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Abstract: Droughts are widespread in China and have brought considerable losses to the economy
and society. Droughts are intricate, stochastic processes with multi-attributes (e.g., duration, severity,
intensity, and return period). However, most drought assessments tend to focus on univariate drought
characteristics, which are inadequate to describe the intrinsic characteristics of droughts due to the
existence of correlations between drought attributes. In this study, we employed the standardized
precipitation index to identify drought events using China’s monthly gridded precipitation dataset
from 1961 to 2020. Univariate and copula-based bivariate methods were then used to examine drought
duration and severity on 3-, 6-, and 12-month time scales. Finally, we used the hierarchical cluster
method to identify drought-prone regions in mainland China at various return periods. Results
revealed that time scale played an essential role in the spatial heterogeneity of drought behaviors,
such as average characteristics, joint probability, and risk regionalization. The main findings were
as follows: (1) 3- and 6-month time scales yielded comparable regional drought features, but not
12-month time scales; (2) higher drought severity was associated with longer drought duration;
(3) drought risk was higher in the northern Xinjiang, western Qinghai, southern Tibet, southwest
China, and the middle and lower reaches of the Yangtze River, and lower in the southeastern coastal
areas of China, the Changbai Mountains, and the Greater Khingan Mountains; (4) mainland China
was divided into six subregions according to joint probabilities of drought duration and severity. Our
study is expected to contribute to better drought risk assessment in mainland China.

Keywords: meteorological drought; run theory; copula function; drought risk

1. Introduction

Drought is one of the most severe climate-related threats to human civilization, with
randomness, creep, and complexity [1,2]. It refers to a temporary lack of precipitation or
water shortage in a specific period, irrespective of the region’s typical aridity. Consequently,
droughts can take place in both wet and dry regions [3,4]. Drought can generally be
defined from various aspects such as meteorology, hydrology, agriculture, and socio-
economics. Currently, droughts are commonly monitored and analyzed through various
drought indices obtained from gauge-based or remote-sensing data. The widely-used
climate-related drought indices include the Palmer Drought Severity Index (PDSI) [5],
Standardized Precipitation Index (SPI) [6], Standardized Precipitation Evaporation Index
(SPEI) [7], and so on. Our research is limited to meteorological drought as evaluated by
SPI, which has been proven to be an effective index for assessing drought severity and
duration from regional to global scales [8–12]. The World Meteorological Organization
and a few international meteorological drought centers have also suggested the SPI as one
reference drought index to track drought features, due to its easy computation, multi-time
scale properties, and spatiotemporal comparability [13,14].

Int. J. Environ. Res. Public Health 2023, 20, 4074. https://doi.org/10.3390/ijerph20054074 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph20054074
https://doi.org/10.3390/ijerph20054074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0003-1884-495X
https://doi.org/10.3390/ijerph20054074
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph20054074?type=check_update&version=1


Int. J. Environ. Res. Public Health 2023, 20, 4074 2 of 16

Drought events are intricate, stochastic processes with multi-attributes (e.g., duration,
severity, intensity, and return period). Hence, probabilistic and stochastic methods are
commonly used to explore various drought features. The run theory, introduced by Yevje-
vich [15], has been widely adopted in drought analysis, as confirmed by a large number of
studies [16–18]. Prior to 2006, univariate analysis was the most popular method employed
to investigate drought frequencies and return periods, involving drought duration, severity,
maximum severity, etc. [19,20]. However, as a result of the correlations between the various
drought attributes, univariate analysis cannot fully and objectively describe the intrinsic
features of droughts. As such, some researchers have extended their analysis from uni-
variate to bivariate analysis to gain a deeper understanding of drought occurrences [21,22].
Nonetheless, this approach assumes that all drought attributes follow the same marginal
distribution, which may not always be practical.

Copula functions make it possible to describe the dependence structure of drought
multi-attributes, without the restrictions of the marginal distributions. This is particularly
advantageous because it provides a comprehensive understanding of how different drought
variables relate to each other, and how their joint behavior influences the overall drought
risk. By exploring the copula-based relationships between drought variables, researchers
can identify hidden patterns, causal factors, and key drivers of drought, which would be
difficult to uncover using traditional statistical methods. Scholars [8,23–25] have extensively
used this method to analyze the frequency and return period of droughts since its first
application in meteorological drought by Shiau [26]. However, most studies focused on
the properties of copula functions or the joint distribution of drought variables at specific
meteorological stations or small areas. It should be noted that one drought event generally
covers a large area, and so do the drought impacts. Hence, the drought frequencies derived
from discrete stations cannot well depict drought distributions and regional characteristics
in continuous space. However, several studies have demonstrated that gridded data can
compensate for the defects of uneven or sparse distributions of meteorological observation
stations [17,27,28].

