated negative correlations with upstream wetland (p = 0.06). SSN
models improved the overall coefficient of determination (R2) as the additional portion of
variance can be explained by the random effects attributed to the spatial autocorrelation. In
fact, based on stream distance, the overall SSN models explained nearly 100% of variance
compared to the ordinary least squares models, with 20% of variance being unaccounted
for. The lowest level of unexplained variance was found for SSN models based on stream
distance for both response variables (Nugget < 0.0001). Prediction errors also improved
from non-spatial to spatial models. SSN models based on Euclidean distance showed the
lowest value of LOOCV RMSPE for log10 geometric mean concentrations of E. coli for all
sampling events (1.110), while the lowest value of LOOCV RMSPE was seen for log10
geometric mean concentrations of E. coli during storm events modeled based on stream
distance (1.290). Overall, the distance with no spatial autocorrelation observed for log10
geometric mean concentrations of E. coli for all sampling events was shorter than that for
the storm events based on either Euclidean (Range 2.31 vs. 3.11 km) or stream distance
(Range 2.87 vs. 3.37). The best stream distance autocovariance functions were linear with
sill tail-up for both log10 geometric mean concentrations of E. coli for all sampling events
and during storm events.

3.3. Predicting E. coli Concentrations

Euclidean distance and stream distance models were chosen to predict the log10 geo-
metric means concentrations of E. coli for all events and during storm events, respectively,
due to lower root mean square percentage error (RMSPE) values (Table 2). Figure 4 shows
both the geometric mean concentrations of E. coli of the 11 sampling locations (stars) as
well as the predicted geometric mean concentrations of E. coli (solid circles) in the study
area. Overall, the predicted geometric mean concentrations of E. coli were higher during
storm events (Figure 4b) than for all sampling events (Figure 4a). Predictive values for the
geometric mean concentrations of E. coli ranged from 1 to 5012 CFU/100 mL and from 43 to
30,903 CFU/100 mL for all events and during storm events, respectively.
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Table 2. SSN model autocovariance structures, coefficients for explanatory variables, and performance for two response variables (overall geometric mean of E. coli
and geometric mean of E. coli during storm events.

Response Variable
Autocovariance Coefficients for Explanatory Variables Model Performance

Model Structure Nugget Partial
Sill

Range
(km) % Urban % Pasture % Forest % Wetland Fixed Effect

R2
Random
Effect R2

Total
R2

LOOCV
RMSPE

log10 Geomean (overall)

OLS Nugget only 0.041 NA NA * 0.018 −0.003 −0.006 ˆ −0.066 0.81 NA 0.81 1.234

Euclidean
Distance

Gaussian
Euclidean + Nugget 0.028 0.014 2.31 * 0.018 −0.003 −0.005 ˆ −0.068 0.83 0.06 0.89 1.110

Stream
Distance

LinearSill
Tailup + Nugget 0.000 0.040 2.87 * 0.018 −0.003 −0.006 ˆ −0.068 0.81 0.19 1.00 1.226

log10 Geomean (storm)

OLS Nugget only 0.054 NA NA * 0.021 0.014 −0.008 −0.026 0.83 NA 0.83 1.396

Euclidean
Distance

Gaussian
Euclidean + Nugget 0.033 0.005 3.11 * 0.022 0.016 −0.008 −0.022 0.84 0.02 0.86 1.346

Stream
Distance

LinearSill
Tailup + Nugget 0.000 0.038 3.37 * 0.021 * 0.019 −0.009 −0.024 0.83 0.17 1.00 1.290

* p < 0.05, ˆ p = 0.06.
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mean concentrations of E. coli, with larger and darker circles indicating greater geometric mean
concentrations of E. coli. Stars indicates the sampling locations in this study.

4. Discussion
4.1. Spatial Stream Network Modeling Performance

Spatial stream network modeling provides an empirical approach for urban and sub-
urban water quality stakeholders to analyze the spatial distribution of parameters without
the need to first understand the underlying hydrological and biogeochemical processes
that lead to water quality impairment. The application of SSN models has been introduced
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to a wide range of water quality indicators, such as temperature [49], dissolved oxygen [50],
total phosphorus [26], and macroinvertebrates [51,52]. However, the modeling of fecal indi-
cator bacteria using SSN models had not been documented until recently [32,53]. Holcomb
and Messier [53] modeled fecal coliforms in a mixed-land-use watershed in North Carolina
and identified agricultural land use, forest cover, antecedent precipitation, and temperature
as being strongly associated with mean fecal coliform concentrations. Neill and Tetzlaff [32]
used E. coli as a fecal indicator bacterium in an agriculture-dominant watershed with
sporadic urban development in Scotland and found that the anthropogenic impact index
(lumped indicator for potential contamination from human point sources) was significantly
correlated with 5th, 50th, and 95th percentile E. coli concentrations. Similar to Neill and
others (2018), modeling based on stream distance in this study demonstrated improve-
ment in the total R square and root mean square percentage error (RMSPE) for geometric
mean concentrations of E. coli during storm events. However, only an improvement in the
total R square was observed for the model based on stream distance for geometric mean
concentrations of E. coli for all sampling events. This may be due to limitations regarding
the number of sites as well as the locations of the mainstem sites, as they were relatively
highly clustered compared to the overall watershed. An improvement in RMSPE was not
observed in Holcomb et al. (2018) either. In this study, the best autocovariance functions
were linear with sill with stream distance for both log10 geometric mean concentrations
of E. coli for all sampling events and during storm events, indicating a pattern in which
the variability among observations increases linearly with the separation distance until
it reaches the maximum difference [54]. Overall, the range for the SSN models for storm
events was greater than that for all sampling events, and the stream distance models had a
greater range than the Euclidean distance models did, indicating heavier impacts on E. coli
concentrations from upstream areas during storm events.

