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Abstract: The ability to drive depends on the motor, visual, and cognitive functions, which are
necessary to integrate information and respond appropriately to different situations that occur in
traffic. The study aimed to evaluate older drivers in a driving simulator and identify motor, cognitive
and visual variables that interfere with safe driving through a cluster analysis, and identify the
main predictors of traffic crashes. We analyzed the data of older drivers (n = 100, mean age of
72.5 ± 5.7 years) recruited in a hospital in São Paulo, Brazil. The assessments were divided into
three domains: motor, visual, and cognitive. The K-Means algorithm was used to identify clusters of
individuals with similar characteristics that may be associated with the risk of a traffic crash. The
Random Forest algorithm was used to predict road crash in older drivers and identify the predictors
(main risk factors) related to the outcome (number of crashes). The analysis identified two clusters,
one with 59 participants and another with 41 drivers. There were no differences in the mean of
crashes (1.7 vs. 1.8) and infractions (2.6 vs. 2.0) by cluster. However, the drivers allocated in Cluster 1,
when compared to Cluster 2, had higher age, driving time, and braking time (p < 0.05). The random
forest performed well (r = 0.98, R2 = 0.81) in predicting road crash. Advanced age and the functional
reach test were the factors representing the highest risk of road crash. There were no differences in
the number of crashes and infractions per cluster. However, the Random Forest model performed
well in predicting the number of crashes.

Keywords: safe driving; older drivers; crash risk; clustering analysis; machine learning

1. Introduction

The number of older drivers has been increasing, and this can be considered a conse-
quence of the rise in life expectancy. In addition, there is also a high number of traumas
and crashes involving this population, which is three times more likely to be involved in
crashes than younger adults, and higher risks of hospitalizations and motor impairment
inherent to hospitalization [1,2].

By 2030, in the United States, there will be more than 70 million people aged 65 and
older, and approximately 85–90% of them will be licensed to drive and, for the first time
in history, there is a need to plan how long they will continue to drive safely, just as they
project financial retirement [3].

Older adults are among the most careful drivers on the road and often reduce the
risk of injuries by wearing seat belts, not drinking alcohol, and because they respect speed
limits, but they also are more likely to die in a crash due to age-related frailty. In 2018,
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6907 people aged 65 and over died in a road crash, representing 19% of all fatalities [4].
Age-related impairments in functional abilities needed for safe driving may increase crash
and injury risk, reducing mobility, autonomy, and quality of life [5].

Driving is a complex task that involves the integration of motor, cognitive, and visual
skills. The increase in age is related to changes in these capabilities that impact vehicle
direction, which can contribute to the risk of a crash in older drivers. Age-related changes in
visual function (mainly reduced visual acuity and visual field loss) have been investigated
as risk factors for crashes among older adults [6]. According to Wang et al. [5], older drivers
have more difficulty rapidly assessing and responding to roadway changes. Impaired
contrast sensitivity was associated with a higher number of crashes and an increased
severity of crashes [7]. In addition, it is known that the natural cognitive decline of aging
can affect driving, mainly due to attention deficit, impairments in memory, spatial and
visual notions, and a decline in attention, which are fundamental characteristics and
directly impact safety while driving a vehicle [7]. The visuospatial skills involve the
mental representations of the shape of objects and their locations and cognitive processes
of transforming objects and movement through space. In the study by Anderson et al. [8],
drivers who had accidents on the driving simulator showed worse performance in the
composite measures of cognitive function, specifically in visuospatial skills and attention.
Tinella et al. [9] evidenced significant results for the effect of global cognitive functioning
on perceptual speed through the full mediation of mental rotation and perspective-taking
skills. In another study by Tinella et al. [10], the results suggest the specific contribution
of spatial mental transformation skills in the execution of complex behaviors connected
to the fitness to drive. The physical condition of older adults explains the high risk of
injuries and deaths. Alonso et al. [11] affirm that muscle strength, postural balance, and
cognition are associated with braking time and may affect driving performance in older
adults. Age-related sensorimotor impairments also result in poor stepping reactions, altered
patterns of movement coordination, and slower-reaching reactions in response to postural
disturbances. Lower limb strength and control may be important for vehicle control,
particularly in coordinating and adjusting the accelerator, brake, and clutch pedals. A
test battery that evaluation of older drivers, ensuring that those who are unsafe to drive
are identified is very important [6,11]. However, there is still no consensus on which
battery is the best, and what has been sought are tested with high predictive values with
fewer variables.