In the context of global warming, droughts in China have expanded in terms of
extent, severity, and frequency [29–33]. Numerous studies have been conducted on the
spatiotemporal characteristics of drought across the country, leading to many noteworthy
accomplishments. For instance, a severe drought in 1997 led to the lower reach of the Yellow
River experiencing 226 days with zero flow [31]. Southwest China, in the period of summer
2009 and spring 2010, was hit by a once-in-a-century drought, which caused water shortages
for over 16 million people and 11 million livestock [32]. In 2011, China experienced a
widespread and severe drought event that affected regions across the country [34]. Notably,
the Yangtze River Basin, a typically humid region, suffered the worst drought in 50 years
in the spring of 2011. Han et al. [33] revealed a broadening of the drought-affected region
in China, accompanied by an escalation in both the frequency and severity of drought
events. Nonetheless, previous studies on droughts in mainland China have not explored
the probabilistic behavior and frequency-magnitude relationships of drought characteristics
using copula-based bivariate frequency analysis. Additionally, no attempt has been made
to investigate the spatial patterns of drought risk indicators to identify regions that are
prone to droughts.

This study aims to comprehensively examine the spatial characteristics of drought
events in mainland China over the past 60 years, from both univariate and bivariate
perspectives. The objectives are four-fold: (1) to identify and characterize drought events
and associated variables using run theory; (2) to analyze the spatial patterns of various
drought characteristics, including duration, severity, maximum severity, and frequency;
(3) to perform traditional univariate and copula-based bivariate frequency analyses on
drought duration and severity; and (4) to conduct drought risk regionalization.
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2. Materials and Methods
2.1. Data Source and Collection

In this study, the utilized monthly gridded precipitation dataset (version 2.0) has a spa-
tial resolution of 0.5◦ × 0.5◦ and encompasses a time span ranging from 1961 to 2020. The
dataset was acquired from the China Meteorological Data Service Centre [35]. Thin-plate
smooth spline interpolation was employed to construct the gridded dataset based on the
precipitation observations from 2472 meteorological stations across China [36]. Excluding
Taiwan and South China Sea Islands, the dataset comprises 4189 grids and was verified
by average root-mean-square and cross-validated by the Tropical Rainfall Measurement
Mission product [36,37]. As a result, the dataset has an average error of 0.49 mm/month,
and the average correlation coefficient between the grids and the observations is 0.93 (arriv-
ing at a significance level of α = 0.01) [38]. The dataset has also been extensively applied
for research on climate change in China [1,30,39]. The multi-year average precipitation
was calculated using this dataset and is shown in Figure 1. The spatial pattern of annual
precipitation indicates a gradual decrease from the southeastern coast to the northwest
inland. In addition, the seasonal distribution of precipitation is also uneven, which mainly
falls in May-October in the form of high-intensity rainforms [40,41]. The uneven spatial
distribution of precipitation and the considerable disparities in the time domain have
led to frequent droughts and floods in China, which have greatly threatened agricultural
production, as well as people’s lives and properties.
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Figure 1. Spatial pattern of average annual precipitation for the period 1961–2020.

2.2. Methods
2.2.1. Standardized Precipitation Index

The SPI index proposed by Mckee et al. [6] can characterize droughts on various time
scales, such as 1-, 3-, 6-, and 12-month periods. The detailed computation formulas can be
found in the previous studies [10,42,43], and the key steps are as follows [44,45]:

(1) Calculating the cumulative precipitation on a specific time scale;
(2) Matching the probability distribution of accumulative precipitation using a gamma

distribution function;
(3) Determining the non-exceedance probabilities for cumulative precipitation;
(4) Converting the probabilities to a standard normally distributed variable.
SPI is classified into five groups based on the “Meteorological drought grade (GB/T20481-

2017)” [46], as shown in Table 1.

Table 1. Classifications of drought based on SPI values.

