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Abstract: Background: In the intensive care unit, traditional scoring systems use illness severity
and/or organ failure to determine prognosis, and this usually rests on the patient’s condition at
admission. In spite of the importance of medication reconciliation, the usefulness of home medication
histories as predictors of clinical outcomes remains unexplored. Methods: A retrospective cohort
study was conducted using the medical records of 322 intensive care unit (ICU) patients. The
predictors of interest included the medication regimen complexity index (MRCI) at admission,
the Acute Physiology and Chronic Health Evaluation (APACHE) II, the Sequential Organ Failure
Assessment (SOFA) score, or a combination thereof. Outcomes included mortality, length of stay,
and the need for mechanical ventilation. Machine learning algorithms were used for outcome
classification after correcting for class imbalances in the general population and across the racial
continuum. Results: The home medication model could predict all clinical outcomes accurately
70% of the time. Among Whites, it improved to 80%, whereas among non-Whites it remained
at 70%. The addition of SOFA and APACHE II yielded the best models among non-Whites and
Whites, respectively. SHapley Additive exPlanations (SHAP) values showed that low MRCI scores
were associated with reduced mortality and LOS, yet an increased need for mechanical ventilation.
Conclusion: Home medication histories represent a viable addition to traditional predictors of
health outcomes.

Keywords: medication regimen complexity; machine learning; critical care; clinical outcome; racial disparity

1. Introduction

Obtaining an initial medication history at admission can significantly influence clinical
outcomes [1], yet traditional scoring systems, such as APACHE or SOFA, remain the
preferred prognostic tools [2–4]. Indeed, medication reconciliation informs on the negative
consequences of medication list discrepancies [5]. Complete medication histories can help
prevent medication errors and adverse drug events (ADEs) [6,7], which are more common
among intensive care unit (ICU) patients than hospitalized patients [8].

Estimates of the clinical significance of medical histories in terms of medication errors
range between 11% and 59% [9]. Medication errors are the third leading cause of hospital
readmissions in the United States [10] and a significant cause of morbidity and mortal-
ity [11]. One hundred thousand people die each year as a result of medication errors in
hospitals and clinics [12]. The incidence of adverse drug events is 6.5 per 100 admissions,
with 28% of them judged preventable [13]. About 100,000 people die each year as a result of
medication errors in hospitals and clinics. Moreover, medication errors cost approximately
USD 20 billion each year [12]. The stratification of these costs per race remains unknown to
the best of our knowledge; a curious fact in light of extant racial health disparities in the
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US. As minorities incur more medication errors and adverse drug events than Whites in
the US [14–16], it stands to reason that they should also bear higher costs.

To reduce the burden of medication errors and ADEs and their costs, the assessment of
accurate medication histories is essential. For this purpose, pharmacists capture medication
regimen complexity, which encompasses medication dosage, frequency, and route [17]. In
clinical pharmacy practice, the most commonly used tool for the assessment of medication
regimen complexity is the Medication Regimen Complexity Index (MRCI) [18]. Although
initially developed and validated in outpatient settings [19,20], the MRCI has been validated
across various other medical settings and populations, thus making it a gold standard
for assessing medication regimen complexity [18]. Previous findings show that MRCI is
correlated with health outcomes, specifically prognosis (of diabetes and hepatocellular
carcinoma) but also mortality [21]. Two different studies utilized registry data and hospital
records to show that high MRCI scores were associated with higher 4-year mortality, and
higher odds of mortality (adjusted odds ratio = 1.12) [22,23], respectively. A recent study
showed that higher MRCI was associated with increased mortality, a longer ICU length of
stay (LOS), and the need for mechanical ventilation (MV) [17]. As the literature suggests
that medication complexity scores are higher among Blacks compared to Whites [24], it is
highly probable that the clinical burden exacted on minorities is also higher. This, however,
remains to be explored.

When taken at admission, MRCI scores, which reflect patient medication histories,
could help better predict outcomes of importance, especially among critically ill patients,
who are subject to far more intense treatment. In clinical settings, traditional scoring
systems, such as SOFA and APACHE II remain the primary indicators of disease severity [2].
In the ICU, the ratio of critical care pharmacists to patients is sub-optimal (the median
number of day shift critical care pharmacists per ICU was one), and higher ratios are
associated with unsafe patient care [25]. The potential usefulness of MRCI at admission for
a critical care pharmacist is thus threefold: (1) to serve as a guide to reduce drug errors and
adverse events by facilitating reconciliation; (2) to provide an indication of the potential
outcome of hospital stay; and (3) to help mitigate the effects of the ICU pharmacist-to-
patient ratio in a cost-effective manner. In the present study, we hypothesized that home
MRCI can effectively predict ICU outcomes at admission. We developed machine learning
(ML) algorithms to assess this hypothesis across three health outcomes (ICU mortality, LOS,
and the need for MV) among critically ill patients. We also evaluated the racial disparities
that stem from using MRCI for the foregoing clinical outcomes. Finally, we tested MRCI
in combination with either APACHE II or SOFA as joint predictors for these outcomes,
given the possibility of a synergistic predictive effect stemming from medication histories,
physiological states, and organ failure assessments.