Health problems are the main reasons found that limit the driving of vehicles in this
population. However, socio-demographic characteristics also have influences such as age,
gender, educational level, marital status, urban residence, recent hospitalizations, psychic,
physical, and degenerative diseases, social issues such as low income and unemployment,
trauma due to involvement in collisions, interference of some family member, and medical
guidance [12].

The stoppage of driving in this population seems to contribute to a variety of health
problems, especially depression. For this reason, health-related consequences should
be considered in face of this decision. Identifying risk factors and interventions that
ensure mobility and maintenance of social activities are necessary to reduce the potential
adverse effects of the aging process, in order to promote health and well-being for the older
adults [13].

Machine Learning (ML) is an expanding field because of its high predictive power.
Algorithms based on ML can help in tasks that involve data analysis and identify the
characteristics of elderly drivers associated with performance when driving a vehicle [14].
We tested the hypothesis that driver’s clusters can be derived by an unsupervised learning
algorithm (K-Means) and that the number of road crashes can be predicted by a supervised
learning algorithm (random forest) from a data set of motor, visual, and cognitive tests.

The identification of age-related factors, including changes in cognitive, visual, and
physical characteristics may help to develop specific interventions that can preserve driving
performance during aging, and mitigate unsafe driving actions [11]. For this reason, the
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present study aimed to evaluate older drivers in a driving simulator and identify motor,
cognitive, and visual variables that interfere with safe driving through a cluster analysis
and identify the main predictors of traffic crashes.

2. Materials and Methods

A cross-sectional analysis was conducted at University São Judas Tadeu in partnership
with the Institute of Orthopedics and Traumatology of Clinicals Hospital of Medical School
at the University of São Paulo (IOT-HC/FMSUP), at the Laboratory for the Study of
Movement. This research was approved by the Research Ethics Committee under number
063/15. All participants were informed about the objectives of the study and those who
agreed to participate signed the informed consent form.

2.1. Participant Recruitment

This is a study with a convenience sample of 100 older drivers of both genders, aged
60 years old or older, who were recruited at the Laboratory for the Study of Movement, at
the IOT-HC/FMSUP. Inclusion criteria were having a valid driver’s license and driving
at least two days a week; no significant limitations in movement of the ankle, knee, hip,
and cervical joints; not using medications that could alter the ability to drive; absence of
vestibular, neurological, and mental diseases; absence of surgeries that can influence the
mobility of the spine and limbs. People who were not able to perform the tests on the
driving simulator and/or the visual, physical, and cognitive tests were excluded.

2.2. Data Collection

All subjects answered a questionnaire with personal information, socio-demographic
data, and driving history. They were asked to identify their preferred leg for kicking a
ball, which was then considered their dominant leg and the dominant upper limb based on
their preferred arm to write. The participants attended one session in the Laboratory for
Study of Movement, and they were submitted to the functional tests there, which lasted
approximately 1.5 h.

2.3. Self-Perception of Disability

Self-perception of disability, based on the Candrive II/Ozcandrive cohort study [15],
with 30 questions were created in the following domains: behavior: how to behave in
the face of various stimuli; perception: the way of conceptualizing, judging, or qualifying
something; cognition: the process of knowing or acquiring knowledge; vision: perception
through the eyes; motor: body movements and asking if the participant had difficulty or
not—it was calculated with one point for each statement—“I have difficulty . . . ”.