4.2. Suburban Land Use and Microbial Water Quality

Various factors could lead to the deterioration of microbial water quality in urban
and suburban waterways [1]. In this study, upstream urban land was identified as being
positively correlated with either log10 geometric mean concentrations of E. coli for all
sampling events or during storm events only. Using the same SSN modeling approach,
Neill and Tetzlaff [32] identified human (leaking sewage pipes and failing septic tanks)
and farmyard sources as being significantly associated with 5th, 50th, and 95th percentile
concentrations of E. coli. A variety of mechanisms, such as failing onsite wastewater
treatment systems (i.e., septic tanks), combined sewer overflows (CSOs), sanitary sewer
overflows (SSOs) and urban runoffs can introduce human fecal contamination into adjacent
waterways in urban and suburban watersheds [1]. Increased risks of childhood emergency
department visits and infectious diarrhea associated with combined sewer overflow and
septic sites have been documented [55,56]. In addition to urban land use, upstream pasture
land was found to be positively and significantly associated with log10 geometric mean
concentrations of E. coli during storm events in this study. Holcomb et al. (2018) also
reported similar significant relationships between agricultural land use and fecal coliform.
Ill-considered agricultural practices in suburban watersheds, such as concentrated animal
feeding operations, overgrazing and manure applications could lead to water quality
deterioration [57,58]. Davies-Colley et al. (2004) also demonstrated that a dairy cow herd
produced more than 50,000 CFU/100 mL of E. coli when crossing a stream. A significant
relationship was found between upstream pastureland use and E. coli for storm events
only in this study, illustrating the impact of agricultural runoff on microbial water quality
during storm events. For instance, higher concentrations of E. coli and Salmonella were
identified in irrigation ponds at two produce farms after rain events [59]. Noteworthily, a
negative association (although only marginally significant, p = 0.06) was identified between
upstream wetlands and geometric mean concentrations of E. coli for all sampling events.
Wetlands can provide essential ecosystem services, such as water purification and runoff
reductions [60]. Reductions in fecal indicator bacteria or pathogens provided by wetlands
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have been well documented [61–63]. Hsu et al. (2017) reported an average 22.3% reduction
in E. coli across two wetlands receiving inflow from urban waterways [63]. The results from
this study also reinforce the concept of using wetlands as the best management practice
for microbial water quality restoration. For example, a variety of constructed wetlands
have been implemented to treat domestic and agricultural wastewater as well as urban
stormwater runoff [64].

4.3. Extreme Weather Conditions and Microbial Water Quality

All of the geometric mean concentrations of E. coli during storm events exceeded the
geometric mean threshold of E. coli of 126 CFU/100 mL in this study. Extreme weather
events, such as heavy precipitation, have been well documented to degrade water quality by
elevating the concentrations of FIB in urban and suburban waterways through stormwater
runoff and combined and sanitary overflows [1]. These heavy rainfall events significantly
contributed to waterborne disease outbreaks in the United States and Canada [65,66]. In the
United States, among the 548 reported outbreaks analyzed from 1948 through 1994, 68% of
them were preceded by the highest 20% of precipitation events [65]. In Canada, the heaviest
7% of precipitation events increased the relative odds of an outbreak by 2.3-fold [66]. In
fact, more than 400,000 cases of acute gastrointestinal illness (AGI) were attributed to a
drinking water treatment plant overwhelmed by high turbidity load after a period of heavy
precipitation in Milwaukee, Wisconsin in 1993 [67]. Downstream of the Musconetcong
River in Philadelphia, where the Delaware River serves as the drinking water source, a
significant increase in waterborne AGI following precipitation above the 95th percentile
was documented [68]. Under the current trend of global climate change, the National
Climate Assessment projected an almost 50% increase in the total annual precipitation
falling in the heaviest cases (1%) by the late 21st century under the higher scenario (RCP 8.5)
in the northeastern United States [69]. This will further increase the frequency and intensity
of urban stormwater runoffs and combined and sanitary overflows, degrading microbial
water quality and increasing potential public health risk in the Musconetcong River and
downstream drainage area in the future if no additional water quality protection action is
implemented. The land use variables identified from the SSN modeling results can be taken
into consideration when developing water quality restoration or climate resiliency plans
to address water quality and public health concerns in urban and suburban areas, such
as establishing municipal separate storm sewer system (MS4), expanding public sanitary
sewer systems, regulating private sewage disposal practice, and promoting the use of
green infrastructure.