2. Materials and Methods
2.1. Study Design

This was a single-center, STROBE-compliant retrospective cohort study of 322 patients
enrolled in the ICU of a 220-bed community hospital in Providence, Rhode Island, USA,
between 1 February 2020 and 30 August 2020. Due to the retrospective nature of the data,
informed consent was not deemed necessary, as all patient data were de-identified prior
to use. The study was a granted exemption by the Human Research Review Committee
Roger Williams Medical Center (RWMC) Institutional Review Board (IRB: 00000058) and
the University of Rhode Island Institutional Review Board (IRB: 00000559). The data were
curated and reviewed for accuracy by the RWMC data-extraction team.

2.2. Data Sources

Patient-level data were extracted from the electronic medical record system of a
medical ICU. The total of 322 patients aged at least 18 years included demographics,
comorbidity scores, outcomes, medication counts, and individual medication components



Int. J. Environ. Res. Public Health 2023, 20, 3760 3 of 16

of the MRCI tool. Patients were excluded if they had an ICU LOS of less than 24 h, active
transfer, or change in code status to hospice at 24 h.

2.3. Measures
2.3.1. MRCI Score: Key Independent Variable

As medication regimen complexity is associated with several health outcomes, var-
ious tools have been developed to assess medication regimen complexity (Medication
Complexity Index—MCI, the patient-level Medication Complexity Index—pMRCI, or the
modified Medication Regimen Complexity Index—mMRCI) [26]. The MRCI is deemed the
most reliable and valid of the currently available selection, in light of its good interrater
and test–retest reliability [20,27]. The MRCI was calculated at the time of admission. The
MRCI is a 65-item instrument divided into the following three sections: section A (32 items)
for ascertaining dosage form; section B (23 items) for assessing dosing frequency, and
section C (10 items) for evaluating additional directions (Supplemental S1, Table S1) [28].
Each prescription drug, over-the-counter drug (orally or not orally taken) was weighted
according to these three components [28]. The total score is the sum of the individual
sections’ scores, and the higher the score, the more complex the medication regimen [26].
MRCI scores were manually calculated by an independent coder, and validated by Todd
Brothers, using a random sample of the extracted data (20%).

2.3.2. Outcomes

Three outcomes were evaluated: ICU mortality, LOS, and the need for MV. LOS was
stratified into a categorical variable of two levels: those with LOS < 3 days and ≥3 days.
The threshold of three days was taken from the mean average length of patients in the
literature (~3.4 days) [29]. The need for MV (MV) was classified into two categories, namely,
those that used MV and those that did not. Missing data were excluded (N = 3).

2.3.3. Covariates

Variables of interest included age, Charlson comorbidity index score, gender, race, BMI,
health insurance (public and private insurance), MRCI scores at admission, SOFA scores at
admission, and APACHE II scores. With the exception of age, APACHE II scores, MRCI
scores, and BMI, the remaining aforementioned independent variables were categorical.
Race was stratified into Whites and non-Whites. Non-Whites or minorities encompassed
Blacks, Asians, Hispanics, and unknown races; they were categorized as a single group
because of their low sample size. Gender was recorded as “1” or “0”, for males and
females, respectively.

2.3.4. Machine Learning Models

Five machine learning models were designed, and each dependent variable was fitted
to all models. The home medication model included age, gender, Charlson score, BMI, race,
health insurance, and MRCI at admission. The MRCI was calculated using the information
on the medications the patient was taking at home. The admission model substituted
MRCI for APACHE II. The MRCI/APACHE model included APACHE II and MRCI as
well as the demographics of the previous models. The SOFA model included SOFA and
demographics. The MRCI/SOFA model included SOFA, MRCI, and demographics. Each
model was evaluated across all cohorts and across the defined racial continuum (White
and non-Whites). A detailed description of each model is available in Supplemental S1,
Table S2.

2.4. Model Development and Statistical Analysis

For descriptive statistics, the threshold of MRCI (low to high) was set at the third
quartile value of MRCI scores. Classification learning algorithms build classifiers from a
set of training data, and their performance is assessed based on how well they can predict
unseen test data [30]. In the present work, four supervised classifiers were developed and



Int. J. Environ. Res. Public Health 2023, 20, 3760 4 of 16

tested for each model: logistic classifier (LC) [31], naïve Bayes (NB) [32], random forest
(RF) [33], and extreme gradient boosting (XGB) [34]. The LC is a discriminative model
that uses maximum likelihood parameter estimation, wherein a probability distribution
is assumed about the data. The NB model uses the Bayes’ rule, which is a probability
statement and simplifies the probabilities of the predictor values by assuming that all the
predictors are independent of one another [32]. RF, a tree-based model, is an extension of
the bagging method, which adds randomness to create an uncorrelated forest of decision
trees with a random subset of features, thereby essentially ensuring low correlation among
trees [33]. XGB is an implementation of Friedman’s stochastic gradient boosting algorithm,
which encompasses classification and regression. Herein, weak classifiers are combined
to produce an ensemble classifier with a superior generalized misclassification rate, while
minimizing the loss function over numerous iterations [2,35,36].