2.4. Driving Simulator Test

The dependent variable evaluated was the number of crashes. The virtual environment
was generated by “Car-Simulator Trainer—Type F12PT” (Foerst GMBh), which simulates a
vehicle equipped with a steering wheel, speed dial, brake, accelerator, clutch pedals, gear
stick, seat, seatbelt, and headlights, and the driving route was visible on three 42” LCD
TV monitors. The participants were instructed to adjust the seat, seatbelt, and rearview
mirror as he/she would ordinarily do upon sitting down in the driving simulator. They
were familiarized with a virtual scenario consisting of a highway without traffic. To assess
the safe driving of drivers, the risk situation test was chosen, with eight unpredictable
situations causing crashes, similarly to crashes that occur on the streets and avenues of
large cities, where, during the route, a risky situation appeared and forced the driver to
take action to avoid the crash. The test scenario consisted of a city with multi-lane streets,
road signs, traffic lights, and traffic. In each risky situation, there was a different condition
from the other: three situations in which a pedestrian could be run over, a cyclist, and
four others in which there could be car collisions. Another test called “braking time” was
chosen, in which during the ride, the word “stop” appears randomly five (5) times on the
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screen, and the subjects were required to brake the car immediately, as fast as they could,
and the braking time was measured by the car simulator (model “Trainer” Type F12PT
FOERST®, Wiehl, Germany). The equipment used provided information on the number of
crashes and violations committed by the driver during the route [11,16].

2.5. Measures
2.5.1. Motor Domain
Handgrip Strength

Maximal handgrip strength was determined with a hydraulic hand dynamometer
(model Jamar® by JLW INSTRUMENTS®, Chicago, IL, USA), with the subject seated and
with the arms parallel to the body, shoulder adducted, elbow flexed at 90◦, and forearm
and wrist in the neutral position. Three trials were performed on the dominant and non-
dominant hands, with a one-minute interval between trials. The mean value was used for
the analyses [17].

Functional Reach Test

Assesses the ability of the trunk to move forward within the limits of stability. The
individuals lean forward starting from the orthostatic position, positioned perpendicular
to the wall, with 90◦ flexion of the shoulder, elbows extended, and heels together. The data
used is the distance covered by the third metacarpal along the horizontal axis measured with
a measuring tape. Three attempts were performed, and the average was calculated [18].

Plantar Flexor Muscle Strength

Maximum dynamic strength of the plantar flexor muscles of the dominant and non-
dominant lower limbs were measured using an isokinetic dynamometer (Biodex System
2, Shirley, NY, USA). Subjects were placed in a seated position, with support in the distal
region of the thighs, and the soles of the feet resting on a rigid plate. The axis of motion
of the ankle joint was aligned with the mechanical axis of the dynamometer, and the knee
was kept at 30◦ of flexion. The subjects were strapped in by two belts across the chest and
one across the pelvis, and with velcro strips on the distal part of the thigh and area of the
metatarsals in the dorsal region of the foot. Three submaximal attempts were made to
familiarize the subject with the procedures, and then two sets of five maximal dynamic
repetitions were conducted at 30◦/s, with a one-minute interval between sets. Only the
second set of values was used for the data analyses. Verbal encouragement was given
throughout the tests to motivate the participants to develop the maximum torque during
each repetition [11].

Dynamic Balance

Dynamic balance was evaluated with the Timed Up and Go Test (TUG test), comprised
of mobility, transfers, and gait, and is associated with strength, agility, and postural balance.
The TUG test measures the time required for an individual to get up from a chair to a
standing position, walk three meters at a normal walking speed, return to the chair, and
sit back down. Additionally, subjects performed the TUG test with a dual-task (“Time Up
and Go Cognitive”), which paired the motor activities with a verbal task, and in which the
individuals were asked to name animals [16].

Articular Amplitude

Rotation of the cervical spine (0◦–55◦). Individual sitting with the head and neck
in an anatomical position. The side to be evaluated is rotated. The goniometer’s fixed
arm is positioned in the sagittal suture (center of the head) and the mobile arm must be
placed in the sagittal suture at the end of the movement. Shoulder flexion (0–180◦) with the
volunteer seated, with the arms by the body and elbows extended, the stationary arm of
the goniometer is placed along the middle axillary line of the trunk, pointing to the greater
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trochanter of the femur, and the moving arm of the goniometer on the lateral surface of the
humeral body facing the lateral epicondyle of the wrist [19].

2.5.2. Visual Domain

Visual acuity assessment (monocular and binocular) used the Snellen optometric scale,
which consists of a set of letters, which become progressively smaller from top to bottom.
On this scale, normal visual acuity is called 20/20 [20]. For each correct answer, half of a
point per letter was considered.

