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Abstract: Cities worldwide are facing the dual pressures of growing population and land expan-
sion, leading to the intensification of conflicts in urban productive-living-ecological spaces (PLES).
Therefore, the question of “how to dynamically judge the different thresholds of different indicators
of PLES” plays an indispensable role in the studies of the multi-scenario simulation of land space
changes and needs to be tackled in an appropriate way, given that the process simulation of key
elements that affect the evolution of urban systems is yet to achieve complete coupling with PLES
utilization configuration schemes. In this paper, we developed a scenario simulation framework
combining the dynamic coupling model of Bagging-Cellular Automata (Bagging-CA) to generate
various environmental element configuration patterns for urban PLES development. The key merit of
our analytical approach is that the weights of different key driving factors under different scenarios
are obtained through the automatic parameterized adjustment process, and we enrich the study cases
for the vast southwest region in China, which is beneficial for balanced development between eastern
and western regions in the country. Finally, we simulate the PLES with the data of finer land use clas-
sification, combining a machine learning and multi-objective scenario. Automatic parameterization
of environmental elements can help planners and stakeholders understand more comprehensively
the complex land space changes caused by the uncertainty of space resources and environment
changes, so as to formulate appropriate policies and effectively guide the implementation of land
space planning. The multi-scenario simulation method developed in this study has offered new
insights and high applicability to other regions for modeling PLES.

Keywords: production-living-ecological space (PLES); cellular automata; machine learning; scenario
simulation; multi-objective dynamic weights

1. Introduction

The United Nations [1] predicts that the global urbanization rate will reach 72% by
2050. Such a large-scale urbanization process will lead to increasingly prominent conflicts,
including development constraints, between production and living space [2–4], economic
development and ecological protection [5], and urban expansion and cultivated protec-
tion [6–9]. To attain orderly development of space and promote balance and sustainability
in production-living-ecological spaces (PLES), multiple stakeholders, including the public,
scholars, and policy and decision-makers in multi-level authorities, have emphasized the
spatial pattern of “promoting intensive and efficient production space, livable and moder-
ate living space, and picturesque and beautiful ecological space” as planning for optimizing
PLES [10–13].
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Research on the PLES is regarded as an effective tool for managing land resources,
coordinating the relationship between human and land resources, and promoting sustain-
able development [14]. By clarifying the control boundaries of urban, agricultural, and
ecological space development, the quantity, structure, layout, and temporal changes of land
space development and utilization can be determined [15]. However, how to maintain the
PLES balance among the limited land resources in urban areas and promote sustainable
development in terms of changing social and economic factors is one of the underdeveloped
issues in the transformation of land spatial planning [16].

Machine learning is regarded as an effective tool to simulate PLES [17]. The core of
its effectiveness is the suitability of input environment variables in multi-objective scenar-
ios [16,18]. The research frontier is the dynamic automatic acquisition of multidimensional
environment variables that influence relevant multi-object scenarios. However, there is no
consensus in the academic community on how to conduct automatic acquisition [19,20],
where scholars attempted diverse approaches to address this issue. In addition, when using
machine learning under the frame of Cellular Automata (CA), two main classifications,
urban land and non-urban land, are used in the simulation of urban land use, such as the
delineation of urban growth boundaries (UGBs). Chengdu is one of the largest cities in
western China and the core of the only urban agglomeration in Southwest China. Therefore,
research on PLES in Chengdu is representative and valuable.

The existing exploratory scenario modeling mainly achieves future scenario simulation
by setting differentiated total space demand and emphasizes the current policy develop-
ment orientation. However, it ignores the dynamics of the development of resource and
environment elements in the multi-functional land space area in the scene [21]. The spatial
simulation evolution mechanism of PLES with multi-objective scenario coordination needs
to consider the aforementioned planning goals and index sets, such as food security, urban
construction, and ecological protection, and determine the differentiated index values in the
multi-objective scenario simulation model through the calculation of index thresholds [22],
so as to study the system scheme that meets the multi-objectives of land space planning.
Constrained by limited data, single consideration factors, and insufficient system cognition,
the judgments of different index thresholds in previous planning systems were mostly
combined with regional suitability analysis to calculate the range of the index [23,24].

The process simulation of key elements that affect the evolution of urban systems,
such as population, activities, traffic, and land use, is still unable to achieve complete
coupling, and there is a lack of a general and unified urban system model [25], studies
on the organic integration of spatio-temporal differentiation lacking driving force and
future land use scenario analysis [26]. Therefore, it is important to develop a multi-scenario
spatial simulation model that takes into account different human activities within PLES and
possesses high flexibility to meet the land-use allocation needs in the areas with complicated
characteristics. So far, research on PLES in the western cities in China under multi-objective
scenario simulation is still in the preliminary exploration stage, especially that based on
multi-classification of land use type(s) and using artificial intelligent algorithms.

Therefore, we aim to establish an analytical framework with multi-classification for
scenario simulations of the future spatio-temporal pattern of PLES in Chengdu using
machine learning methods: integrated bagging tree and change matrix of error gradient,
followed by dynamic mining and update extraction of social and environmental driv-
ing forces affecting land spatial change under different target scenarios, and finally, the
simulation of a multi-object scenario for land spatial change through “automatic index
parameter matching”.

We constructed a multi-scenario simulation model of PLES based on the automatic
parameterization process of system elements using the integrated learning classification
model of integrated bagging tree (Bagging) and space-time cellular automata (CA) to mine
the interaction between the system elements and the PLES.

The main contributions of this study can be summarized as follows.
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• This study realizes the dynamic and automatic identification of the key elements
that affect the evolution of the PLES under multi-object scenarios, which advances
the toolbox for land use simulation methods and provide a framework for other
case studies.

• Our investigation focuses on a typical southwestern Chinese city, which is one of
the core cities in large urban agglomeration in southwest China. The evidence from
this new case study could help mitigate the imbalance issue between research on the
eastern and western regions in China and offer insights for other developing countries.

• We applied a finer land use classification data, combined with machine learning
algorithms and multi-objective scenario simulation to study PLES, which offers new
perspectives of land-use simulation and analytics for policy and decision makers.

2. A Brief Literature Review
2.1. The Core of PLES: Automatic Parameterization of Environmental Element

Previous studies have determined the threshold values of different indicators to calcu-
late the range of indicators by combining regional suitability analysis [24,27], the entropy
method [28], the analytic hierarchy process [29], and other mathematical statistics. Spatial
models combined with artificial intelligence algorithms, such as the CLUE-S model, system
dynamics (SD), and multi-objective programming based on RS and GIS, are widely used
in land use optimization schemes to achieve coupled optimization of structure and lay-
out [27,30–32]. The swarm intelligence optimization algorithm in the land use optimization
configuration model is mainly based on adaptive rules and uses machine learning methods
to simulate future multi-scenario land use configurations. Safitri et al. [33] used the support
vector machine (SVM) to build a land suitability model in Java, Indonesia, to improve the
accuracy of spatial allocation and evaluated the benefits of spatial allocation based on the
hierarchy of physiological needs. Clarke et al. [34] refined the research patches and used the
genetic algorithm (GA) to improve the efficiency of the CA prediction model and predict
land use in California in 2100; Edan et al. [35] used CA and artificial neural network (ANN)
algorithms to determine the land use change trend in eastern Iraq by 2030 and the impact
of land use change on surface temperature. However, the automatic parameterization of
environmental elements, whether using machine learning or other PLES research methods,
is still under development.

2.2. Empirical Research on PLES

Research on PLES is relatively concentrated in developed cities, such as those in the
southeastern regions of China, and mainly focuses on the following aspects: (1) Definition
of the functional implications: For example, studies have discussed the three perspectives
of function of land, landscape, and ecosystem services in Hangzhou [36,37]. (2) Iden-
tification and delineation: Some research prove that the PLES functional classification
applies differently under different research scales and perspectives in Hebei province. The
most common dentification methods can be roughly divided into two: the merge and
classification method and the index quantitative measurement algorithm [38,39]. (3) Dy-
namically evolving features: Some studies analyze the change characteristics of PLES in
chronological order, such as [40]; moreover, some scholars use land use dynamic change
models to analyze the temporal and spatial evolution characteristics of PLES at different
scales from different angles in the Fujian Delta urban agglomeration [41]. (4) PLES pattern
simulation optimization: Much research has approached the optimization path and pattern
reconstruction model of land space from the macro, meso, and micro scales, such as the
optimized spatial allocation of construction land in Yangzhou and research on village-type
identification based on the evolution simulation of PLES in Hunan, which has enriched
the theory of land space optimization research [42,43]. However, insufficient attention has
been paid to the western cities. In the Chinese context, the issue of east-west balance is
very important. Therefore, we focus on the development of PLES in the western region.
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2.3. PLES Combined with Multi-Categorical Land Use Data and Machine Learning Algorithms

Research on the optimal allocation of land is mainly concentrated on the evaluation of
current resources and the environment, and the use of land units is examined using the
multi-criteria decision-making model, supplemented by GIS spatial analysis. Chuvieco
presented linear programming (LP) as a promising tool for spatial modeling within a GIS
with four land types: forest land, rained cropland, irrigated cropland, and urban land [44].
Chen [45] developed an innovative method that is capable of simulating UGB alternatives
with economic and ecological constraints based on patch-based cellular automaton in the
Pearl River Delta (PRD), in southeastern China. The multi-scenario PLES simulation needs
data yielding a finer classification of land use type to solve the problem of land use spatial
layout optimization for food security, urban construction, and ecological protection and
determine the differentiated index value in the multi-objective scenario simulation model
through index threshold calculation [46]. However, current urban simulation approaches,
such as the study of urban boundaries based on CA, mainly simulate two categories of
land (urban land and non-urban land). In-depth research on the multi-objective scenario
simulation of PLES using data on multi-category land cover/use combined with artificial
intelligence algorithms is thus necessary.