The relative frequencies of classes may have a significant impact on the effectiveness
of different models. In terms of our outcomes, there was an imbalance with regards to
the proportion of dead/alive patients (alive: 76.1%, dead: 23%) and also between the
racial groups (Whites: 64%, non-Whites: 35.1%). Practical approaches used to counter the
influence of class imbalance on model output include model tuning, alternate cut-offs, and
sampling methods, among other things [35]. In this study, we used sampling methods
and model tuning to readjust sample sizes and improve model performances, respectively.
The sampling method we used is termed the Synthetic Minority Oversampling Technique
(SMOTE). SMOTE is an over-sampling approach in which the minority class is over-
sampled by creating synthetic examples rather than by over-sampling with replacement [37].
Over-sampling of the minority class is performed by introducing synthetic examples along
the line segments joining any of the k minority class nearest neighbors [37]. In this study,
we used the five nearest neighbors. SMOTE was applied at a percentage of 400% to generate
synthetic data with 1276 data points (from the original 319 instances) consisting of 786
Whites and 490 non-Whites. SMOTE interpolation was conducted prior to splitting the
data into train and test sets. SMOTE was also applied after subsuming race into two major
groups (White and non-White). We did not interpolate the original synthetic data based on
race because, based on the initial sample size, we could not safely conclude that these were
representative enough to create a synthetic dataset of such diversity.

Measures of association (correlation) were assessed using the Goodman–Kruskal test
to account for factor and categorical variables [38]. Significant associations between age
and BMI (r = −0.180), age and Charlson score (r = 0.341), and pre-admission MRCI and
Charlson score (r = −0.279) were observed. However, as these were weak, no measures
were taken to curb their potential yet unlikely influence on results. The data was partitioned
into training (80% of the data) and test (20% of the data) sets.

To determine optimal classification results, a k-fold cross-validation for 100 repetitions
was estimated. An automatic grid search algorithm was used to find the tuning parameters
for the best ML algorithm [39]. For RF, this entailed selecting the mtry, the minimum node
size, and the sample fraction. In XGB, variations in randomly selected hyperparameters
(max_depth, eta, subsample, colsample_by_tree, and min_child_weight) allowed us to
create 10,000 models to choose from. After using the XGB algorithm, we plotted the
SHapley Additive exPlanations (SHAP) summary to help us interpret the findings. The
SHAP or Shapley values method is a feature attribution technique that assigns to each
feature a particular value for a particular prediction to assist with interpretability. As the
Shapley value method utilizes features in every possible order to arrive at values, this
allows for an unbiased interpretation of predictions [40]. The SHAP values were plotted
for the entire sample and not across the racial divide.

Selected metrics for overall performance included the area under the receiver operator
characteristic curve (AUC), the sensitivity (Se), the specificity (Sp), the positive predictive
value (PPV), and the negative predictive value (NPV). Ninety-five percent confidence
intervals (CI) were provided alongside these metrics. The area under the receiver operating
characteristic (ROC) curve, or AUC, measures the predictive ability of learning algorithms’
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ROCs. Sensitivity refers to true positives that are correctly predicted by the model, while
specificity refers to true negatives that are correctly predicted by the model. Results are
shown for the general population and across the racial divide. Only the best ML algorithm
results are shown; the remainder is provided in the Supplemental Files. All analyses were
performed using R (R Core Team, 2019). R packages Caret (for LC), e1071 (for NB), Ranger
(for RF), and XGBoost (for XGB) were used for ML algorithms. Multicollinearity was
assessed mathematically using package performance and graphically using the package
ggally. SMOTE implementation used the package smotefamily, whereas graphs were
produced using ggplot2.

3. Results
3.1. Descriptive Analysis

In total, data from 319 patients were included in the analysis (Table 1). The median age
was 62 years and similar between low and high MRCI groups. There was no significant dif-
ference between the low and high MRCIs for BMI. No significant differences were detected
between MRCI groups for APACHE II, the Glasgow Coma Scale (GCS), or the Simplified
Acute Physiology Score (SAPS) II. The top conditions at admission included hypertension,
acute renal failure, myocardial infarction, and metabolic encephalopathy (Table 1). The
high MRCI group had the highest proportions of patients with these conditions, although
the difference with the low MRCI group was not significant (Supplemental S2: Figures
S6–S10). The proportion of patients who died in the ICU was higher among the high-MRCI
compared to the low-MRCI patients (26% vs. 22%). Supplemental S2, Figure S1 shows that
those with a high MRCI took more medications at home than those with low medications.
Among those with high MRCI who survived, the distribution was broader compared to
those who died. In Table 1, those with a low MRCI had a longer length of stay (113.2 h vs.
106.5 h) and needed more MV (65 h vs. 47.9 h) than those in the high MRCI group. This
difference was not significant as emphasized (Supplemental S2, Figure S3). A heatmap
(Supplemental S2, Figure S4) of the various medications taken at home by all patients shows
that diuretics, genitourinary, and paralytic agents were highly used by those with low
MRCI. Among those with high MRCI, IV fluids appeared to be slightly more predominant.
Non-Whites had higher representation among those with high MRCI (31.9% vs. 21.4%)
than Whites (Supplemental S2, Figure S5).

3.2. Model Performance: General Population
3.2.1. ICU Mortality

Table 2 presents the performance measures for the best model using the best ML
algorithm. The best ML algorithm throughout was XGB, and the best model was the
MRCI/SOFA model. The performances across the remaining ML algorithms for all models
can be found in Supplemental S3, Table S3. For mortality, the predictive positive value
(PPV) was defined as the percentage of patients predicted to die who in fact did die
during their hospitalization. The home medication model showed a precision of ~60%, a
prediction accuracy for patient death of ~70% and could accurately classify 73% of the time
(Se) patients who had died. In this model, MRCI was the third-most important variable
featured (Supplemental S3, Figure S11). Upon inclusion of SOFA, the MRCI/SOFA model
outperformed all other models across all metrics with a precision of 100% and an overall
prediction accuracy for patient death of 98%. Using this model, patients who died were
correctly classified 96% (Se) of the time (Table 2 and Figure 1).
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Table 1. Demographic characteristics of low and high MRCI groups.