Visual campimetry—measurement of the unilateral 90◦ and 180◦ temporal visual field
for both eyes. For this test, the RZ 2000 (equipment by Raizamed®, São Paulo, Brazil) was
used [20].

2.5.3. Cognitive Domain
Montreal Cognitive Assessment (MoCA)

An instrument developed to screen for mild cognitive impairment and access different
cognitive domains: attention and concentration, executive functions, memory, language,
visual-constructive skills, conceptualization, calculation, and guidance. The total score is
30 points. A score of 26 or more is considered normal [21].

Trail Making Test (Trails B)

Part B is a test that assesses aspects of sustained and alternating attention, mental flexi-
bility, visual processing speed, motor function, and ability to search by visual scanning [22].

2.6. Statistical Analysis

A descriptive analysis of continuous variables was presented as the mean and standard
deviation, while categorical variables were presented as the frequency and proportion.
The Kolmogorov–Smirnov test was used to verify whether the continuous variables had a
normal distribution, and histograms were examined. Comparisons of the mean values of
continuous variables by cluster were performed using Student’s t-tests.

The following packages were installed and executed: Cluster and Facto Extra. Analy-
ses were also performed in R software, version 4.0.2. The K-means clustering algorithm was
used to distribute the participants into groups based on their characteristics [23]. K-means
clustering is one of the most popular cluster algorithms. The data were converted to z-
scores and inputted into the algorithm. We retained two clusters considering homogeneity
in the derived groups, and the balance between classes [24]. The group’s interpretability
was examined to confirm the final number of clusters and if a group was sufficiently large
for adequate statistical power, that is, at least 10% of the total sample. The clustering
distance measurements were carried out using Euclidean distances [14].

The random forest (RF) algorithm is based on the ensemble strategy. It provides diver-
sity by using the concept of random redistribution of the data. The algorithm generates
several decision trees, each trained with a random distribution. The RF algorithm was
implemented in the R software (random forest function), in which 70% of the data were
used for training and 30% for testing. The analysis was performed using the following es-
tablished hyperparameters: number of trees (ntrees) = 500, minimum size of terminal nodes
(nodesize) = 5, number of variables randomly sampled as candidates at each split (mtry) = 9,
the importance of predictors (importance) = True, forest retained (keep.forest) = True, num-
ber of folds in the cross-validation (cv.fold) = 10, and seed for reproducibility (seed) = 123.
The results were graphically expressed through regression, and the final result was the
mean of all results of the regression tree. The model performance was assessed by Pear-
son’s correlation coefficient between the observed and predicted values. The coefficient of
determination (R2), and the mean absolute error (MAE).
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3. Results
3.1. Descriptive Analyses

Table 1 shows the demographic characteristics and driving-related data of the subjects
in this study. The sample consisted of older adult drivers with a mean age of 73 years,
mean 12 years of education, and 48 years of driving experience; 50 (50%) female and 50
(50%) male. In the sample, the mean number of crashes during the tests carried out in the
driving simulator was 1.8, while the mean number of infractions was 2.4.

Table 1. Demographic and driving characteristics (n = 100).

Sociodemographic Data Mean (SD)

Age (years) 72.5 (5.7)
Education Level (years) 12.3 (2.8)

Driving experience (years) 48.2 (7.0)
Road crash 1.8 (1.2)
Infractions 2.4 (2.1)

Braking Time (s) 0.95 (0.16)
Self-Perception of Difficulty 4.9 (3.0)

Legend: SD—standard deviation

3.2. Clusters

Figure 1 shows the clusters with the K-Means algorithm. Therefore, two groups were
used to carry out the clustering. The two dimensions explain 20.4% of the variability of the
analyzed data.
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3.3. Characteristics of Older Adult Drivers by Cluster

Table 2 shows the sociodemographic data and motor, visual, and cognitive characteris-
tics by cluster. From the original data set (n = 100), the following two major clusters were
derived: Cluster 1 with 59 (59%) participants, 29 (49%) male and 30 (51%) female; Cluster 2
with 41 (41%) participants, 21 (51%) male and 20 (49%) female. There were no differences
in the total number of crashes and infractions between the clusters. However, the drivers
allocated in cluster 1, when compared to cluster 2, had a higher age, driving time, braking
time, and less education. In the motor domain, cluster 1 presented lower handgrip strength
(on both sides), shorter functional reach, less shoulder flexion amplitude, and less cervical
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rotation range of motion. Cluster 1 also presented a long time to perform the TUG test.
Regarding visual capacity, the drivers in cluster 1, compared to cluster 2, presented lower
values in the right, left, and binocular Snelling tests. In the cognitive domain, the cluster
1 also had lower means for MOCA, and took longer to perform the cognitive TUG when
compared to cluster 2.