Therefore, we focus on studying the PLES of typical big cities in western China and
develop a scenario simulation framework combined with the Bagging-Cellular Automata
(Bagging-CA) to generate various environmental element configuration patterns with more
detailed land cover/use data classifications.

3. Data Collection
3.1. Study Area

The case area in Chengdu, China, with geographical coordinates between 102◦54′–
104◦53′ E and 30◦05′–31◦26′ N, is located in southwestern China and in the western Sichuan
Basin. Chengdu covers an area of 14,335 square kilometers. As of the end of 2021, the per-
manent population 21.192 million, and the urbanization rate of the permanent population
was 79.48%. It is the core city of the “Chengdu-Chongqing” city agglomeration in China, a
high-tech industrial base, commercial logistics center, and comprehensive transportation
hub. The overall terrain in the area is inclined from northwest to southeast, with abundant
precipitation, vertical and horizontal river networks, rich products, and developed agricul-
ture. The GDP was 1991.698 billion yuan (i.e., CNY) in 2021, which makes Chengdu the
largest city in western China. This case area is mainly the urban core area of Chengdu, with
a total area of 3680.04 km2 and an average elevation of 500 m, including 11 areas (Figure 1).
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3.2. Data Source

The land use data (30 × 30 m2 resolution) for 2000, 2005, 2010, 2015, and 2020, and
the Digital Elevation Model (DEM) were obtained from the Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences (https://www.resdc.cn, accessed
on 14 January 2023). The overall accuracy is 94.3% [47].

In this study, we use:

1. geological conditions, including geological disaster points and digital elevation
model (DEM).

2. ecological environment conditions, including ecological environment quality, biodi-
versity, net primary production (NPP), farmland production potential, soil erosion,
and normalized difference vegetation index (NDVI);

3. climatic conditions, including annual average temperature, annual precipitation;
4. economic conditions, including point of interest (POI) and night lights as the driving

factors for the simulation model inputs.

These data were collected from the Data Center for Resources and Environmental
Sciences of the Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 14
January 2023). Vector data such as that on railways, roads, and settlements were drawn
from OpenStreetMap (https://www.openstreetmap.org/, accessed on 8 January 2023). The
data for population and GDP distribution, with a resolution of 1 km, were obtained from
the Global Change Science Research Data Publishing System (http://www.geodoi.ac.cn/
WebCn/CategoryList.aspx?categoryID=9, accessed on 14 January 2023). All of these data
are freely accessible to the public. (See detail in Appendix A)

3.3. Data Treatment and Pre-Processing

In this study, we split the data into two subsets and used a five-fold cross-validation
method to test the model performance. The data collected for the study area from 2010 to
2015 were used as the training set for model calibration and those from 2015 to 2020 as the
testing set for model validation.

All these numerical variables were normalized to [0,1] using simple statistical nor-
malization and resampled in GIS, with a spatial resolution of 1 km. Land use types were
reclassified into (1) cultivated land, (2) woodland, (3) grassland, (4) water area, (5) urban
land, (6) rural settlements, and (7) other construction land. All these land use data were
converted into unit size of 100 × 100 m2, which is also the unit size of the subsequent
implementation simulation, with a total of 369,768 units covering the whole study area.

The spatial variables were preprocessed by ArcGIS 10.7. The kernel density analysis
was performed on POI, whereas the slope aspect analysis was performed on DEM. The
neighbor analysis was then performed on distance factors. The variables of proximity to
the town center/city center/river, terrain slope, and water quality conditions were kept
constant, as these conditions were relatively stable during the study period.

4. Methods
4.1. Analytical Framework

To accurately describe the interactive feedback between the system of “economy-
society-nature” and national land use space, the integrated learning classification model
was used to mine the interaction between the system elements and the national land space.
We then obtained the degree of influence (contribution) of each element index on various
land use spaces by changing the number of model input elements to bring about gradient
change in the classification prediction error to explore the key influencing parameters of
the interaction (Figure 2).

https://www.resdc.cn
https://www.resdc.cn/
https://www.openstreetmap.org/
http://www.geodoi.ac.cn/WebCn/CategoryList.aspx?categoryID=9
http://www.geodoi.ac.cn/WebCn/CategoryList.aspx?categoryID=9
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Figure 2. A sketch of the methodological framework.

Using the change matrix of the error gradient, we selected and reorganized the com-
bination of key indicators for each type of spatial land use differentiation. In the CA
conversion rule, only the conversion probability of the core land space set for each scenario
was updated according to the difference of the core land space in each scenario. Through
the above two steps, an automatic parameter adjustment process was constructed, and the
CA scenario simulation results were optimized. Finally, the simulation of multi-scenario
land space changes was realized by “automated index parameter matching”.

The training data for land use included those for the years 2000, 2005, 2010, 2015, and
2020, whereas the simulation year was 2025. To calibrate and check the usability of the
model, the Kappa coefficient and the samples in the test set that were used to construct a
mesh-by-grid confusion matrix between the simulation results and actual land use patterns.
We then used the model to predict the changes in land use in 2025.

We first sorted the interrelationships of elements in the multi-functional land use
space system, identified the key influencing factors related to the spatial pattern of PLES,
and established a many-to-many system relationship between PLES and the resource
environment, thereby realizing the differentiated configuration of environmental elements
under multiple scenarios. Then, by integrating the ensemble bagging tree model and
the dynamic CA model, a multi-scenario PLES simulation mechanism based on “target-
process-pattern” was constructed, as shown in Figure 3. First, the evolution characteristics
of PLES were analyzed from the two aspects of total change and type transformation.
Second, based on the “information gain” theory, the bagging algorithm was used to explore
the key factors and driving mechanisms of PLES by examining the natural conditions,
transportation location, socioeconomic level, and climate-environment changes and to
build the parameter evaluation framework of urban construction, ecological protection,
and agricultural production. Finally, the scenario was simulated and analyzed using the
spatio-temporal CA model to evaluate the impact of the key indicator set on the path of
territorial space demand in the urban core area of Chengdu in 2025, assuming the dynamic
development of driving factors.
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rule, only the conversion probability of the core land space set for each scenario was updated
according to the difference of the core land space in each scenario.

4.2. Simulation Scenario Design

To better promote coordinated development between agricultural development, urban
construction, and ecological protection, this study defined three future land use demand
scenarios, namely, (1) agricultural development priority (ADP), (2) urban construction
priority (UCP), and (3) ecological protection priority (EPP) (Table 1).



Int. J. Environ. Res. Public Health 2023, 20, 3911 8 of 24

Table 1. Multi-scenario setting rule description.

Scenario Instructions Core Land Space Target Reference

Scenario 1: Agricultural
development
priority (ADP)

Give maximum protection
to arable land and strictly
control the conversion of
basic cultivated to other
types of land.

Production space
Cultivated land

Controls the quality and
quantity of cultivated to
ensure food security.

[48]

Scenario 2: Urban
construction
priority (UCP)

Make full use of living
space to maximize the
economic benefits of scale.

Living space
Urban land; Rural
settlements; Other
construction land

Reveals the core driving
force and potential threat
to social stability and
ecological environment
under the priority city
development mode.

[49]

Scenario 3: Ecological
protection priority (EPP)

Set the maximum
ecological space capacity
to ensure the maximum
ecological benefits
provided by land use.

Ecological space
Woodland; Grassland;
Water area

Provides reference value
for the delineation of
ecological red line and
promotes high-quality
urban development.

[50]

The bagging model was used to complete the reorganization and configuration of
key elements of the main functions of PLES. The spatio-temporal CA model was used to
automatically read the recombination information of key elements of the main functional
land of PLES, and the CA conversion rules were constructed according to the degree of
change in the past five years. Then, according to the differentiation of the core land use
space in each scenario, only the transformation probability of the core land use space set
in each scenario was updated. In this process, the multi-scenario simulation mode was
realized through automatic index parameter matching.

4.3. Bagging Algorithm

To accurately describe the degree of social environment development and its corre-
sponding impact on land use, the contribution of key driving factors in multi-objective
scenarios, that is, the weight of different indicators must be determined. To do so, we
applied the bagging algorithm here. The bagging algorithm is a method of generating
multiple base classifiers and using them to obtain aggregated predicted values [51]. It is a
popular method of estimating standard errors and standard deviations and constructing
parameter intervals [52]. In practical applications, the prediction of unbalanced sample
data categories will increase the risk of misclassification of minority class samples into most
samples, and the bagging algorithm has proved effective in solving such problems [53].

Based on the integrated bagging tree classification model, we used socioeconomic
variables as input factors and 2020 land use types as output factors. In line with the infor-
mation gain principle in information theory [54], this study explored the key parameters
influencing the driving factors and obtained the impact degree (contribution degree) of
each factor index on various land use spaces. Accordingly, the index weight value of the
key influencing factors of the main function of PLES was established through the following
implementation path:

1. First, the information entropy of N-dimensional features in the initial system
was calculated.

2. Next, we removed the features sequentially and calculated the information entropy
carried by the new system after removing each feature. Then, by calculating the
difference between the information entropy carried by the initial system and that
by the new system, the information gain of each feature on the whole data set was
evaluated, and the estimation error of the out-of-pocket data was obtained.