Measure Low MRCI High MRCI All p-Value

Total Total (%) 239 (74.9) 80 (25.1) 319 0.023 *

Demographics

Age, Median (IQR) 62 (50–76) 62.2 (53.8–70.2) 62 (51–75.8) 0.44

BMI, Median (IQR) 28.8 (23–32) 29.3 (23–34) 28.9 (23–32) 0.21

Male, N (%) 133 (56) 43 (54) 176 (55) 0.84

White, N (%) 162 (68) 44 (55) 206 (65) 0.048 *

Non-White, N (%) 77 (32) 36 (45) 113 (35) 0.041 *

Hispanic, N (%) 20 (8) 17 (21) 37 (12) 0.004 **

Predisposing
factors

Hypertension, N
(%) 77 (32.2) 30 (37.5) 107 (33.5) 0.47

Acute renal failure,
N (%) 72 (30.1) 25 (31.3) 97 (30.4) 0.96

Myocardial
infarction, N(%) 54 (22.6) 24 (30) 79 (24.8) 0.24

Metabolic
encephalopathy, N
(%)

41 (17.2) 16 (20) 59 (18.5) 0.68

Long term insulin
use 40 (16.7) 21 (26.3) 62 (19.4) 0.088

Traditional scoring
systems

APACHE II,
Median (IQR) 18.6 (13–22.8) 21.6 (16–26) 19.4 (14–23.8) 0.912

GSC, Median
(IQR) 12 (9–15) 11.1 (8–15) 11.7 (9–15) 0.39

SAPS II, Median
(IQR) 16 (6.2–24) 15.8 (9–21.5) 15.9 (7–23.8) 0.524

Outcomes

Mortality (%) 53 (22) 21 (26) 74 (23) 0.565

LOS, Median (IQR) 113.2 (21–109) 106.5 (22–130.2) 111.5 (21–111.8) 0.084

MV, Median (IQR) 65 (0–25.5) 47.9 (0–28) 60.7 (0–25.5) 0.179

IQR: Interquartile range; N: sample size within strata; GSC: Glasgow Coma Scale; LOS: length of stay; MV: me-
chanical ventilation; non-Whites encompasses Blacks, Asians, and all others. *: 0.01 < p < 0.05, **: 0.001 < p < 0.01.

Table 2. Performance of machine learning algorithms across several models and outcomes.

Model and
Outcome AUC Sensitivity Specificity PPV NPV

Outcome: Mortality

Home Medication
Model (MRCI)

0.69
(0.66–0.73)

0.73
(0.68–0.78)

0.67
(0.63–0.72)

0.59
(0.54–0.64)

0.80
(0.75–0.84)

Admission Model
(APACHE II))

0.91
(0.89–0.93)

0.88
(0.84–0.91)

0.94
(0.91–0.96)

0.94
(0.91–0.96)

0.87
(0.83–0.91)

MRCI and
APACHE II Model

0.91
(0.89–0.93)

0.93
(0.90–0.96)

0.89
(0.85–0.92)

0.88
(0.84–0.91)

0.94
(0.91–0.96)

SOFA Model 0.97
(0.96–0.98)

0.94
(0.91–0.96)

1.00
(0.99–1.00)

1.00
(0.99–1.00)

0.94
(0.91–0.96)

MRCI and SOFA
Model

0.98
(0.97–0.99)

0.96
(0.93–0.98)

1.00
(0.99–1.00)

1.00
(0.99–1.00)

0.96
(0.93–0.98)
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Table 2. Cont.

Model and
Outcome AUC Sensitivity Specificity PPV NPV

Outcome: Length of stay

Home Medication
Model (MRCI)

0.68
(0.64–0.71)

0.64
(0.59–0.68)

0.72
(0.67–0.77)

0.76
(0.71–0.80)

0.60
(0.55–0.65)

Admission Model
(APACHE II))

0.79
(0.76–0.82)

0.80
(0.75–0.84)

0.78
(0.73–0.82)

0.75
(0.70–0.79)

0.82
(0.78–0.86)

MRCI and
APACHE II Model

0.77
(0.74–0.80)

0.68
(0.63–0.73)

0.70
(0.65–0.75)

0.68
(0.63–0.73)

0.70
(0.65–0.75)

SOFA Model 0.80
(0.77–0.83)

0.82
(0.77–0.86)

0.79
(0.74–0.83)

0.76
(0.71–0.80)

0.84
(0.80–0.88)

MRCI and SOFA
Model

0.79
(0.76–0.82)

0.79
(0.74–0.83)

0.80
(0.76–0.84)

0.79
(0.74–0.83)

0.80
(0.75–0.84)

Outcome: Need for mechanical ventilation

Home Medication
Model (MRCI)

0.75
(0.72–0.78)

0.78
(0.73–0.82)

0.72
(0.67–0.77)

0.72
(0.67–0.77)

0.78
(0.73–0.82)

Admission Model
(APACHE II))

0.77
(0.74–0.80)

0.75
(0.71–0.80)

0.79
(0.74–0.83)

0.78
(0.73–0.82)

0.76
(0.72–0.81)

MRCI and
APACHE II Model

0.77
(0.73–0.80)

0.76
(0.72–0.80)

0.77
(0.72–0.82)

0.80
(0.76–0.84)

0.73
(0.68–0.77)

SOFA Model 0.85
(0.83–0.88)

0.88
(0.83–0.91)

0.84
(0.80–0.87)

0.81
(0.77–0.85)

0.89
(0.86–0.92)

MRCI and SOFA
Model

0.87
(0.85–0.90)

0.90
(0.86–0.93)

0.86
(0.82–0.89)

0.84
(0.79–0.87)

0.91
(0.88–0.94)

Note: AUC: area under the receiver operating characteristic curve; PPV: positive predictive value; NPV: negative
predictive value.