Table 2. Sociodemographic data and motor, visual, and cognitive characteristics of older drivers
by Cluster.

Sociodemographic
Cluster 1 Cluster 2

p-Value
n = 59 n = 41

Age (years) 74.9 (5.2) 69.2 (4.8) <0.001 *
Education Level (years) 11.7 (2.8) 13.2 (2.6) <0.05 *

Driving Time (years) 50.3 (6.8) 45.1 (6.2) <0.05 *
No. Crashes 1.7 (1.1) 1.8 (1.1) 0.65

No. Infractions 2.6 (2.1) 2.0 (1.8) 0.14
Braking Time (ms) 0.98 (0.1) 0.89 (0.1) <0.05 *

Motor domain
DS Handgrip 29.9 (8.2) 34.9 (10.1) <0.05 *

NDS Handgrip 27.1 (8.0) 31.8 (8.7) <0.05 *
TUG (s) 9.2 (1.8) 7.9 (1.5) <0.05 *

Reach Functional Test 31.2 (6.1) 33.7 (5.5) <0.05 *
PT/BW plantar flexion (%) 67.5 (23.3) 93.2 (27.6) <0.001 *

Total Work plantar flexion (J) 24.9 (0.3) 24.9 (0.3) 0.177
R Shoulder Flexion 159.4 (20.0) 167.2 (13.7) <0.05 *
R Cervical Rotation 67.1 (11.9) 71.1 (10.2) 0.08
L Shoulder Flexion 157.9 (20.6) 167.5 (12.2) <0.05 *
L Cervical Rotation 70.4 (18.0) 72.2 (12.1) 0.56

Visual domain
RE Snelling 2.7 (2.2) 6.1 (3.2) <0.001 *
LE Snelling 3.0 (2.4) 5.2 (3.2) <0.05 *
Binocular 0.5 (0.8) 2.0 (1.4) <0.001 *

RE Campimetry 86.0 (7.1) 85.6 (8.3) 0.79
LE Campimetry 85.6 (6.2) 87.1 (0.8) 0.20

Campimetry Overall 171.6 (12.0) 172.8 (111.8) 0.64
Cognitive domain

MoCA 22.8 (3.6) 24.0 (3.2) 0.08
Trails B—errors 5.6 (5.8) 5.5 (7.3) 0.94
Trails B—time 159.3 (103.3) 147.0 (105.1) 0.56
TUG Cognitive 11.7 (2.9) 9.2 (2.6) <0.001 *

Mean (SD). Legend: DS: Dominant Side; NDS: Non-Dominant Side; PT/BW: the peak of torque adjusted by body
weight; TUG: Timed Up and Go test; R: Right; L: Left; LE: Left Eye; RE: Right Eye; MoCA: Montreal Cognitive
Assessment; Trails B: Trail Making Test Part B. * p < 0.05.

3.4. Feature Selection

According to these data, age and the functional reach test are the most important
variables for predicting road crash. When importance is assessed by the Mean Square
Error (MSE), age is followed by campimetry overall, infractions, total work, and dominant
side handgrip. On the other hand, when importance is evaluated by node purity, the
functional reach test is followed by PT/BW (%), dominant side handgrip, non-dominant
side handgrip, age, and TUG (Figure 2).
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3.5. Observed vs. Predicted

Figure 3 shows the validation of the RF model with a high predictive capacity. The
correlation between predicted and observed crashes was 0.98 and R2 was 0.81. Values ≤ 0.5
corresponded to the performance of a random model, values > 0.5 and < 0.6 indicate moder-
ate predictive performance, and values > than 0.7 indicate good predictive performance [14].
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4. Discussion

The main finding of the present study revealed that advanced age and the functional
reach test were the two most important predictors of road crash, based on a car driving
simulator with older drivers. Clustering methods are usually required during the early
stages of knowledge discovery. We used the K-means algorithm, whose analysis approach
was complementary to the RF model. K-means clustering identified similarities between
individuals in the sample based on unsupervised learning where the algorithm itself
identifies patterns. The RF model, which is based on supervised learning, that is, the
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learning process, involves both the variable that will be predicted and the predictors [25].
This algorithm was able to predict the number of crashes among older adult drivers and
rank the main predictors.