4.4. Predicting Fecal Contamination Hot Spots and Future Directions

Since field water sampling is time-consuming and costly, water quality modeling can
serve as a cost-effective and timely approach to enhance existing monitoring programs
in conjunction with actual field samples. It can also provide stakeholders with a mean to
quickly identify “hot spots” during the site selection process for further water monitoring
and water quality enhancement actions. Spatial stream network predictive modeling
provides a feasible approach to predict riverine E. coli concentrations with a predetermined
stream-distance interval. The predicted results can be used to prioritize sites for further
monitoring and subsequent restoration practices. Combined with local knowledge, the
modeling results can be tailored to form a localized site-specific management approach. In
this study, predictive sites near T1 in a catchment basin with a high percentage of urban
land showed elevated E. coli concentrations for all sampling events and during storm
events. Another example is shown in the next four predictive sites downstream of T4.
The predicted value for E. coli for all sampling events was below the geometric mean
threshold (126 CFU/100 mL). However, the predicted value for storm events was above the
single-sample maximum threshold (235 CFU/100 mL), indicating the significant impact of
agricultural runoff as a result of heavy precipitation on microbial water quality. Different
localized water quality restoration approaches should be developed for both areas, such as
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improving the maintenance of septic systems in urbanized areas and establishing riparian
buffers in agriculture-dominant sites.

For TMDL process development, SSN models become a cost-effective approach along
with field sampling programs for water quality stakeholders to engage in watershed
management with the support of readily available land use land cover data, open-source R
packages, and geographic information systems. In fact, the current study area was located
in one of the TMDL segments of the Musconetcong River, and additional segments are
located both upstream and downstream of the current study area [35]. Therefore, the same
SSN approach can be extended to additional TMDL segments within the Musconetcong
River watershed to provide a comprehensive understanding for integrated water quality
management (NJDEP, 2003). Incorporating additional sampling locations is essential to
encompass a larger watershed to improve SSN modeling. Money and Carter [23] suggested
“a minimum of 10–50 data points should exist to construct a correlation model depending
on the watershed size”. In our current study, because of cost and the size of our watershed,
we only collected 21 data points to establish the model. The sample size is on the small end
and does not have sufficient degrees of freedom for us to set up a model training and testing
routine. While water monitoring is an ongoing endeavor for environmental management
teams at both the local and state levels, we hope in the future that expanding sampling
locations will allow model validation to encompass both training and validation datasets.
It was also suggested that the placement of sampling locations in relation to the whole
watershed could impact the outcome of the spatial modeling [38]. For instance, a better
overall error map may be produced by placing sites close to the origins of tributaries, while
a good estimate of tail-up autocovariance functions could be generated by selecting sites
between confluences. In addition, a spatial stream predictive model in conjunction with
other field and laboratory observations (e.g., sanitary survey or microbial source tracking)
can identify sites with greater contamination potential and sources of fecal contamination.
This is essential for a thorough watershed management plan to address impairment and
TMDL source reductions.

Although beyond the scope of SSN modeling, temporal variations also affect the
outcome when modeling microbial water quality. Holcomb and Messier [53] included a
time component in their geostatistical models and obtained improved prediction errors
than models considering spatial effects only. The effects of precipitation patterns could
also be investigated when the temporal effects are incorporated into spatial modeling to
provide a comprehensive understanding of microbial water quality dynamics in response
to a variety of environmental variables and weather scenarios. Overall, the current study
provides critical insights into assessing the amount of fecal contamination to guide further
monitoring and management activities and serves as potential water quality modeling
framework for urban and suburban watersheds in the USA and beyond.

5. Conclusions

In this study, we successfully applied spatial stream networks (SSN) to model elevated
concentrations of E. coli in the suburban mixed-land-use Musconetcong River watershed in
response to upstream land use attributes, including urban, pasture, forest, and wetland.
The SSN model is essentially a spatial statistical model designed for modeling the statistical
relationships between variables on stream networks [23]. The modeling results suggest that
upstream urban land was positively and significantly associated with log10 geometric mean
concentrations of E. coli for all sampling events and during storm events, respectively. Up-
stream pasture land was positively and significantly correlated with log10 geometric mean
concentrations of E. coli during storm events only. Although only marginally significantly,
the log10 geometric mean concentrations of E. coli for all sampling events demonstrated a
negative relationship with upstream wetland land use as per the SSN model calibration.
Applying SSN modeling based on spatial distance also demonstrated improved model
performance over non-spatial models. The SSN modeling results concur with previous
findings that anthropogenic sources represent the main threat to microbial water quality in
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the Musconetcong River watershed. The prediction of E. coli concentrations by SSN models
identified potential hot spots prone to water quality deteriorations. Future directions could
benefit from incorporating additional sampling locations beyond the current section of the
watershed and introducing temporal effects in the spatial modeling. Nevertheless, with the
support of publicly available watershed attribute data, a pre-established ArcGIS toolset
and the open-source R package, we believe that SSN models can be employed by other
urban and suburban water quality stakeholders to assist in their water quality monitoring
and restoration needs when the resources are constrained.
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