Despite the fact that SOFA drove the model and scored the highest on the variable
importance chart, MRCI was the fourth most important variable, only outdone by age
and BMI (Supplemental S3, Figure S11). The SHAP summary for the MRCI/SOFA model
(Supplemental S3, Figure S12) showed that low scores of the MRCI were associated with
remaining alive during an inpatient ICU stay.

3.2.2. ICU Length of Stay

For LOS, the precision of the home medication model was 76%, whereas the prediction
accuracy for patient LOS of less than 72 h was 68% (Table 2 and Figure 1). This model
could accurately classify 64% of patients who were hospitalized for less than 72 h. As
with mortality, the addition of SOFA (MRCI/SOFA model) provided the best results in
terms of precision (95% CI: 74–83%), prediction accuracy (95% CI: 76–82%), and Se (95%
CI: 79–83%). Variable importance featured MRCI in first and fourth place, across the
home medication and the MRCI/SOFA models, respectively (Supplemental S3, Figure S13).
SHAP values obtained for the MRCI/SOFA model showed that low values of MRCI were
mostly consistent with a hospital LOS of less the 72 h (Supplemental S3, Figure S14).

3.2.3. ICU Need for Mechanical Ventilation

Across all outcomes, the home medication model performed best for the need for
the MV outcome. Accounting for a precision of 72%, a prediction accuracy of 75%, and
a classification accuracy for patients that need MV of 78% (Table 2 and Figure 1), this
model was not widely dissimilar in performance compared to the admission model or
the MRCI/APACHE II model. Only the substitution/addition of SOFA in the SOFA
and MRCI/SOFA models yielded far better outcomes. The MRCI/SOFA model had a
precision of 84% (95% CI: 79–87%), a prediction ability of 87% (95% CI: 85–90%), and could
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accurately classify 90% (95% CI: 86–93%) of the time patients were in need for MV. In
the home medication and the MRCI/SOFA models, MRCI was respectively the first and
second-most important feature (Supplemental S3, Figure S15). Interestingly, the SHAP plot
(Supplemental S3, Figure S16) showed that patients with low MRCI needed more MV.
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3.3. Model Performance: Racial Continuum

Algorithm performance results for Whites are shown in Table 3, and for minorities in
Table 4. Only the results for the best algorithms per model are presented in these tables;
the remainder can be found in Supplemental S3, Table S3. The home medication model
performed worse for minorities than it did for Whites. For mortality, the home medication
model performed better among Whites compared to the mixed population. It correctly
classified patients who died 83% of the time, with a prediction accuracy of 81% and a
precision of 78%. Among minorities, this model’s prediction accuracy was 73%. The home
medication model was the second-best model among Whites after the MRCI&SOFA model,
which yielded increased 95% CI for prediction accuracy (95% CI: 0.85–0.90), Se (95% CI:
0.82–0.93), Sp (95% CI: 0.86–0.93), PPV (95% CI: 0.87–0.93), and NPV (95% CI: 0.78–0.86).

Table 3. Performance of machine learning algorithms across several models and outcomes in a
subpopulation of Whites.

Model and Outcome AUC Sensitivity Specificity PPV NPV

Outcome: Mortality

Home Medication
Model (MRCI)

0.81
(0.78–0.84)

0.83
(0.79–0.87)

0.79
(0.75–0.83)

0.78
(0.74–0.82)

0.84
(0.79–0.87)

Admission Model
(APACHE II) †

0.80
(0.77–0.84)

0.86
(0.81–0.90)

0.73
(0.68–0.77)

0.66
(0.61–0.71)

0.89
(0.86–0.92)

MRCI and APACHE
II Model

0.81
(0.78–0.84)

0.80
(0.76–0.84)

0.82
(0.78–0.86)

0.83
(0.79–0.87)

0.79
(0.74–0.83)

SOFA Model 0.76
(0.72–0.80)

0.67
(0.63–0.72)

0.88
(0.83–0.91)

0.90
(0.86–0.93)

0.62
(0.57–0.67)

MRCI and SOFA
Model

0.88
(0.85–0.90)

0.86
(0.82–0.93)

0.90
(0.86–0.93)

0.91
(0.87–0.93)

0.85
(0.80–0.88)

Outcome: Length of stay

Home Medication
Model (MRCI) *

0.77
(0.73, 0.81)

0.72
(0.68, 0.77)

0.78
(0.73, 0.82)

0.82
(0.77, 0.85)

0.67
(0.62, 0.72)

Admission Model
(APACHE II)

0.78
(0.75–0.81)

0.82
(0.77–0.86)

0.74
(0.70–0.79)

0.73
(0.68–0.77)

0.83
(0.78–0.87)