This study showed that changes related to the aging process in sociodemographic,
physical, visual, and cognitive characteristics interfere with the ability to drive a vehicle in
the older adult, evidencing the multimodal aspects of the ability to drive. Two main groups
were identified in our sample based on the cluster analysis. Cluster 1 presented a longer
time to brake the car, which may represent unsafe driving. Alonso et al. [11] demonstrated
that older adults take 17% longer to brake the car than middle-aged adults; consequently,
this increases the distance traveled before the vehicle stops. Congested areas and high
speeds increase the probability of crashes [26]. However, there were no differences in the
total number of crashes and infractions between the clusters.

In Cluster 1, when compared to Cluster 2, they had higher ages, driving times, and less
education. The ability to drive declines with age, possibly explained by the age-dependent
effect on visual, cognitive, and motor functioning that are needed to perform a complex task
and maintain safe driving. Such functioning is found to decline at a high age [27], but this
alone cannot be a factor that determines competence in driving, as aging is a heterogeneous
process and affects individuals in different ways.

It is important to mention that fewer years of schooling may present greater cognitive
losses because according to [28], more years of schooling is a cognitive reserve and conse-
quently, a protective factor. Therefore, more active, flexible, and resilient cognitive abilities
can be seen as strategies to deal with everyday events, especially minimizing cognitive
losses, typical of the aging process.

Concerning the motor domain, cluster 1 presented lower handgrip strength (on both
sides), shorter functional reach, shoulder flexion, and cervical rotation. This cluster also
presented a long time to perform the TUG test. The aging process promotes a structural
reorganization at the central and peripheral levels, which causes impairments in motor
performance aggravated by deficiencies in the musculoskeletal system, including cellular
and chemical alterations of the neuromuscular junction. These directly affect the pre- and
postsynaptic, and consequently, voluntary muscle activation [29]. Considering all muscular
action in the vehicular direction and with several joints involved, the motor performance
will be affected and will suffer great functional impact in the face of the complexity of the
task. Alonso et al. [11] demonstrated that the ability to take your foot off the accelerator and
put it on the brake pedal in time to avoid collisions requires cognitive (central processing),
sensory, and motor information. The decline of these functions increased braking time;
consequently, we can infer that this increase leads to a greater number of crashes.

Regarding visual capacity, the drivers in Cluster 1, compared to the other group,
presented lower values in the right, left, and binocular Snelling tests. In this sense, Chevalier
et al. [30] affirm declines in the visual ability of older adults. They report that these
individuals make shorter trips, stay closer to home, and drive less during the night.

The act of driving is dependent on vision [31]; most of the time incidents and collisions
are attributed to vision deficit. Moreover, it influences the decision to stop driving in
older adults. A problem in the visual field affects the transmission of information about
surrounding vehicles, emergencies, obstacles, and mechanical problems in the vehicle
itself. In addition to changes in visual acuity and field of vision, contrast sensitivity deficits
are common in older adults, especially those diagnosed with cataracts, and are strongly
associated with crashes. It is worse when both eyes are affected by cataracts. Intraocular
lens placement reduced the risk of collision by 50% [32]. In our work, the visual assessment
was not able to detect individuals who had cataracts, making it a limiting factor for a more
accurate analysis of blindness.

According to the study conducted by Choi et al. [33], attention is fundamental for the
efficiency of executive function in situations that demand driver´s readiness, and thus, it
can quickly resolve conflicts in the face of associated tasks. Other studies also indicate that
cognitive processing capacity is important for predicting driving performance, attributed
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to better performance in road tests and fewer safety failures [34,35]. Nonetheless in the
present study, the cognitive domain, except for TUG Cognitive, did not differ between
clusters, probably because people who volunteer for driving studies do not have significant
cognitive, motor, or visual deficits, which may interfere with the responses during the
driving simulator. However, studies that identify cognitive factors but do not consider
physical limitations in older people may miss important clues.