3. The information entropy carried by the new system after only one feature was kept in
turn was calculated. The difference between the information entropy carried by the
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new system and the average information entropy carried by each feature of the initial
system was calculated, and the estimation error of the data in the bag was obtained.

4. The estimation errors of in-bag and out-of-bag data were averaged to obtain the
degree of contribution of each feature to the whole data set, which was the weight of
the corresponding index.

The above steps were implemented in the bagging classification model. Suppose a
data set comprises N-dimensional features and C sample categories. The number of correct
samples N(j,j) for each type of land use prediction was obtained by classification prediction
after calculating N effective eigenvalues of the input layer, the number of samples N(j,:) for
each type of land use was counted, and the information entropy of N-dimensional features
in the initial system was calculated (Equation (1)).

j=1

∏
j∈C

Ej = N(j,j)/N(j,:) (1)

Then, after assigning a feature to 0 in turn, the remaining N − 1 features retained their
effective values; we calculated the number of samples N1(j,j) for each type of land use
predicted by classification prediction after inputting N-dimensional features, counted the
number of samples N1(j,:) for each type of land use, and calculated the information entropy
of N-dimensional features in the new system (Equation (2)).

i=1,j=1

∏
i∈N,j∈C

E1i,j = N1i
(j,j)/N1i

(j,:) (2)

Finally, only one valid feature was retained in turn, and the remaining N-1 features
were all assigned 0. The number of samples N2(j,j) for each type of land use predicted
by the new system classification after the input of N-dimensional features was calculated.
The number of samples N2(j,:) for each type of land use was counted, and the information
entropy of N-dimensional features in the new system was calculated (Equation (3)).

i=1,j=1

∏
i∈N,j∈C

E2i,j = N2i
(j,j)/N2i

(j,:) (3)

In the above equation, i represents participation in the operation of the new system
after removing or retaining the ith eigenvalue each time, and j represents the jth type of
land. (j,j) represents the samples with correct classification prediction, and (j,:) represents
all the input samples of class j.

The information entropy (Ej) carried out by the initial system was subtracted from the
information entropy (E1i,j) carried by the new system after eliminating each feature, and
the information gain value of the eliminated features (Equation (5)) was the contribution
degree (W1i,j) of the out-of-pocket data to the whole data set.

i=1,j=1

∏
i∈N,j∈C

W1i,j =
(
Ej − E1i,j

)
/
(

Ej ×
C− 1

C

)
(4)

After retaining a feature, the information entropy (
Ej

C×N ) carried by the average feature
in the initial system was subtracted from the information entropy (E2i,j) carried by the new
system to obtain the information gain value of retaining a feature (Equation (5)), which was
the degree of contribution (W2i,j) of the data in the bag to the whole data set.

i=1,j=1

∏
i∈N,j∈C

W2i,j =

(
E2i,j −

Ej

C×N

)
/
(

Ej ×
C− 1

C

)
(5)
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The degree of influence of each feature on each type of sample was obtained by the
weighted average calculation of the degree of contribution of data outside and inside the
bag, namely, the weight parameter (Equation (6)). In the above equation, C−1

C represents
the initial error coefficient of classification prediction.

i=1,j=1

∏
i∈N,j∈C

Wi,j =
(
W1i,j + W2i,j

)
/2 (6)

The influence degree of all characteristics (social environment variables) on each type
of land use space was ranked in descending order, the first six environmental variables
with the greatest influence on the change of land use in each type of space were extracted,
and the index parameter set of key driving factors of PLES planning was constructed
(Table 2). This is used to develop the model of PLES under multi-objective scenarios based
on spatio-temporal CA in Section 4.4. The contribution degree of the output environmental
variables to the whole model system from high to low was as follows: biological richness
(0.137), farmland productivity potential (0.128), GDP (0.109), ecological environmental
quality (0.104), soil erosion (0.094), NDVI (0.093), night light (0.090), NPP (0.077), POP
(0.071), and precipitation (0.061). The index with the lowest contribution was temperature
(0.036), at only 0.036.

4.4. Spatio-Temporal Cellular Automata Model

To assess the impact of relevant environmental elements in the surrounding area on
the region, we used the CA model to simulate geospatial space as a unit array, wherein
the CA unit, such as an area in the land use system, is considered its state and that of its
neighbors at any time and evolved according to a set of improved transition rules. The
scenario-based framework developed in this study allows the assessment of the future
potential land use trajectory of the study area based on a set of predefined assumptions
about changes in key environmental factors: when changes in environmental factors have
reached a certain threshold in the past five years. By determining the key driving factors
and weights, the spatio-temporal CA conversion rules were constructed; the land use
conversion process is described in detail later in the article.

First, taking the 3 × 3 moor field as a research unit, the change degree of key envi-
ronmental factors of central and neighborhood cells in the last two years was calculated,
respectively. The calculation equation is as follows:

i=1,j=1

∏
i∈n,j∈M

∆x3×3
(i,j) = xt

(i,j) − xt−1
(i,j) (7)

i=,j=1

∏
i∈n,j∈M

∆x3×3
center(i,j) = xt

center(i,j) − xt−1
center(i,j) (8)

where ∆x3×3
(i,j) is the variation difference of the ith index specific to type j land use in each

unit grid in the 3 × 3 field for many years, xt−1
(i,j) is the value of the ith index specific to type

j land use in the previous year, and xt
(i,j) is the value of the ith index specific to type j land

use in the current year. M and n represent the type and quantity of land spatial patterns,
respectively, and t represents the statistical year. ∆x3×3

center(i,j) is the variation difference of
the ith index specific to type j land use in the central cellular unit within the 3 × 3 moor.
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Table 2. Key index parameters of core land use space under multiple scenarios.

Sce 1

Living Space

Sce 2

Ecological Space

Sce 3

Production Space

Urban Land W
Other

Construction
Land

W Rural
Settlements W Wood Land W Grassland W Water Area W Cultivated

Land W

UCP

Farmland
productivity

potential
0.128

Farmland
productivity

potential
0.128 Biological

richness 0.137

EPP

Biological
richness 0.137

Farmland
productivity

potential
0.128 Night light 0.090

ADP

NDVI 0.093

Ecological
environmental

quality
0.104 Soil erosion 0.094 Night light 0.090 GDP 0.109 GDP 0.109

Ecological
environmental

quality
0.104 Temperature 0.036

Biological
richness 0.137 Precipitation 0.061

Ecological
environmen-

tal
quality

0.104
Farmland

productivity
potential

0.128 NDVI 0.093 NDVI 0.093 POP 0.071

GDP 0.109 GDP 0.109 NPP 0.077 POP 0.071 POP 0.071
Farmland

productivity
potential

0.128 NPP 0.077

Night light 0.090 NDVI 0.093 POP 0.071 Soil erosion 0.094
Ecological

environmental
quality

0.104 GDP 0.109 GDP 0.109

NPP 0.077 Biological
richness 0.137 GDP 0.109 NPP 0.077 Night light 0.090 Soil erosion 0.094 Night

light 0.090

UCP: urban construction priority; EPP: ecological protection priority; ADP: agricultural development priority; W: weights.
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Second, the ratio of the dynamic difference between the domain cell and the central cell
was calculated (Equation (9)), the number and proportion of the key indicators greater than
or equal to the given threshold (5%) in the 3 × 3 field cells were counted (Equation (10)),
and the weighted average was assigned to the central cell (Equation (12)); here, Ω3×3

centerj
is

the transition probability of the central cell evolving to the jth land use. Wi is calculated
from Equation (6).

i=1,j=1

∏
i∈n,j∈M

τ3×3
(i,j) =

∆x3×3
(i,j)

∆x3×3
center(i,j)

(9)

i=1,j=1

∏
i∈n,j∈M

K3×3
(i,j) =

1
9

Number3×3
τ(i,j)≥5% (10)

j=1

∏
j∈M

Ω3×3
centerj

=
1
i

i=1,j=1

∑
i∈n,j∈M

WiK3×3
(i,j) (11)

Third, the initial land space conversion probability (Pj) predicted by ensemble learning
was combined with the spatio-temporal CA simulation (Ω3×3

centerj
) to estimate the combina-

tion probability (PPj) of each cell grid (Equation (12)).

PPj =
j=1

∏
j∈M

(
Ω3×3

centerj
+ Pj

)
(12)

Finally, we updated the initial probability value; the initial conversion probability
(Pj) of the core land use space (Table 1) in each scenario was replaced by the combination
probability (PPj), while the initial conversion probability (Pj) of other land use spaces is
retained. The final conversion probability of all types of land use under multiple scenarios
was output, and the maximum conversion probability was the future land use type that
was more likely to change (Equation (13)). PFD/ PED/ PUD were simulated conversion
probabilities under the three scenarios of priority: ADP, EPP, and UCP, respectively.

Class = Argmax

PADP 1©
PEPP 2©
PUCP 3©

. (13)

Based on the key indicator parameter configuration obtained in Section 3.3, the spatio-
temporal dynamic CA model was applied to simulate three scenarios for the Chengdu
urban core area in 2025. The spatial modeling of the three scenarios provided the basic
assumptions associated with each scenario and differentiated patterns of land use spatial
change. The ADP scenario showed substantial loss of natural land cover and contraction of
rural settlements. The EPP scenario experienced a modest decline to a slight increase in
natural land cover. The UCP scenario was characterized by substantial loss of natural land
cover and expansion of urban land use.