MRCI and APACHE
II Model

0.82
(0.79–0.85)

0.82
(0.77–0.85)

0.83
(0.78–0.86)

0.84
(0.80–0.88)

0.80
(0.75–0.84)

SOFA Model 0.83
(0.81–0.86)

0.81
(0.77–0.85)

0.87
(0.82–0.90)

0.88
(0.85–0.91)

0.78
(0.74–0.83)

MRCI and SOFA
Model

0.81
(0.78–0.84)

0.77
(0.73–0.81)

0.88
(0.83–0.91)

0.90
(0.87–0.93)

0.72
(0.67–0.77)

Outcome: Need for mechanical ventilation

Home Medication
Model (MRCI)

0.79
(0.76, 0.82)

0.78
(0.73, 0.82)

0.80
(0.75, 0.84)

0.82
(0.78, 0.86)

0.75
(0.70, 0.80)

Admission Model
(APACHE II)

0.88
(0.86–0.90)

0.94
(0.91–0.96)

0.83
(0.79–0.86)

0.82
(0.77–0.85)

0.94
(0.91–0.96)

MRCI and APACHE
II Model

0.91
(0.89–0.93)

0.89
(0.86–0.92)

0.94
(0.90–0.96)

0.94
(0.91–0.96)

0.88
(0.84–0.91)

SOFA Model 0.72
(0.69–0.76)

0.71
(0.66–0.76)

0.74
(0.69–0.79)

0.77
(0.73–0.81)

0.67
(0.62–0.72)

MRCI and SOFA
Model

0.80
(0.77–0.83)

0.76
(0.72–0.80)

0.84
(0.80–0.88)

0.87
(0.83–0.90)

0.72
(0.67–0.77)

Note: Results presented for the best algorithm (XGB) except with the following symbols: *: logistic classifier; †:
naïve Bayes. AUC: Area under the receiver operating characteristic curve; PPV: positive predictive value; NPV:
negative predictive value.
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Table 4. Performance of machine learning algorithms across several models and outcomes in a
subpopulation of non-Whites.

Model and
Outcome AUC Sensitivity Specificity PPV NPV

Outcome: Mortality

Home Medication
Model (MRCI)

0.73
(0.70–0.75)

1.00
(0.98–1.00)

0.61
(0.57–0.65)

0.45
(0.40–0.50)

1.00
(0.99–1.00)

Admission Model
(APACHE II) *

0.80
(0.77–0.83)

0.70
(0.65–0.75)

0.83
(0.78–0.87)

0.84
(0.79–0.88)

0.69
(0.64–0.73)

MRCI and APACHE
II Model *

0.78
(0.75–0.82)

0.76
(0.72–0.81)

0.85
(0.80–0.88)

0.84
(0.79–0.88)

0.77
(0.73–0.81)

SOFA Model * 0.84
(0.80–0.87)

0.76
(0.71–0.80)

0.90
(0.86–0.93)

0.90
(0.86–0.93)

0.75
(0.70–0.79)

MRCI and SOFA
Model *

0.85
(0.81–0.88)

0.67
(0.63–0.72)

0.88
(0.83–0.91)

0.90
(0.86–0.93)

0.62
(0.57–0.67)

Outcome: Length of stay

Home Medication
Model (MRCI) †

0.60
(0.55, 0.64)

0.59
(0.54, 0.63)

0.60
(0.54, 0.66)

0.69
(0.64, 0.73)

0.50
(0.44, 0.55)

Admission Model
(APACHE II)

0.82
(0.80–0.85)

0.73
(0.69–0.77)

1.00
(0.98–1.00)

0.83
(0.78–0.87)

0.64
(0.59–0.69)

MRCI and APACHE
II Model

0.76
(0.73–0.79)

0.70
(0.66–0.75)

0.83
(0.78–0.87)

0.80
(0.75–0.84)

0.64
(0.59–0.69)

SOFA Model 0.91
(0.89–0.93)

1.00
(0.99–1.00)

0.84
(0.80–0.87)

0.82
(0.77–0.86)

1.00
(0.99–1.00)

MRCI and SOFA
Model

0.86
(0.83–0.88)

0.86
(0.82–0.89)

0.85
(0.81–0.89)

0.86
(0.82–0.89)

0.85
(0.81–0.89)

Outcome: Need for mechanical ventilation

Home Medication
Model (MRCI)

0.74
(0.71, 0.77)

0.74
(0.70, 0.79)

0.74
(0.69, 0.78)

0.76
(0.71, 0.80)

0.72
(0.67, 0.77)

Admission Model
(APACHE II)

0.72
(0.68–0.75)

0.78
(0.72–0.82)

0.68
(0.63–0.72)

0.60
(0.54–0.65)

0.83
(0.79–0.87)

MRCI and APACHE
II Model

0.76
(0.74–0.79)

0.67
(0.63–0.71)

1.00
(0.98–1.00)

1.00
(0.99–1.00)

0.52
(0.47–0.58)

SOFA Model 0.96
(0.94–0.97)

0.92
(0.89–0.92)

1.00
(0.99–1.00)

1.00
(0.99–1.00)

0.91
(0.88–0.94)

MRCI and SOFA
Model

0.93
(0.91–0.95)

0.89
(0.85–0.92)

1.00
(0.99–1.00)

1.00
(0.99–1.00)

0.86
(0.82–0.90)

Note: Results presented for the best algorithm (XGB) except with the following symbols: *: logistic classifier; †:
naïve Bayes. AUC: area under the receiver operating characteristic curve; PPV: positive predictive value; NPV:
negative predictive value.