Drought Level No Mild Moderate Severe Extreme

SPI value (−0.5,+∞) (−1.0,−0.5] (−1.5,−1.0] (−2.0,−1.5] (−∞,−2.0]



Int. J. Environ. Res. Public Health 2023, 20, 4074 4 of 16

SPI values over different time scales can depict drought types [27]. In this study, we
employed SPI on the time scales of 3-month (SPI-3), 6-month (SPI-6), and 12-month (SPI-12)
to explore the short-, medium-, and long-term drought characteristics in mainland China
(excluding Taiwan and South China Sea Islands). The SPI value of a specific accumulation
period was assigned to the final month of that period, so the SPI-6 value for June 2020
referred to the SPI for the accumulative precipitation from January to June 2020.

2.2.2. Run Theory

The run theory introduced by Yevjevich [15] makes it easy to identify drought features
including start and end times, as well as the duration and severity of drought. For this
study, a drought threshold of −0.5 was set based on Table 1. There were two aspects to
be dealt with in the process of drought identification: (1) Minor drought events. When
SPI was less than −0.5, we preliminarily judged that the month was one drought-month.
It can be seen in Figure 2 that there were six distinct droughts labelled E1, E2, E3, E4, E5,
and E6. A single-month drought event was considered to have occurred if its associated
SPI value was less than −1.5 (such as E6). Otherwise, it was considered a minor drought
event and should be ignored (such as E1); (2) A confluence of droughts. In the case of two
consecutive droughts separated by a month, if the SPI value was between −0.5 and 0.5
in the interval month, the two adjacent droughts were considered subordinate droughts.
Then, the two droughts should be combined into one drought event (such as E4 and E5).
The total drought duration equaled E4(d) + E5(d) + 1, while the drought severity equaled
E4(s) + E5(s). Otherwise, it was two independent drought events. As a result, four drought
events were finally identified, namely E2, E3, E4 + E5 and E6. Wherein drought duration (d)
refers to the number of months elapsed between its onset and its cessation, while drought
interval (l) is the amount of time between its onset and that of the next adjacent drought.
The drought severity (s) is the cumulative difference that the SPI falls below −0.5 for each
drought episode. To facilitate computation, we doubled the drought severity by −1 to get a
positive value [47,48], namely:

s = −
d

∑
i=1
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Figure 2. A basic illustration of drought events based on run theory. The red portions indicate
drought periods, while the blue portions indicate non-drought periods.

This paper discussed the drought duration, severity, and maximum (the peak value of
drought severity) [49] as defining features of drought episodes. To calculate these attributes
for each grid, the following formulas were used:

save =
n

∑
i=1

si/n (2)
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dave =
n

∑
i=1

di/n (3)

smax = maxsi
1≤i≤n

(4)

where n represents the total number of droughts.

2.2.3. Copula Function

Sklar [50] pointed out that copula functions could show how drought variables are
related even if they don’t have the same marginal distribution. They can depict the effects
of drought on a specific region with more precision than conventional statistical methods.

The Archimedean copula function family, which includes Clayton, Gumbel, and Frank
copulas, has been widely used in hydrology and meteorology. Selecting the appropriate
copula function directly impacts the analysis and computation outcomes [51]. Thus, it is
crucial to identify the copula function that can effectively represent the variables in the
analysis. Here, the best-fit copula was selected based on the Akaike Information Criterion
(AIC) [52]. The selection process followed a criterion where a lower value indicated better
performance. The formula for AIC was provided in Equation (5). After selecting the appro-
priate copula function, its parameters were evaluated by the marginal inference function,
which consisted of two separate estimation steps: first estimating each univariate marginal
distribution function based on the maximum likelihood method; and then estimating the
copula dependence parameter [53]. It should be also noted that the presence of a correlation
between variables is essential in the creation of a bivariate distribution using a copula
function. Without this correlation, the use of a copula function is not possible [54]. To
determine the correlation between drought severity and duration in this study, Kendall’s
correlation coefficient [55] was employed. Prior research [24,56] revealed that the cumulative
distribution functions of drought duration (FD(d)) and severity (FS(s)) follow the exponential
and gamma distributions, as defined in Equations (6) and (7), respectively.