5. Results
5.1. Model Performance

To quantitatively evaluate the simulation results, we used the mesh-by-grid confusion
matrix (Table 3) and Kappa coefficient to verify the simulation results of the study area in
2020. For the accuracy evaluation results, the Kappa coefficient of 0.66 indicated that the
prediction results are highly consistent with the actual situation.
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Table 3. Confusion matrix of the predicted versus actual land use patterns in 2020.

Land Use Types

Actual Land Use in 2020

Urban
Land Grassland Woodland Water

Area
Cultivated
Land

Other
Construction Land Rural Settlements Total

Urban land 42,731 323 249 282 3970 3914 4455 55,924
Grassland 111 685 70 16 146 71 165 1264
Woodland 108 11 15,966 111 4417 3509 506 24,628
Water area 194 4 159 4895 1666 200 447 7565
Cultivated land 1675 21 3679 1107 130,503 5269 11,153 153,407
Other
construction land 1950 33 628 297 9699 12,856 2227 27,690

Rural settlements 890 22 573 242 13,111 2472 45,013 62,323

Kappa Coefficient = 0.66, Overall Accuracy = 0.76.

Furthermore, we also calculated the area under the curve (AUC) values for each land
use type from their receiver operating characteristic (ROC) curves (Figure 4). We found
that the AUC values of cultivated land, woodland, grassland, water area, rural settlement,
and other construction land were all greater than 0.8, and the AUC value of urban land
was greater than 0.9, which strongly suggest that the probability of occurrence suitable for
each land use type can be well explained by the selected drivers.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 4 of 25 

 

 

Kappa Coefficient = 0.66, Overall Accuracy = 0.76. 

Furthermore, we also calculated the area under the curve (AUC) values for each land 
use type from their receiver operating characteristic (ROC) curves (Figure 4). We found 
that the AUC values of cultivated land, woodland, grassland, water area, rural settlement, 
and other construction land were all greater than 0.8, and the AUC value of urban land 
was greater than 0.9, which strongly suggest that the probability of occurrence suitable 
for each land use type can be well explained by the selected drivers. 

 

Figure 4. ROC curves and AUC values of each land use types fitted by the bagging model. 

We compared the simulated 2020 land use pattern with the actual land use pattern 
to measure the model’s performance. While a Kappa of 0.66 with an accuracy of 0.76 is 
not optimal, it can still be considered acceptable, compared to previous studies’ findings, 
for the period from 2015 to 2020 in the study area. For example, in the study by Liu et al. 
[47] the Kappa value of six-category land use dynamic modeling ranged from 0.71 to 0.79. 
Chen et al.[55] also reported a land use prediction Kappa of 0.65 to 0.83. Additionally, 
Chen et al. [56] obtained an accuracy range from 55.61% to 62.66% when comparing 
various prediction models, which was slightly lower than the 76% accuracy of our seven-
classification model. 

5.2. Analysis of the Evolution of the PLES 
To better observe the evolutionary trend of PLES in the study area, we analyzed it 

for the period of 2000–2020. As shown in Figure 5, the living spaces are primarily 
distributed in the central urban area during the study period, in the form of point-planes 
in each urban area, with significant spatial dispersion. The formation and distribution 
pattern of urban spaces emphasizes the influence of social economy, transportation 
location, and environment. Ecological space is mainly distributed around the ecological 
protection area, showing obvious linear characteristics, such as Longquanyi Mountains in 
the southwest and Minjiang River coastal areas in the southwest. The distribution 
characteristics of the ecological space are mainly determined by differences between 
natural attributes, such as terrain, climate, and the environment of different geographical 
units on one hand and social attributes such as human development intensity and 
environmental governance ability on the other hand. The distribution of production space 
is widespread and advantageous. The terrain in this area is flat and open, with a deep 
layer of soil, adequate light, and sufficient water conditions [57]. 

Figure 4. ROC curves and AUC values of each land use types fitted by the bagging model.

We compared the simulated 2020 land use pattern with the actual land use pattern to
measure the model’s performance. While a Kappa of 0.66 with an accuracy of 0.76 is not
optimal, it can still be considered acceptable, compared to previous studies’ findings, for
the period from 2015 to 2020 in the study area. For example, in the study by Liu et al. [47]
the Kappa value of six-category land use dynamic modeling ranged from 0.71 to 0.79.
Chen et al. [55] also reported a land use prediction Kappa of 0.65 to 0.83. Additionally,
Chen et al. [56] obtained an accuracy range from 55.61% to 62.66% when comparing
various prediction models, which was slightly lower than the 76% accuracy of our seven-
classification model.

5.2. Analysis of the Evolution of the PLES

To better observe the evolutionary trend of PLES in the study area, we analyzed it for
the period of 2000–2020. As shown in Figure 5, the living spaces are primarily distributed
in the central urban area during the study period, in the form of point-planes in each
urban area, with significant spatial dispersion. The formation and distribution pattern
of urban spaces emphasizes the influence of social economy, transportation location, and
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environment. Ecological space is mainly distributed around the ecological protection area,
showing obvious linear characteristics, such as Longquanyi Mountains in the southwest
and Minjiang River coastal areas in the southwest. The distribution characteristics of the
ecological space are mainly determined by differences between natural attributes, such as
terrain, climate, and the environment of different geographical units on one hand and social
attributes such as human development intensity and environmental governance ability on
the other hand. The distribution of production space is widespread and advantageous. The
terrain in this area is flat and open, with a deep layer of soil, adequate light, and sufficient
water conditions [57].
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Figure 5. Spatial distribution pattern of PLES in Chengdu urban core area from 2000 to 2020.

The dynamic degrees of production space, living space, and ecological space in the
study area were 0.27 %, −0.08 %, and −0.73 %, respectively, during the period of 2000–2020
(see Table 4). This indicates that the change trend of PLES was mainly manifested as
the stable growth of production space, a slight decrease in living space, and a significant
decrease in ecological space. During the study period, the production space increased
by 87.67 km2. The living space area decreased by 24.88 km2, in which the proportion of
urban land increased from 7.27% to 16.92%, other construction land increased from 2.49%
to 8.36%, and rural residential land decreased from 34.99% to 18.79%. The area of ecological
space decreased by 62.79 km2, in which the proportion of forest area decreased from 7.34%
to 7.15%, grassland decreased from 0.77% to 0.37%, and water area decreased from 3.73%
to 2.23%.

Table 4. Evolution of PLES from 2000 to 2020.

Territorial Space
Structure

Area (km2) Dynamic Degree (%)

2000 2005 2010 2015 2020 2000
–2005

2005
–2010

2010
–2015

2015
–2020

2000
–2020

Production space 1602.20 1508.74 1369.90 1325.64 1689.87 −1.17% −1.84% −0.65% 5.50% 0.27%

Living space 1644.85 1739.98 1888.53 1948.17 1619.97 1.16% 1.71% 0.63% −3.37% −0.08%

Ecological space 428.28 426.62 416.91 401.54 365.50 −0.08% −0.46% −0.74% −1.80% −0.73%

5.3. Multi-Scenario Simulation for 2025

Finally, we used the model to predict how the land use pattern would alter in 2025.
The internal land use of living space is mainly reflected in the continuous expansion of
urban land, which is mainly located around the current built-up area, presenting a spatial
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distribution pattern of one core and multiple centers. The results (Figure 6) showed that
compared to 2020, the living space area of the three modes would have reduced significantly
and the ecological space would have continued to decrease, whereas the production space
would have significantly increased. In terms of the area ratio of PLES space, production
space would have accounted for the largest proportion in all scenarios.
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Figure 6. PLES pattern of Chengdu urban core area under different projected development scenarios in
2025. (a) shows the spatial layout of the seven types of land use under the agricultural development
scenario. (a-1) shows the area percentage of the seven types of land use under the agricultural develop-
ment scenario in 2025. (a-2) shows the change trend of the area of the seven types of land use under the
agricultural development scenario from 2000 to 2025; (b) shows the spatial layout of the three types of
space under the agricultural development scenario. (b-1) shows the area percentage of the three types of
space under the agricultural development scenario in 2025. (b-2) shows the change trend of the area
of the three types of space under the agricultural development scenario from 2000 to 2025; (c) shows
the spatial layout of seven types of land use under urban construction scenario. (c-1) shows the area
share of seven types of land use under urban development scenario in 2025. (c-2) shows the change
trend of area of seven types of land use under urban construction scenario from 2000 to 2025; (d) shows
the spatial layout of three types of space under urban construction scenario. (d-1) shows the area share
of three types of spaces under the urban construction scenario in 2025. (d-2) shows the change trend
of three types of spaces under the urban construction scenario from 2000 to 2025; (e) shows the spatial
layout of seven types of land use under the ecological protection scenario. (e-1) shows the area share of
seven types of land use under the ecological protection scenario in 2025. (e-2) shows the change trend of
seven types of land use under the ecological protection scenario from 2000 to 2025; (f) shows the spatial
layout of three types of space under the ecological protection scenario. (f-1) shows the area share of
three types of space under the ecological protection scenario in 2025. (f-2) shows the area change trend
of three types of space under the ecological protection scenario from 2000 to 2025.
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The overall scale of rural settlements would have continued to shrink, distributed in the
periphery of urban land. Other construction land would have been constantly exported. The
internal land use of ecological space would have been mainly characterized by the continuous
sharp decrease in grassland area, which would have been identified as the outer ring area
of the main city (i.e., the large parks around the city would have been identified as artificial
grasslands). In the case of woodlands, scenarios of expansion and contraction would have
varied, but with a primary concentration in the southeast Longquanyi Mountains. The water
would have been constantly pumped out. The internal land use of production space would
have mainly manifested as the increase in cultivated land.