For minorities, the SOFA and MRCI/SOFA models were the best in terms of Se and
PPV, respectively. The best models among minorities were obtained using LC as opposed
to XGB for Whites.

For LOS, the home medication model performed better among Whites with higher
precision accuracy (77%), Se (72%), and PPV (82%). However, the best algorithm for this
model was XGB for Whites and naïve Bayes for minorities. Among Whites, the best models
were the MRCI/APACHE II, SOFA, and MRCI/SOFA models, in terms of precision (82%),
precision accuracy (83%), and classification accuracy (90%), respectively. Thus, the inclusion
of APACHE II improved the Se, whereas the inclusion of SOFA improved the PPV. Across
minorities, the SOFA model was the most balanced model with a precision accuracy of
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91%, a Se of 100%, and a precision of 82%. The addition of APACHE or SOFA to the home
medication model improved the PPV (95%: 0.75–0.84; 95% CI: 0.82–0.89).

The home medication model performed better for the need for MV outcomes than for
LOS, although it showed better metrics among Whites than among non-Whites. Indeed,
precision accuracy reached 79%, Se, 78%, and precision, 82%, among Whites (Table 3).
Among minorities, accuracy was 74%, Se was 74%, and precision was 76%. The contrast
between the two understudied racial groups could not be more apparent than when the
best models were examined. Among Whites, the MRCI/APACHE II outperformed with
a precision accuracy of 91%, a Se of 89%, and a precision of 94%. However, among non-
Whites, the SOFA and MRCI/SOFA models were the best.

4. Discussion
4.1. Key Findings

In the present study, we hypothesized that home medications could serve as predictors
of health outcomes, either as a single factor (MRCI) or in combination with traditional
scoring systems (APACHE II or SOFA). We also investigated the differential in predictive
capabilities across races for these predictors. Our findings show that the home medication
model predicts on average accurately ~70% of the time all three outcomes: ICU mortality,
LOS, and need for MV. Along with SOFA, the MRCI model outperforms in predicting all
three outcomes. In other words, without knowing the subsequent status of an ICU admitted
patient, by just using the calculated MRCI (home medications) at admission one can predict
with 70% accuracy mortality, LOS, and the need for MV. The combination of SOFA and
MRCI vastly improved predictive accuracy among the general population. Moreover,
another major finding of our study is that the MRCI was a better predictor of all three
outcomes among Whites than it was among non-Whites. Among Whites, the predictive
clinical accuracy of home MRCI reached 80%, while remaining at 70% for non-Whites for
all outcomes. These findings provide justification to include home medication histories in
the list of existing patient equity scoring systems such as APACHE II, SOFA, etc.

The SHAP values showed that low values of MRCI were associated with reduced
mortality and LOS but an increased need for MV. Past research has corroborated our
findings [41]. Herein, higher values of MRCI increased the odds of hospital mortality,
as those with MRCI values above 14 were at least 1.84 times more likely to die during
their hospital stay compared to those with MRCI values less than 5 [41]. A meta-analysis
also found that high MRCI scores were associated with increased hospitalization hazards
(hazard ratio = 1.20; 95% CI = 1.14 to 1.27) [42]. Across eight residential age care facilities in
Australia, MRCI scores were shown to be positively correlated with LOS [18].

4.2. MRCI at Admission in Different Races

Interestingly, MRCI was a better predictor among Whites than it was among non-
Whites. This could be due to a host of reasons, such as medication adherence and inaccurate
medication history record, source of medication history record, class/covariate imbalance,
and low sample size. There is a dearth of data on the variation of MRCI among racial groups,
and whenever available, this evidence appears to be stratified by disease or confined to
medication use. For example, past research in systemic lupus erythematosus showed
that Blacks typically have higher medication regimen complexity scores compared to
Whites [24]. Among Blacks, high MRCI scores are correlated with non-adherence to drug
regimens [43]. This non-adherence may be due to a greater propensity for “pharmacy
deserts” in low-income communities or medically underserved areas where minorities
typically reside [44]. Geographical access to pharmacists’ services to manage regimens is
thus not readily available for minorities [44,45]. As adherence/non-adherence may reflect
MRCI scores [26,46], it may explain why Whites adhere more to drug regimens, and why
this index is more reliable in predicting inpatient outcomes in this subpopulation.
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4.3. Role of Critical Care Pharmacist

In the acute care setting, clinical pharmacists are considered medication experts and
have extensive training in pharmacotherapeutics to provide comprehensive medication
management to both patients and members of the interdisciplinary care team. It has
been well documented that the addition of pharmacists providing direct patient care has
led to a reduction in preventable adverse drug events, fewer transfers to the intensive
care unit (ICU), and a reduction in length of stay (LOS) [47,48]. Additionally, the in-
corporation of critical care pharmacists within the interdisciplinary care team has led to
improved patient outcomes, including mortality, ICU length of stay in mixed ICUs, and pre-
ventable/nonpreventable adverse drug events [49]. Clinical pharmacists play an essential
role in evaluating home medication regimens for complexity in terms of appropriateness
of use, safety of continuation during hospitalization, and frequent regimen modifications
(i.e., dose reduction) during transitions of care. A 2017 study highlighted the importance of
pharmacist intervention and communication during transitions of care from hospitalization
to the community by demonstrating a 36% reduction in medication-related hospitalizations
among the elderly population [50]. Therefore, the use of an MRCI scoring system by clinical
pharmacists remains essential to improving the quality of pharmaceutical care delivered.