AIC =2(k− ln Lmax) (5)

FD(d) = 1− e−d/λ, d > 0 (6)

FS(s) =
∫ s

0

sα−1

βαΓ(α)
e−s/βds, s > 0 (7)

where the variable Lmax represents the maximum log-likelihood that can be attained by
the model for a given dataset; k refers to the number of parameters that can be freely
estimated for the model. λ denotes the parameter to describe exponential distribution,
α and β determine the shape and scale of gamma distribution. The copula-based joint
cumulative distribution function of drought duration and severity may be represented
as follows:

FDS(d, s) =
(

F−θ
D (d) + F−θ

S (s)− 1
)−1/θ

, θ ≥ 0 (8)

where θ is a measure for quantifying the strength of the link between FD(d) and FS(s).

2.2.4. Return Period and Joint Probability

The return period of a drought refers to an estimated average time between two
drought events with a specified value or higher [20]. Given that droughts may persist
longer than one year, Shiau and Shen [57] developed the following formula to calculate the
return period of drought duration (RD) and drought severity (RS):

RD = E(l)/(1− FD(d)) (9)

RS = E(l)/(1− FS(s)) (10)

where E(l) denotes the expected value of drought interval time as described in Section 2.2.2.
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Drought risk assessment and drought management rely heavily on information on the
joint probability of drought features. In this study, we assessed the joint probability that
both drought duration and severity concurrently surpass the specified threshold (i.e., D ≥ d
and S ≥ s). The formula for the probability was given by Shiau [23]:

P = P(D ≥ d ∩ S ≥ s) = 1− FD(d)− FS(s) + FDS(d, s) (11)

2.2.5. Drought Risk Regionalization

Drought risk regionalization is a vital task in the field of drought risk management, as
it is the process of identifying areas that are likely to be affected by drought hazards. This is
achieved through the aggregation of regions that have similar climatic characteristics and
spatial continuity. The process of drought risk regionalization is complex, as it involves the
use of sophisticated statistical and geographical techniques, such as clustering and spatial
analysis. By implementing these methods, researchers can effectively identify areas that are
susceptible to drought and subsequently develop strategies to mitigate its impact. In this
study, we employed the HiClimR package [58] in R software to accomplish the drought
risk regionalization in mainland China. The scheme for drought risk regionalization can be
summarized as follows:

(1) Extract the longitude and latitude of each grid point and generate the corresponding
raster layer.

(2) Select the dataset of input data for the implementation of hierarchical clustering.
The dataset includes latitude, longitude, and grid-based joint probability of drought
duration and severity calculated by Equation (11).

(3) Preprocess the input data by removing the effect of magnitude through standard
deviation normalization.

(4) Identify adjacent grids by using the latitude and longitude variables.
(5) Calculate the distance between the grids using the Pearson correlation coefficient and

the distance between classes using the sum of squares method.
(6) Determine the adjacency and homogeneity of the regions by minimizing the inter-

regional correlation coefficient and maximizing the intra-regional correlation coefficient.
(7) Obtain the final group numbers based on the silhouette width criterion.
(8) Group the adjacent grids based on their similarity in terms of joint probability of

drought duration and severity.
(9) Evaluate the results of the drought risk regionalization and identify the areas that are

susceptible to drought hazards.

3. Results
3.1. Regional Average Drought Attributes

Drought attributes, such as average duration and severity, maximum severity, and the
number of drought episodes, were depicted spatially in Figure 3 at 3-, 6-, and 12-month time
scales. On the 3-month time scale, most of Xinjiang, northern and southern Tibet, western
Qinghai, and eastern Heilongjiang experienced relatively longer drought durations, while
the average drought durations were relatively short in eastern Inner Mongolia, southwest-
ern Heilongjiang, eastern Jilin, and most of Shaanxi province (Figure 3a). The distribution
patterns of average drought severity showed that western and northern Xinjiang, northern
Tibet, southwestern and eastern Qinghai, central and eastern Yunnan, southern Yangtze
River Basin, central Anhui, and eastern Heilongjiang experienced relatively more severe
droughts. In contrast, the values of drought severity were relatively low in southeastern
Xinjiang, western Tibet, western Inner Mongolia, and eastern Jilin (Figure 3b). Northern
Xinjiang, northeastern Tibet, southern Qinghai, and central-northern Yunnan have experi-
enced more intense droughts (Figure 3c). Compared with southern China, more droughts
occurred in northern China (Figure 3d).
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Figure 3. Spatial patterns of average duration, average severity, maximum severity, and the num-
ber of drought episodes derived from SPI-3, SPI-6, and SPI-12 values, respectively. Specifically,
(a,e,i) indicate the average drought duration; (b,f,j) represent the average drought severity;
(c,g,k) refer to the maximum drought severity; (d,h,l) denote the total number of drought events.