In the ADP model, the growth of metropolitan areas in the scenario would have been
somewhat suppressed. Strict cultivated land protection measures would not only have
limited the number of future urban areas—which would have allowed these scenarios
to develop in the least urban area—but also guided the direction of urban development.
A large number of small woodlands surrounding the city would have transformed into
agricultural land under this development mode. The more obvious change would be
in regions that are far from cities, where a large number of rural settlements would be
degraded to agricultural land. In addition, in this scenario, large areas of woodland would
be swallowed up by agricultural land in areas far from cities.

In the UCP model, the other construction land near urban areas can be easily reused
and developed into urban land, which would be prominent in Longquanyi and Shuangliu.
This means that Shuangliu and Longquanyi would have more development opportunities
than other administrative regions under this development model. In addition, the urban
sprawl of surrounding towns would be connected to the metropolitan area by eroding
cultivated, small woodland, and rural settlements on the edge. However, small woodlands
and those cultivated on the fringes of cities would be significant for ecosystem functions.
Thus, the compactness of the urban form would come at the expense of the quality of the
urban environment.

In the EPP model, most of the cultivated land would be converted to woodland on the
east side, which would be also the biggest difference between the UCP and ADP scenarios.
However, for grasslands with the same ecological value, the reduction would still continue
in this scenario. Therefore, attention needs to be paid to grassland restoration on other
construction land in the suburban areas.

6. Discussion
6.1. The General Law of Scenario Evolution

The simulation results under the agricultural protection scenario can fully protect the
cultivated land resources and maintain food security. The production space in all scenarios
showed that the total amount of cultivated land would continue to increase, especially
in the ADP scenario. The results of this study thus indicate that the reduction in future
production space has been effectively controlled, and ecological space is mainly threatened
by the development of production space. Moreover, ecological space has become the main
source of the expansion of living space. This finding is also supported by previous evidence
from Li et al. [8]. However, our research results further confirm that the mutual restriction
between production space and living space is not only regarding competition for ecological
space but also the annexation of rural settlements within the living space. On the one hand,
with the intensification of urbanization, cities continue to absorb rural population) [21].
On the other hand, with the emergence of the “hollow villages”, a kind of imbalance
between the transfer of rural population and the shrinking size of residential bases, and
the vicious circle of rural development, rural sustainable development inevitably requires
rural transformation development [58,59].

The simulation results in the context of urban construction can meet the demands of
social and economic development for construction land. Urban land growth under this
scenario would be higher than that under the other two scenarios, which is consistent
with the research results of Cao et al. [60]. However, there is a difference in the extent of
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urban land growth, mainly because of the time difference between the studies. The model
established in this study only simulated the spatial change of land use in the urban core
area of Chengdu from 2020 to 2025. Urban expansion is a gradual process, and it is not
clear whether the city scale will expand substantially in such a short time [61]. However,
it should be noted that in this case, living space gradually encroaches on ecological space
from the periphery, and urban construction land and rural residential land tend to be
intensively used. Such a result was also confirmed in the study by Zhao et al. [62]. In this
scenario, there is a research consensus that the guaranteed area of construction land is the
most important, the food demand and security of cultivated land are the main criteria,
and the preservation of woodland, grassland, and water area—the minimum demands
of human life and the environment—are the baseline; even this will impose a great bur-
den on regional land resources. As cities continue to expand, concerns arise about their
negative impact on the environment; however, this neglects the fact that urbanization
may also have a positive impact on ecosystem restoration through population migration,
advanced agricultural techniques, cleaner production strategies, and increased investments
in ecological conservation. Relevant evidence on the positive effects of urbanization has
been provided in previous case studies [63,64], although these findings may depend on a
particular development stage, region, and size. Some also argue that although efficiency
gains can be achieved, these gains may not be sufficient to offset overall resource require-
ments because of the rapid growth of urban systems [65]. In conclusion, the negative and
positive impacts of urbanization on ecosystem services are indeed two sides of the same
coin. The implications for other raising developing countries are that multi-functional
land use patterns can be optimally allocated in space and time, which is extremely useful
for coordinating stakeholder participation and addressing conflicts of interest in land use
behaviors; this helps to promote high-quality utilization of land resources and balancing
regional development and ecological protection [66].

The simulation results under the ecological protection scenario can effectively guar-
antee the ecological constrains. In this context, our results show that there are scattered
ecological spaces around the urban space, which is called the “urban-agricultural space”
in the study by Baró et al. [67]. These spatial distribution patterns can effectively reduce
the pressure of human activities on limited natural resources, provide a transitional zone
between urban and agricultural spaces, prevent agricultural space from being occupied,
and limit soil and water pollution caused by various urban pollutants [68]. In the process
of urban expansion, the transformation of natural land into artificial land, such as parks,
gardens, and sports areas [69], will inevitably accelerate, which may change or destroy the
function of natural ecosystems. However, in the context of urban expansion, the greatest
protection for the ecological environment under the EPP scenario is to ensure to the greatest
extent possible that the woodland and artificial grassland areas are not reduced—especially,
in our case, with regard to the protection of woodland in the Longquanyi Mountains
and small suburban grasslands. Furthermore, grassland restoration should be carried out
on other construction land in the suburbs. This spatial layout can control the transfer
of urban and rural land, improve the quality of the urban ecological environment, and
effectively relieve the pressure of residential space crowding. In addition, the impact of
urban growth on ecosystem functions varies with the spatial layout and configuration of
urban land [70]. Although there is no consensus on what urban forms are sustainable,
fragmented urban forms and their corresponding lifestyles tend to put greater pressure on
ecosystem functions [71,72].

The results imply that the multi-scenario simulation approach in this study has the
potential to be applied more widely in other areas, providing new insights for planners
and decision-makers in long-term land use planning. The following key insights emerge:
(1) The uncertainty of future land spatial changes requires the use of a multi-scenario model
in prediction research. (2) Multi-scenario simulation can improve simulation authenticity
through the automatic configuration of the weight parameters of key environmental factors.
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(3) Land spatial planning requires us to focus on regional differences and the dynamic
development of regional environmental factors.

6.2. Discussion of the Multi-Scenario Simulation Model

Our prediction results are based on the land use change rules in the study area from
2000 to 2020 and fully consider the dynamic changes in the area’s social, economic, and
environmental characteristics from 2015 to 2020. The framework that we have developed
allowed us to produce PLES projections for multiple scenarios in the urban core area, which
can be used to support territorial spatial planning and decision-making. The value of
future projections is not pure prediction but for our ability to examine land use impacts
across a range of potential future economic, ecological, and environmental changes with
regard to biodiversity, water cycles, and climate adaptation and mitigation [73]. Estimates
of future land use change constitute an important input to carbon climate projections [74],
which in turn can be used to assess the consequences of potential greenhouse gas emissions
and predict future climate change [75], while the simulation results can also be used to
provide ex ante assessments of policies or as an early warning system for environmental
impacts [76,77]. Prediction and estimation of greenhouse gas emissions and predicting
future climate change are imperative to avoid consequences regarding the environment,
production system, and health [78–80].

However, predicting PLES changes remains incredibly challenging and uncertain [81].
The uncertainty of many factors (such as environment and chance) may lead to inconsis-
tencies between actual and predicted results [82,83] and will produce great changes in the
development trend of land use space; therefore, it is necessary to consider uncertainty in
the prediction. In PLES prediction, the spatial changes of the seven land use types under
the three different scenarios were simulated by weighing the differences in the spatial
functions of different land uses. However, owing to the future uncertainty of many factors,
the amount of land space cannot be regarded as an inherent value; nevertheless, it can
provide a reference value for the development of regional land use.

The current international consensus is that the contradiction between farmland protec-
tion and ecological conservation demands a better trade-off, and that more attention should
be paid to avoiding the occupation of basic farmland in ecological restoration [84,85]. This
study can serve as a reference for other cities and even countries regarding the dominant
function and functional positioning of PLES, which helps ensure flexible development
strategies for spatial planning.

To sum up, the multi-objective land space simulation model is an effective tool for
analyzing the causes and consequences of land space changes under the conditions of
future multi-scenario development related to socioeconomic and natural environmental
driving forces. Our model can provide planners and researchers with effective simulation
methods, help decision-makers formulate appropriate policies, and effectively guide the
implementation of land and space planning.

However, we recognize that many factors may have limited the usefulness of our
framework in other applications. The framework relies heavily on spatially explicit biophys-
ical and socioeconomic data, and the model is parameterized (e.g., the parameterization of
plaque characteristics based on historical land use data). Despite the model’s improvement
upon the traditional implementation of scenario simulation, we could not exclude the possi-
bility that we had missed other relevant explanatory variables. Different research fields and
input data may also affect model performance. Future studies should consider additional
economic and social factors such as income levels, employment rates, and accessibility [86],
which could greatly improve model performance.

7. Conclusions

This study aimed to better inform urban planners and policy makers for sustainable
urban development planning and explore possible future development paths, as well
as “what-if” scenarios, which was achieved by identifying dynamic changes in the key
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factors influencing the primary functional use of PLES. To do so, we constructed a model
to investigate the dynamic weight of the social-environmental driving factors that affected
changes in the land space and established a system network relationship between the land
space pattern and the multi-variable resources and environment under multiple scenarios.
Eventually, we effectively predicted the changing trend of land space in this case study and
offered several useful implications. This study yields the following main remarks:

(1) Multi-objective simulation models are effective tools for analyzing the causes
and consequences of PLES changes under future multi-scenario development conditions
related to dynamic changes in drivers. Complex linkage and feedback structures need to be
understood to simulate multiple land use conversions under uncertain future conditions.