Although the present study evaluated different aspects related to the ability of driving,
other factors that were not evaluated could help the K-Means algorithm to identify predic-
tors and similarities between clusters. It could be, in a way, that there were no intersections
and greater explanatory power on the occurrence of infractions and number of crashes in
the driving simulator used.

The most important variables to predict road crash (using MSE) consisted of age
campimetry overall, infractions, total work, and dominant side handgrip. However, when
importance was evaluated by node purity, the functional reach test, PT/BW (%), dominant
and non-dominant side handgrip, age, and TUG test were the most important features.
During the training stage, we used 10-fold cross-validation, and this method was used to
adjust the hyper parameters of the model. Regardless of the metric used to rank the predic-
tors, the random forest model performed well in predicting the number of crashes among
older adult drivers who were evaluated. Thus, among the set of cognitive, visual, and
motor tests that can be used to assess the performance of driving a car safely considering
the aging process, some predictors had a greater influence on the estimate and may be more
sensitive than other aspects to foretell the number of crashes. Additionally, identifying and
ranking these characteristics can guide which domains should be the object of intervention
(e.g., when subject to physical, motor, visual, or cognitive rehabilitation) according to [6].

For the random forest model, in addition to the driver’s age, handgrip strength, visual
ability, functional range test, and, to some extent, the assessment performed with the TUG
could support assessment protocols in situations that simulate vehicular driving. The
predictive model and the results presented in this study were based on a driving simulation
in an older adult’s sample. Therefore, the order of importance of these factors may differ in
other studies [11,16] or in real situations.

Predictive samples using a driving simulator contribute to analyzing traffic safety and
seeking information that is useful for preventive interventions. However, the literature
on driving safety with older adults is very limited, as it is difficult to consider additional
factors, for example, environment, road situation, traffic lights, etc. In the model that
performed tests with a driving simulator associated with an artificial neural network, it
showed that the driving of older adult drivers had a strong impact on the crash risk of
following vehicles. They noticed that these individuals may increase the risk of collisions
due to variations in speed in following cars, even if the older adult driver maintains a safe
distance [36].

The main limitations of the study are related to the use of the driving simulator,
precisely because it does not reproduce the real environment, with the influences acting
at the same time, such as driving on the street, with the presence of people in different
activities, other vehicles, pedestrians, and cyclists. However, the driving simulator allows
situations that would be complex when compared to real conditions. In addition, the older
adults in the present study did not present major cognitive, visual, and motor alterations,
which opens perspectives for new studies in this area, such as musculoskeletal diseases,
cognitive, and visual declines.

Second, Boyle and Lee [37] naturalistic studies bring information from critical safety
events that are not easily identified in crash data. On the other hand, studies with car
simulator studies are important to show underlying mechanisms related to the safety in
vehicular driving such as the roads, driver, and vehicle characteristics that influence safety
in vehicular driving. These two research approaches operate independently, but their
integration can provide valuable insights.
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The present study exposes intragroup similarities that could predict road crash and
show the need for multifactorial assessments. The performance of several professionals,
such as doctors, physiotherapists, occupational therapists, and psychologists, can interfere
with the performance of the older adults, in addition to encouraging them to maintain the
act of drive and consequently improve the quality of life of these individuals. Machine
learning is a growing area for its potential to build predictive models with excellent perfor-
mance. The present study opens a discussion on models that can identify groups of drivers
whose characteristics are more likely to be involved in a crash and direct professionals and
teams to which individuals could be evaluated more frequently, and in which domains the
evaluations would require greater attention.

5. Conclusions

The results of two different algorithms used to assess motor, visual, and cognitive
characteristics in older adult drivers were presented in our study. Although there were no
differences in the number of crashes and infractions per cluster, the combination of models
with supervised and unsupervised learning was able to identify subgroups of more similar
individuals and predict the number of crashes with excellent accuracy, as well as rank
the most important features. Data-driven decisions and machine learning can improve
traffic safety and enable multi-professional teams to provide personalized assistance to
older drivers.
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