The average duration and severity followed similar spatial patterns on the 6-month
time scale as they did on the 3-month time scale (Figure 3e,f). However, the most severe
droughts were also observed along the southeastern coast (Figure 3g), and the drought
frequency pattern was more pronounced, with more droughts occurring north of the
Yangtze River than south of it (Figure 3h).

On the 12-month time scale, the average drought durations in Northeast China, North-
west China, North China, and Qinghai-Tibet Plateau were longer than that in the southeast
coastal provinces (Figure 3i). Drought severity followed a similar pattern as drought dura-
tion (Figure 3j), which meant that longer drought duration tended to result in more severe
drought. The most severe droughts occurred in southwestern China and at the junction of
Inner Mongolia, Jilin, and Liaoning provinces (Figure 3k). The pattern of drought frequency
was quite different from that on the 3- and 6-month time scales. Although the drought
durations in central and eastern China were shorter, the drought frequencies were relatively
high (Figure 3l). Similar to the drought severity, the areas with higher numbers of drought
episodes decreased as time scales increased. Compared to the spatial patterns of short- and
medium-term drought attributes, long-term drought attributes had quite distinct regional
distributions. So, when examining drought-related issues, an appropriate time scale should
be selected depending on the purpose of the study.

3.2. Spatial Patterns of Drought Severity and Duration with Various Return Periods

Figure 4 illustrated the drought severity for 3-, 6-, and 12-month time scales at different
return periods, including 5-, 10-, 20-, 50-, and 100-year. The study findings suggested
that drought severity increased with longer drought return periods across various time
scales [27]. On the 3-month time scale, severe droughts were observed in most regions
of China except the Changbai Mountains, Greater Khingan Mountains, Pearl River Basin,
western Tibet, and eastern Xinjiang province. Moreover, similar spatial patterns of drought
severity were observed at 3- and 6-month time scales. It should be noted that severe
droughts have also been found along the southeastern coast of China. On the 12-month
time scale, the Qinghai-Tibet Plateau was identified to be more susceptible to droughts.
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Figure 4. Spatial distributions of drought severity with 5-, 10-, 20-, 50-, and 100-year return periods
based on SPI-3, SPI-6, and SPI-12 values. Specifically, (a–e) in each panel show the spatial patterns
of drought severity with return periods of 5-, 10-, 20-, 50-, and 100-year at the 3-month time scale;
(f–j) in each panel depict the corresponding patterns at the 6-month time scale; and (k–o) in each
panel illustrate the patterns at the 12-month time scale.

Drought duration for 3-, 6-, and 12-month time scales with return periods of 5-, 10-, 20-,
50-, and 100-year were depicted in Figure 5. In comparison to Figure 4, we discovered that
areas where droughts lasted longer were likewise associated with more severe droughts.
This means that longer drought durations tended to indicate more severe droughts and
vice versa. From Figures 4 and 5, it can be observed that more severe and longer drought
events were detected in western and northern Xinjiang, southwestern China, and the
southern regions of the mid-lower reaches of the Yangtze River. In contrast, less intense
and shorter drought events were monitored mainly in the Greater Khingan Mountains,
Changbai Mountains, and Pearl River Basin. To confirm the positive relationship between
drought duration and severity, we analyzed the spatial distribution of Kendall correlation
coefficients for these two variables at different time scales. Specifically, we plotted the
correlation coefficients for the 3-, 6-, and 12-month time scales in Figure 6. The findings
indicate that there is indeed a positive correlation between drought duration and severity,
and this relationship reaches a significance level of α = 0.05. Moreover, the Kendall
correlation coefficient shows an increase with longer time scales, suggesting that the
longer the drought lasts, the more severe it becomes. Nonetheless, univariate analysis is
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insufficient to completely characterize drought episodes due to the correlation between
drought attributes.
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3.3. Joint Probability of Drought Duration and Severity