(2) This study realizes the dynamic and automatic identification of the key elements
(automatic parameterization of environmental elements) that can help planners and stake-
holders understand more comprehensively the complex land space changes caused by the
uncertainty of space resources and environment changes, so as to formulate appropriate
policies and effectively guide the implementation of land space planning.

(3) In this study, the change matrix of the error gradient was used to realize the
dynamic mining and updating extraction of the social-environmental drivers of PLES
change under different target scenarios. Several solutions were proposed to simulate the
spatial trajectory of PLES in the scenario of human activities and natural evolution, which
compensates for the defects of traditional scenario simulation, which make it necessary to
set the future total amount of various types of land under multiple different scenarios to
realize the maximum-probability simulation of spatial distribution of various land types in
the future.

For future works, the proposed analytical framework could be tested in other case
studies with more geographical and socioeconomic characteristics.
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Appendix A

Table A1. Data source and processing.

Primary Data Source Data Classification Data Processing and
Usage Year Data Download

Geographical
conditions

Geological disasters Nuclear Density
Analysis 2020 National Earth System

Science Data Center

DEM Slope and Aspect
Analysis 2010 Geospatial Data Cloud
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Table A1. Cont.

Primary Data Source Data Classification Data Processing and
Usage Year Data Download

Ecological
environment

Ecological
environmental quality

Extract Value to Point;
Extract the ecological
and environmental

quality conditions of
sample units

2010/2015

Resource and
Environmental Sciences

Data Center

Biodiversity 2000/2005

NPP 2010/2020

Farmland potential
productivity 2000/2010

Soil erosion 2010/2015

Soil quality 2015

Water quality 2015

https://data.epmap.
org/product/province_
water (accessed on 14

January 2023)

NDVI 2015/2020 Geospatial Data Cloud

Climatic conditions
Temperature Extract Value to Point;

Extract climate change
from sample units

2010/2015/2020 Resource and
Environmental Sciences

Data CenterPrecipitation 2010/2015/2020

Built environment

POI

Nuclear Density
Analysis; Extract the
urban development

and construction
conditions

2015/2020

http://59.175.109.173:
8888/index.html
(accessed on 14
January 2023)

Nighttime light

Extract Value to Point;
Extract the degree of

economic development
of sample unit

2020

https://www.arcgis.
com/home/search.

html?q=POI (accessed
on 14 January 2023)

Population density 2010/2015/2020

http://www.geodoi.ac.
cn/WebCn/doi.aspx?

Id=131 (accessed on 14
January 2023)

GDP 2010/2015

http://www.geodoi.ac.
cn/WebCn/doi.aspx?

Id=125 (accessed on 14
January 2023)

Distance factor

Neighbor Analysis;
Extract the location

advantage condition of
the sample unit

2010/2015/2020
Resource and

Environmental Sciences
Data Center

OpenStreetMap (http://
www.openstreetmap.org/

(accessed on 14
January 2023))

Road integration

Space Syntax;
Extracting the road

accessibility of
sample units

2010/2015/2020

Spatial location
Longitude Extract the spatial

location relationship of
sample units

2020 Resource and
Environmental Sciences

Data Center

Latitude

Land use Land use in historical
period

Extract the historical
land type of the

sample unit
2000/2005/2010/2015/2020

https://data.epmap.org/product/province_water
https://data.epmap.org/product/province_water
https://data.epmap.org/product/province_water
http://59.175.109.173:8888/index.html
http://59.175.109.173:8888/index.html
https://www.arcgis.com/home/search.html?q=POI
https://www.arcgis.com/home/search.html?q=POI
https://www.arcgis.com/home/search.html?q=POI
http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=131
http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=131
http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=131
http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=125
http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=125
http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=125
http://www.openstreetmap.org/
http://www.openstreetmap.org/


Int. J. Environ. Res. Public Health 2023, 20, 3911 21 of 24

References
1. United Nations. World Urbanization Prospects; (The 2011 Revision); United Nations: New York, NY, USA, 2012.
2. Wang, Q.; Yuan, X.; Zhang, J.; Gao, Y.; Hong, J.; Zuo, J.; Liu, W. Assessment of the Sustainable Development Capacity with the

Entropy Weight Coefficient Method. Sustainability 2015, 7, 13542–13563. [CrossRef]
3. Wang, Q.; Zhang, X.; Wu, Y.; Skitmore, M. Collective land system in China: Congenital flaw or acquired irrational weakness?

Habitat Int. 2015, 50, 226–233. [CrossRef]
4. Ye, C.; Chen, M.; Chen, R.; Guo, Z. Multi-scalar separations: Land use and production of space in Xianlin, a university town in

Nanjing, China. Habitat Int. 2014, 42, 264–272. [CrossRef]
5. Adam, Y.O.; Pretzsch, J.; Darr, D. Land use conflicts in central Sudan: Perception and local coping mechanisms. Land Use Policy

2015, 42, 1–6. [CrossRef]
6. Fu, B.J.; Tian, H.Q.; Tao, F.L.; Zhao, W.W.; Wang, S. Progress of the impact of global change on ecosystem services. China Basic Sci.

2020, 3, 25–30.
7. Jianjun, J.I.N.; Chong, J.; Lun, L.I. The economic valuation of cultivated land protection: A contingent valuation study in Wenling

City, China. Landsc. Urban Plan. 2013, 119, 158–164. [CrossRef]
8. Li, Z.J.; Ma, X.D.; Sun, S.S. Coupling analysis of rural transformation and land use change in Northern Jiangsu: A case study of

Peixian county. J. Jiangsu Norm. Univ. 2015, 33, 36–39.
9. Liu, T.; Liu, H.; Qi, Y. Construction land expansion and cultivated land protection in urbanizing China: Insights from national

land surveys, 1996–2006. Habitat Int. 2015, 46, 13–22. [CrossRef]
10. Deines, J.M.; Schipanski, M.E.; Golden, B.; Zipper, S.C.; Nozari, S.; Rottler, C.; Guerrero, B.; Sharda, V. Transitions from irrigated

to dryland agriculture in the Ogallala Aquifer: Land use suitability and regional economic impacts. Agric. Water Manag. 2020,
233, 106061. [CrossRef]

11. Li, J.; Sun, W.; Li, M.; Linlin, M. Coupling coordination degree of production, living and ecological spaces and its influencing
factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [CrossRef]

12. Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem
services from investments in natural capital. Science 2016, 352, 1455–1459. [CrossRef]

13. Wiggering, H.; Müller, K.; Werner, A.; Helming, K. The Concept of Multifunctionality in Sustainable Land Development. In
Sustainable Development of Multifunctional Landscapes; Helming, K., Wiggering, H., Eds.; Springer: Berlin/Heidelberg, Germany,
2003; pp. 3–18.

14. Hao, Q. Reconstructing the value of territorial spatial planning for ecological civilization. Econ. Geogr. 2022, 42, 146–153.
15. Hao, Q.; Liang, H.; Yang, K.; Feng, Z.; Wang, X.; Lu, Q. Innovation in the theory and technical methods of territorial spatial

planning in the era of ecological civilization. J. Nat. Resour. 2022, 37, 2763–2773.
16. Wang, H.; Zhu, F. Site selection model of land consolidation projects based on multi-objective optimization PSO. Trans. Chin. Soc.

Agric. Eng. 2015, 31, 255–263.
17. Li, X.; Li, D.; Liu, X.; He, J.Q. Geographical Simulation and Optimization System (GeoSOS) and Its Cutting-edge Researches. Adv.

Earth Sci. 2009, 24, 899–907.
18. Kilicoglu, C.; Cetin, M.; Aricak, B.; Sevik, H. Integrating multicriteria decision-making analysis for a GIS-based settlement area in

the district of Atakum, Samsun, Turkey. Theor. Appl. Climatol. 2021, 143, 379–388. [CrossRef]
19. Liu, J.L.; Liu, Y.S.; Li, Y.R. Classification evaluation and spatial-temporal analysis of “production-living-ecological” spaces in

China. Acta Geogr. Sin. 2017, 72, 1290–1304.
20. Chen, Y.M.; Liu, Z.H.; Zhou, B.B. Population-environment dynamics across world’s top 100 urban agglomerations: With

implications for transitioning toward global urban sustainability. J. Environ. Manag. 2022, 319, 115630. [CrossRef]
21. Li, H.; Fang, C.; Xia, Y.; Liu, Z.; Wang, W. Multi-Scenario Simulation of Production-Living-Ecological Space in the Poyang Lake

Area Based on Remote Sensing and RF-Markov-FLUS Model. Remote. Sens. 2022, 14, 2830. [CrossRef]
22. Jin, G.; Guo, B.; Cheng, J.; Deng, X.; Wu, F. A framework of spatial layout and support system of national land based on resource

efficiency. J. Geogr. 2022, 77, 534–546.
23. Li, D.; Hu, G.; Li, X.; Liu, X.; Ding, G.; Cai, Y. Delineating Urban Development Boundaries (UDBs) by Coupling Geographical

Simulation and Spatial Optimization. China Land Sci. 2020, 34, 104–114.
24. Zhang, Y.; Ou, M.H.; Jin, X.W.; Guo, J. Research on the Methord of Evaluating the Implementation of General Land Use Planning.

China Land Sci. 2011, 25, 40–46.
25. Chen, Y.M.; Li, X. Application and new trends of machine learning in urban spatial evolution simulation. J. Wuhan Univ. (Inf. Sci.