To gain a better understanding of the relationship between drought severity and
duration, it is essential to evaluate the drought risks in mainland China using bivariate
analysis. Firstly, the best-fit copula function was determined grid-by-grid based on the
AIC criteria, and the Frank copula was found to have the best performance for each grid at
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various time scales. Next, we employed the joint probability, as described in Equation (11),
with the thresholds s and d derived from the preceding univariate study of drought severity
and duration for 5-, 10-, 20-, 50-, and 100-year return periods, respectively. The results
displayed in Figure 7 showed a clear spatial distribution of the joint probability P at various
time scales and return periods. On the 3- and 6-month time scales, relatively large P
values were mainly observed in northern Xinjiang, western Qinghai, southern Tibet, central
Yunnan, and eastern Heilongjiang, indicating a higher likelihood of experiencing droughts
in these regions. Conversely, the P values in the southeastern coastal areas of China,
Changbai Mountains, and Greater Khingan Mountains were mostly smaller, implying a
lower drought risk in these regions. On the 12-month time scale, the drought risk on the
Tibetan Plateau was the highest, which was consistent with the results obtained from the
univariate analysis.
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3.4. Drought Risk Regionalization

In order to identify drought-prone regions in mainland China, we mapped the drought
risk regionalization at various return periods, as shown in Figure 8. With the aid of the
silhouette width criterion, a preliminary estimate of the optimal number of clusters was
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made. According to the findings, the optimal number of drought risk zones ranged from
four to six categories over various return periods. For convenience of analysis, we divided
mainland China into six sub-regions considering the topography, drought risk, and the
continuity and independence of regions. The map visualization was accomplished using
Arcmap 10.4. The mapping process involved the use of the focal statistics function for
raster smoothing, Chinese border extraction, raster to polygon conversion, and modifying
isolated classification grid points by changing their attributes to that of the adjacent major
class. It was clear from Figure 8 that the spatial pattern of drought risk zones exhibited
a high degree of similarity on 3- and 6-month time scales with return periods ranging
from 5 to 100 years. The six sub-regions were identified as Xinjiang (I), Qinghai-Tibet
Plateau (II), central and western Inner Mongolia (III), South China (IV), North China (V),
and Northeast China (VI). However, for the 12-month time scale, the zoning results under
different return periods mostly separated Southwest China, suggesting that this region was
particularly susceptible to long-term droughts. In addition, the zone (central and western
Inner Mongolia) was absorbed by neighboring zones.
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4. Discussion
4.1. Drought Characteristics and Risk

The study observed that regions with less precipitation and high rainfall variabilities,
such as Northwest China and the Qinghai-Tibet alpine region, experienced longer and
more severe droughts. Several studies have highlighted that the water resource supply
is decreasing, which makes these regions more susceptible to drought [59–62]. However,
other studies have shown an increase in precipitation in the Qinghai-Tibet Plateau and
Northwest China, indicating a possible improvement in drought conditions in these regions
in the future [63,64]. Additionally, severe drought episodes were observed in the middle
and lower reaches of the Yangtze River and the Yunan-Guizhou Plateau, which might have
been due to a significant reduction in precipitation [12,16,17,65]. Another study conducted
by He et al. [66] identified a higher drought risk in the northern Xinjiang, Loess Plateau,
Northeast Plain, southern areas of the Yangtze Plain, and Yunnan-Guizhou Plateau. Our
research, as depicted in Figure 7, also reveals similar findings, although we identified high
drought risk in eastern Heilongjiang instead of most of the Northeast Plain. The reason for
the discrepancy might be that our primary focus was meteorological drought rather than
agricultural drought, which was the main concern in their study.

4.2. Regionalization

In China, previous studies on regionalization focused on employing various indices
to determine climate zones. For example, Yang and Li [67] applied the rotated empirical
orthogonal function (REOF) method to divide China into 11 subregions based on the
precipitation anomaly percentage. However, due to the empirical nature of the REOF
method, there is a certain subjectivity and fuzziness in determining the boundaries of the
subregions. Li et al. [68] identified eight homogeneous regions in China by applying Ward’s
and k-means clustering techniques based on SPI-3, but still encountered subjectivity in the
determination of the subregion boundaries attributed to the utilization of station-based
data. Drought risk regionalization has only been explored in the research conducted by
Wu et al. [69], who took into account the impact of the long-term evolution of drought
variables on the results of drought risk regionalization, but only considered the drought
severity. In contrast, our study examined the joint probabilities of drought duration and
severity at different drought levels, providing more detailed and helpful information for
drought risk regionalization. As a result, we divided mainland China into six subregions
based on the joint probability. However, it should be noted that the spatial patterns of
long-term drought features differed from those on short- and medium-term time scales
(seen from Figures 3–6) because the time scale played an essential role in the spatial
heterogeneity of drought behaviors. Therefore, when discussing drought-related scientific
issues, the time scale must be considered according to the research purpose, as pointed out
by McKee et al. [6], due to the complexity of drought phenomena.