Ed.) 2020, 45, 1884–1889.
26. Cai, C.; Shu, B.; Zhu, H.; Yuan, X.; Yong, X. A simulation model of land use change driven by regional heterogeneity. China Land

Sci. 2020, 34, 38–47.
27. Li, F.X. An agent-based learning-embedded model (ABM-learning) for urban land use planning: A case study of residential land

growth simulation in Shenzhen, China. Land Use Policy 2020, 95, 104620. [CrossRef]
28. Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics

of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [CrossRef]
29. Chen, Y.M.; Li, S.Y.; Li, X.; Liu, X.P. Simulating Compact Urban Form Using Cellular Automata (CA) and Multi-criteria Evaluation.

Acta Sci. Nat. Univ. Sunyatsen 2010, 49, 110–114.

http://doi.org/10.3390/su71013542
http://doi.org/10.1016/j.habitatint.2015.08.035
http://doi.org/10.1016/j.habitatint.2014.01.005
http://doi.org/10.1016/j.landusepol.2014.06.006
http://doi.org/10.1016/j.landurbplan.2013.06.010
http://doi.org/10.1016/j.habitatint.2014.10.019
http://doi.org/10.1016/j.agwat.2020.106061
http://doi.org/10.1016/j.jclepro.2021.126803
http://doi.org/10.1126/science.aaf2295
http://doi.org/10.1007/s00704-020-03439-2
http://doi.org/10.1016/j.jenvman.2022.115630
http://doi.org/10.3390/rs14122830
http://doi.org/10.1016/j.landusepol.2020.104620
http://doi.org/10.1007/s11442-018-1490-0


Int. J. Environ. Res. Public Health 2023, 20, 3911 22 of 24

30. Fan, J.; Wang, Q.; Wang, Y.; Chen, D.; Zhou, K. Assessment of coastal development policy based on simulating a sustainable
land-use scenario for Liaoning Coastal Zone in China. Land Degrad. Dev. 2018, 29, 2390–2402. [CrossRef]

31. Guzman, L.A.; Escobar, F.; Peña, J.; Cardona, R. A cellular automata-based land-use model as an integrated spatial decision
support system for urban planning in developing cities: The case of the Bogotá region. Land Use Policy 2020, 92, 104445. [CrossRef]

32. Mamanis, G.; Vrahnakis, M.; Chouvardas, D.; Nasiakou, S.; Kleftoyanni, V. Land Use Demands for the CLUE-S Spatiotemporal
Model in an Agroforestry Perspective. Land 2021, 10, 1097. [CrossRef]

33. Safitri, S.; Wikantika, K.; Riqqi, A.; Deliar, A.; Sumarto, I. Spatial Allocation Based on Physiological Needs and Land Suitability
Using the Combination of Ecological Footprint and SVM (Case Study: Java Island, Indonesia). ISPRS Int. J. Geo-Inf. 2021, 10, 259.
[CrossRef]

34. Clarke, K.C.; Johnson, J.M. Calibrating SLEUTH with big data: Projecting California’s land use to 2100. Comput. Environ. Urban
Syst. 2020, 83, 101525. [CrossRef]

35. Edan, M.H.; Maarouf, R.M.; Hasson, J. Predicting the impacts of land use/land cover change on land surface temperature using
remote sensing approach in Al Kut, Iraq. Phys. Chem. Earth Parts A/B/C 2021, 123, 103012. [CrossRef]

36. Huang, J.; Lin, H.; Qi, X. A literature review on optimization of spatial development pattern based on ecological-production-living
space. Prog. Geogr. 2017, 36, 378–391.

37. Li, G.; Fang, C. Quantitative function identification and analysis of urban ecological-production-living spaces. Acta Geogr. Sin.
2016, 71, 49–65.

38. Xi, J.; Wang, S.; Zhang, R. Restructuring and Optimizing Production-Living-Ecology Space in Rural Settlements. J. Nat. Resour.
2016, 31, 425–435.

39. Zhang, H.Q.; Xu, E.Q.; Zhu, H.Y. An ecological-living-industrial land classification system and its spatial distribution in China.
Resour. Sci. 2015, 37, 1332–1338.

40. Cui, J.; Gu, J.; Sun, J.; Luo, J. The Spatial Pattern and Evolution Characteristics of the Production, Living and Ecological Space in
Hubei Provence. China Land Sci. 2018, 32, 67–73.

41. Jin, X.; Lu, Y.; Lin, J.; Qi, X.; Hu, G.; Li, X. Research on the evolution of spatiotemporal patterns of production-livingecological
space in an urban agglomeration in the Fujian Delta region. China Acta Ecol. Sin. 2018, 38, 4286–4295.

42. Xiao, C.; Ou, M.H.; Li, X. Research on spatial optimum allocation of construction land in an eco-economic comparative advantage
perspective:a case study of Yangzhou City. Acta Ecol. Sin. 2015, 35, 696–708.

43. Yang, H.L.X. Study on Village Type Identification Based on Spatial Evolution and Simulation of “Production-Living-Ecological
Space”: A Case Study of Changning City in Hunan Province. China Land Sci. 2020, 34, 18–27.

44. Chuvieco, E. Integration of linear programming and GIS for land-use modelling. Int. J. Geogr. Inf. Syst. 1993, 7, 71–83. [CrossRef]
45. Chen, Y.; Li, X.; Liu, X.; Huang, H.; Ma, S. Simulating urban growth boundaries using a patch-based cellular automaton with

economic and ecological constraints. Int. J. Geogr. Inf. Sci. 2019, 33, 55–80. [CrossRef]
46. Jin, G.G.B.; Chen, J.; Deng, X.; Wu, F. Layout optimization and support system of territorial space: An analysis framework based

on resource efficiency. Acta Geogr. Sin. 2022, 77, 534–546.
47. Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating

multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [CrossRef]
48. Liang, X.Y.; JIN, X.B.; Sun, R.; Han, B.; Ren, J.; Zhou, Y.K. China’s resilience-space for cultivated land protection under the restraint

of muti-scenario food security bottom line. Acta Geogr. Sin. 2022, 77, 697–713.
49. Su, Y.Q.; Liu, G.; Zhao, J.B.; Niu, J.J.; Zhang, E.Y.; Guo, L.G.; Lin, F. Multi-scenario simulation prediction of ecological space in

Fenhe River Basin using the FLUS model. Arid. Zone Res. 2021, 38, 1152–1161.
50. Ou, M.H.; Ding, G.Q.; Guo, J.; Liu, Q. Multi-objective collaborative governance mechanism of territorial space planning. China

Land Sci. 2020, 34, 8–17.
51. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
52. Chandra, S.; Maheshkar, S. Verification of static signature pattern based on random subspace, REP tree and bagging. Multimed.

Tools Appl. 2017, 76, 19139–19171. [CrossRef]
53. Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. A Review on Ensembles for the Class Imbalance Problem:

Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2011, 42, 463–484. [CrossRef]
54. Pant, S.; Lombardi, D. An information-theoretic approach to assess practical identifiability of parametric dynamical systems.

Math. Biosci. 2015, 268, 66–79. [CrossRef]
55. Chen, Y.; Li, X.; Liu, X.; Zhang, Y.; Huang, M. Tele-connecting China’s future urban growth to impacts on ecosystem services

under the shared socioeconomic pathways. Sci. Total Environ. 2019, 652, 765–779. [CrossRef]
56. Chen, Y.; Liu, X.; Li, X. Calibrating a Land Parcel Cellular Automaton (LP-CA) for urban growth simulation based on ensemble

learning. Int. J. Geogr. Inf. Sci. 2017, 31, 2480–2504. [CrossRef]
57. Wang, S.; Qu, Y.; Zhao, W.; Guan, M.; Ping, Z. Evolution and Optimization of Territorial-Space Structure Based on Regional

Function Orientation. Land 2022, 11, 505. [CrossRef]
58. Li, T.; Long, H.; Liu, Y.; Tu, S. Multi-scale analysis of rural housing land transition under China’s rapid urbanization: The case of

Bohai Rim. Habitat Int. 2015, 48, 227–238. [CrossRef]
59. Zacharias, J.; Lei, Y. Villages at the urban fringe—The social dynamics of Xiaozhou. J. Rural Stud. 2016, 47, 650–656. [CrossRef]

http://doi.org/10.1002/ldr.3013
http://doi.org/10.1016/j.landusepol.2019.104445
http://doi.org/10.3390/land10101097
http://doi.org/10.3390/ijgi10040259
http://doi.org/10.1016/j.compenvurbsys.2020.101525
http://doi.org/10.1016/j.pce.2021.103012
http://doi.org/10.1080/02693799308901940
http://doi.org/10.1080/13658816.2018.1514119
http://doi.org/10.1016/j.landurbplan.2017.09.019
http://doi.org/10.1007/BF00058655
http://doi.org/10.1007/s11042-017-4531-2
http://doi.org/10.1109/TSMCC.2011.2161285
http://doi.org/10.1016/j.mbs.2015.08.005
http://doi.org/10.1016/j.scitotenv.2018.10.283
http://doi.org/10.1080/13658816.2017.1367004
http://doi.org/10.3390/land11040505
http://doi.org/10.1016/j.habitatint.2015.04.002
http://doi.org/10.1016/j.jrurstud.2016.05.014


Int. J. Environ. Res. Public Health 2023, 20, 3911 23 of 24

60. Cao, M.; Chang, L.; Ma, S.; Zhao, Z.; Wu, K.; Hu, X.; Gu, Q.; Lv, G.; Chen, M. Multi-Scenario Simulation of Land Use for
Sustainable Development Goals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2119–2127. [CrossRef]

61. Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-scenario simulation of urban land change in Shanghai by random forest and
CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [CrossRef]

62. Zhao, X.; Li, S.; Pu, J.; Miao, P.; Wang, Q.; Tan, K. Optimization of the National Land Space Based on the Coordination of
Urban-Agricultural-Ecological Functions in the Karst Areas of Southwest China. Sustainability 2019, 11, 6752. [CrossRef]

63. Hou, Y.; Zhou, S.; Burkhard, B.; Müller, F. Socioeconomic influences on biodiversity, ecosystem services and human well-being:
A quantitative application of the DPSIR model in Jiangsu, China. Sci. Total Environ. 2014, 490, 1012–1028. [CrossRef] [PubMed]

64. Lyu, R.; Zhang, J.; Xu, M.; Li, J. Impacts of urbanization on ecosystem services and their temporal relations: A case study in
Northern Ningxia, China. Land Use Policy 2018, 77, 163–173. [CrossRef]

65. Thebo, A.L.; Drechsel, P.; Lambin, E.F. Global assessment of urban and peri-urban agriculture: Irrigated and rainfed croplands.
Environ. Res. Lett. 2014, 9, 114002. [CrossRef]

66. Wu, J.; Zhang, D.; Wang, H.; Li, X. What is the future for production-living-ecological spaces in the Greater Bay Area? A multi-
scenario perspective based on DEE. Ecol. Indic. 2021, 131, 108171. [CrossRef]

67. Baró, F.; Palomo, I.; Zulian, G.; Vizcaino, P.; Haase, D.; Gómez-Baggethun, E. Mapping ecosystem service capacity, flow and
demand for landscape and urban planning: A case study in the Barcelona metropolitan region. Land Use Policy 2016, 57, 405–417.
[CrossRef]

68. Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120.
[CrossRef]

69. Plieninger, T.; Bieling, C.; Fagerholm, N.; Byg, A.; Hartel, T.; Hurley, P.; López-Santiago, C.A.; Nagabhatla, N.; Oteros-Rozas,
E.; Raymond, C.M.; et al. The role of cultural ecosystem services in landscape management and planning. Curr. Opin. Environ.
Sustain. 2015, 14, 28–33. [CrossRef]

70. Schwaab, J.; Deb, K.; Goodman, E.; Lautenbach, S.; van Strien, M.; Grêt-Regamey, A. Reducing the loss of agricultural productivity
due to compact urban development in municipalities of Switzerland. Comput. Environ. Urban Syst. 2017, 65, 162–177. [CrossRef]

71. Dupras, J.; Marull, J.; Parcerisas, L.; Coll, F.; Gonzalez, A.; Girard, M.; Tello, E. The impacts of urban sprawl on ecological
connectivity in the Montreal Metropolitan Region. Environ. Sci. Policy 2016, 58, 61–73. [CrossRef]

72. Ogle, J.; Delparte, D.; Sanger, H. Quantifying the sustainability of urban growth and form through time: An algorithmic analysis
of a city’s development. Appl. Geogr. 2017, 88, 1–14. [CrossRef]

73. Meiyappan, P.; Dalton, M.; O’Neill, B.C.; Jain, A.K. Spatial modeling of agricultural land use change at global scale. Ecol. Model.
2014, 291, 152–174. [CrossRef]

74. Hurtt, G.C.; Chini, L.P.; Frolking, S.; Betts, R.A.; Feddema, J.; Fischer, G.; Fisk, J.P.; Hibbard, K.; Houghton, R.A.; Janetos, A.; et al.
Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood
harvest, and resulting secondary lands. Clim. Chang. 2011, 109, 117. [CrossRef]

75. Sleeter, B.M.; Sohl, T.L.; Bouchard, M.A.; Reker, R.R.; Soulard, C.E.; Acevedo, W.; Griffith, G.E.; Sleeter, R.R.; Auch, R.F.;
Sayler, K.L.; et al. Scenarios of land use and land cover change in the conterminous United States: Utilizing the special report on
emission scenarios at ecoregional scales. Glob. Environ. Chang. 2012, 22, 896–914. [CrossRef]

76. Rounsevell, M.D.A.; Reginster, I.; Araújo, M.B.; Carter, T.R.; Dendoncker, N.; Ewert, F.; House, J.I.; Kankaanpää, S.; Leemans,
R.; Metzger, M.J.; et al. A coherent set of future land use change scenarios for Europe. Agric. Ecosyst. Environ. 2006, 114, 57–68.
[CrossRef]

77. Verburg, P.H.; Kok, K.; Pontius, R.G.; Veldkamp, A. Modeling Land-Use and Land-Cover Change. In Land-Use and Land-Cover
Change: Local Processes and Global Impacts; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 117–135.

78. Wang, T.; Jiang, Z.; Zhao, B. Health co-benefits of achieving sustainable net-zero greenhouse gas emissions in California. Nat.
Sustain. 2020, 3, 597–605. [CrossRef]

79. Ehsan, E.; Zainab, K.; Muhammad, Z.T.; Zhang, H.X.; Xing, L. Extreme weather events risk to crop-production and the adaptation of
innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255.

80. Ehsan, E.; Zainab, K. Estimating smart energy inputs packages using hybrid optimisation technique to mitigate environmental
emissions of commercial fish farms. Appl. Energy 2022, 326, 119602.

81. Eckhardt, K.; Breuer, L.; Frede, H.-G. Parameter uncertainty and the significance of simulated land use change effects. J. Hydrol.
2003, 273, 164–176. [CrossRef]

82. Prestele, R.; Alexander, P.; Rounsevell, M.D.A.; Arneth, A.; Calvin, K.; Doelman, J.; Eitelberg, D.A.; Engström, K.; Fujimori, S.;
Hasegawa, T.; et al. Hotspots of uncertainty in land-use and land-cover change projections: A global-scale model comparison.
Glob. Chang. Biol. 2016, 22, 3967–3983. [CrossRef] [PubMed]

83. Verburg, P.H.; Tabeau, A.; Hatna, E. Assessing spatial uncertainties of land allocation using a scenario approach and sensitivity
analysis: A study for land use in Europe. J. Environ. Manag. 2013, 127, S132–S144. [CrossRef] [PubMed]

84. Han, B.; Jin, X.; Xiang, X.; Rui, S.; Zhang, X.; Jin, Z.; Zhou, Y. An integrated evaluation framework for Land-Space ecological
restoration planning strategy making in rapidly developing area. Ecol. Indic. 2021, 124, 107374. [CrossRef]

http://doi.org/10.1109/JSTARS.2022.3152904
http://doi.org/10.1016/j.scs.2020.102045
http://doi.org/10.3390/su11236752
http://doi.org/10.1016/j.scitotenv.2014.05.071
http://www.ncbi.nlm.nih.gov/pubmed/24914530
http://doi.org/10.1016/j.landusepol.2018.05.022
http://doi.org/10.1088/1748-9326/9/11/114002
http://doi.org/10.1016/j.ecolind.2021.108171
http://doi.org/10.1016/j.landusepol.2016.06.006
http://doi.org/10.1016/j.landusepol.2017.03.021
http://doi.org/10.1016/j.cosust.2015.02.006
http://doi.org/10.1016/j.compenvurbsys.2017.06.005
http://doi.org/10.1016/j.envsci.2016.01.005
http://doi.org/10.1016/j.apgeog.2017.08.016
http://doi.org/10.1016/j.ecolmodel.2014.07.027
http://doi.org/10.1007/s10584-011-0153-2
http://doi.org/10.1016/j.gloenvcha.2012.03.008
http://doi.org/10.1016/j.agee.2005.11.027
http://doi.org/10.1038/s41893-020-0520-y
http://doi.org/10.1016/S0022-1694(02)00395-5
http://doi.org/10.1111/gcb.13337
http://www.ncbi.nlm.nih.gov/pubmed/27135635
http://doi.org/10.1016/j.jenvman.2012.08.038
http://www.ncbi.nlm.nih.gov/pubmed/23026356
http://doi.org/10.1016/j.ecolind.2021.107374


Int. J. Environ. Res. Public Health 2023, 20, 3911 24 of 24

85. Wilhelm, J.A.; Smith, R.G.; Jolejole-Foreman, M.C.; Hurley, S. Resident and stakeholder perceptions of ecosystem services
associated with agricultural landscapes in New Hampshire. Ecosyst. Serv. 2020, 45, 101153. [CrossRef]

86. Hagenauer, J.; Helbich, M. Local modelling of land consumption in Germany with RegioClust. Int. J. Appl. Earth Obs. Geoinf.
2018, 65, 46–56. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.ecoser.2020.101153
http://doi.org/10.1016/j.jag.2017.10.003

	Introduction 
	A Brief Literature Review 
	The Core of PLES: Automatic Parameterization of Environmental Element 
	Empirical Research on PLES 
	PLES Combined with Multi-Categorical Land Use Data and Machine Learning Algorithms 

	Data Collection 
	Study Area 
	Data Source 
	Data Treatment and Pre-Processing 

	Methods 
	Analytical Framework 
	Simulation Scenario Design 
	Bagging Algorithm 
	Spatio-Temporal Cellular Automata Model 

	Results 
	Model Performance 
	Analysis of the Evolution of the PLES 
	Multi-Scenario Simulation for 2025 

	Discussion 
	The General Law of Scenario Evolution 
	Discussion of the Multi-Scenario Simulation Model 

	Conclusions 
	Appendix A
	References