4.3. Limitations and Future Work

This study focused only on a bivariate analysis of drought, specifically duration and
severity. However, given that droughts are complex and multifaceted phenomena, relying
solely on a bivariate analysis may lead to less accurate estimates of drought probabili-
ties compared to more complex three- or four-variate analyses [70]. Hence, researchers
have developed multivariate extensions of bivariate copula that can provide a more com-
prehensive assessment of droughts [70–73]. Nonetheless, the parameter estimate and
calculation [70–72,74] will get more challenging as the number of drought-related variables
increases [75]. Additionally, under the backdrop of climate change, the uncertainties sur-
rounding the incidence and progression of drought present an imminent threat to both
China’s ecological and food security. Thus, predicting drought in the future becomes
crucial. To this end, our forthcoming research will center on employing SPI and high-
dimensional copula functions to assess the spatiotemporal evolution of drought, as well as
the corresponding drought risk under RCP4.5 and RCP8.5 scenarios. Furthermore, we will
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conduct a comprehensive analysis of SPI under the two scenarios to explicate the potential
uncertainties of drought forecasting.

5. Conclusions

Since drought is a serious natural disaster, understanding the characteristics of drought
is an essential step in establishing effective measures to alleviate drought-related problems.
In this study, China’s monthly gridded precipitation dataset from 1961 to 2020, with a
spatial resolution of 0.5◦ × 0.5◦, was used to calculate the SPI values at various time scales
and identify drought events in combination with run theory. The features of drought events
were described by drought duration and severity, which were fitted by exponential and
gamma distributions, respectively. In addition, the Frank copula function was employed
to establish the dependence between drought duration and severity. According to the
formulas of return period and joint probability, the thresholds of drought duration and
severity corresponding to the return periods of 5-, 10-, 20-, 50-, and 100-year under various
time scales were calculated, as well as the values of joint probability. As a result, the key
findings were as follows:

(1) The spatial patterns of average drought duration and severity indicated that
western and northern Xinjiang, western and southern Tibet, western Qinghai, central and
northern Yunnan, and eastern Inner Mongolia experienced severe droughts. The spatial
patterns of the average drought duration and severity were similar, suggesting that longer
drought duration tended to correspond to higher drought severity and vice versa. Although
droughts occurred relatively frequently in most of the three northeastern provinces, in the
middle and lower reaches of the Yellow River and Yangtze River the severity was relatively
mild. Notably, the spatial patterns of the average drought variables on the 12-month time
scale differed remarkably from those on the 3- and 6-month time scales.

(2) In the univariate analysis, the spatial coverages of drought duration and severity
at various time scales and return periods were also consistent, which further indicated
that drought duration and severity were positively correlated. Drought events with longer
duration and higher severity mainly occurred in western and northern Xinjiang, south-
western China, and the southern part of the middle and lower reaches of the Yangtze River.
Drought events with shorter duration and less intensity were most common in the Greater
Khingan Mountains, Changbai Mountains, and Pearl River Basin.

(3) The results obtained from bivariate frequency analysis, using the Frank copula
function, revealed that the regions with higher P values on the 3- and 6-month time
scales were northern Xinjiang, western Qinghai, southwestern China, and the middle and
lower reaches of the Yangtze River. Conversely, the regions with lower P values were
the southeastern coastal regions of China, Changbai Mountains, and Greater Khingan
Mountains. On the other hand, for the 12-month time scale, the drought risk was found to
be the highest on the Tibetan Plateau.

(4) Mainland China could be divided into six sub-regions according to joint probabili-
ties of drought duration and severity. However, the spatial pattern of drought risk zones
exhibited a high degree of similarity on 3- and 6-month time scales but differed from the
results on the 12-month time scale.

Overall, regardless of average drought characteristics, joint drought probability, or
drought risk regionalization, time scale played an essential role in the spatial heterogeneity
of their behaviors, reflecting the complexity of drought phenomena. Additionally, our
method, combining SPI and bivariate copulas for drought risk regionalization, is gener-
alizable to other regions and can be applied to other climatic variables, although some
modifications may be necessary to fit specific conditions.
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