4.4. Different Biases in Predicting Clinical Outcomes

Racial bias, often encountered in data-driven algorithms for healthcare, remains a
known challenge to delivering equitable, high-quality healthcare. Label choice-induced bias
has been widely documented and has been well described noting the discrepancy between
unobserved optimal prediction and a prediction trained on an observed label [51]. This type
of bias typically springs from mismeasurement and human judgment/interpretation [52].
Data obtained from electronic health records (EHR) or claims databases reflect unaccounted
clinical errors, which can lead to mismeasurement and bias in predictions. In this study, the
measurements of MRCI were obtained using EHR data. However, a more informative score
would be a version of the MRCI calculated using pharmacy insurance claims. A recent
study examined the correlation between an EHR-based MRCI and a pharmacy claims-based
medication complexity tool [53]. The authors claimed that the claims-based tool would
better capture all pharmacy encounters compared to the EHR, which reflected mostly
provider interactions. The association between the EHR and claims data was significantly
higher among a subset of patients with similar counts of records between the EHR and
claims. The association was lower for patients with large discrepancies between medication
orders captured in the EHR and pharmacy claims. It is thus possible that patients with
better access to care may have more reliable counts of EHR records, which when considered
may closely reflect MRCI scores at home, than patients who mostly utilize medical services
sporadically and mostly through emergency services (minorities) [54].

Other sources of racial bias include demographics, comorbidity imbalances in the
dataset, and other societal and systemic sources [55]. A significant statistical dispropor-
tion was found with Blacks in our study making up 35.4% of the sample. Research has
also shown that minorities are often, compared to Whites, at increased risk for chronic
diseases [56]. Societal and systemic sources describe the unequal probability of having
members of a specific racial group as a patient in our sample, perhaps due to strict patient se-
lection or assessment of patient compliance, baseline health status, and comorbidities [55].
The mistrust of minorities with respect to medical providers could also play a crucial
role here [57].

In the present study, the SOFA model was the best for Whites (mortality outcome),
whereas the MRCI/APACHE II model had a better predictive ability for LOS and the
need for MV outcomes. Among non-Whites, the SOFA and MRCI/SOFA models were
the best models across all outcomes. Thus, for Whites, the addition of APACHE II to the
base model seemed to enhance the predictive ability of the algorithm, whereas for non-
Whites, the same effect was observed following the inclusion of SOFA scores. APACHE II
is a disease severity classification system that focuses on the severity of disease based on
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physiological values. SOFA is an organ failure score based on the degree of dysfunction of
six critical organs, and it is directly related to inpatient outcomes in critically ill patients.
We hypothesize that SOFA is a better predictor among minorities because of the latter’s
propensity to use emergency rooms as a primary resort for medical services [58], as a result
of critical/worse (than Whites) health status. This is then better reflected across SOFA than
APACHE II scores.

4.5. Implications of the Study

The present study highlights the benefits and advantages of using home medication
histories for determining prognosis among a critically ill population. Identifying high-risk
patients using this tool could substantially reduce the demand for critical care pharmacists,
lower the overall costs of medical procedures, and also improve patient outcomes. As
study strengths, this work helped set MRCI as a single or composite-value predictor for
mortality, LOS, and the need for MV among hospitalized patients. Our results highlight the
importance of critically evaluating home medication use to accurately and swiftly depict
the prognosis to assist family members in making the challenging decision(s) to escalate
care for their loved ones. Despite the widespread use of MRCI scores, researchers have yet
to incorporate home medication use in a predictive model to forecast relevant outcomes.
In terms of real-world implications, the bedside clinician is encouraged to evaluate the
patient specific MRCI profile prior to making medical decisions. This in turn will positively
impact patient safety and mitigate unnecessary risks. Incorporation of the MRCI has
the potential to reinforce the current, yet not widely adopted, effort toward improved
medication reconciliation, particularly upon transitions of care where most medication
errors occur. Further, for critical care pharmacists, this tool could also serve to clearly
identify the patients at the highest risk of treatment failure (patient readmission), in need of
intense follow-up post-ICU admission, and equitably distribute future resources necessary
to improve post-ICU and long-term care [59,60].

This study also promotes the use of explainable machine learning to investigate ICU
outcomes, as informed by past research [61]. Further, it also emphasized the utility of the
SMOTE technique in helping overcome class imbalance and producing robust results. It
also highlighted the proficiency of several algorithms, specifically XGB, as well-suited to
predict inpatient outcomes. XGB is a scalable and accurate implementation of gradient-
boosting machines specifically designed to push the limits of boosted tree algorithms.
XGB often produces the best predictive performances and processing times across several
algorithms, and it has also been shown to work well in small samples.

4.6. Limitations

A few notable limitations are worth noting. First, we acknowledge that MRCI may
be described as a surrogate index for disease severity. Second, racial bias on the basis of
statistical disproportions limited the use of non-augmented (SMOTE) data in our algorithm.
Despite the prowess of SMOTE, one of its major drawbacks is overfitting through the
random synthesis of minority data while taking little to no account of the significance of the
majority class [62]. Further, we were limited in the use of other covariates of importance
in the dataset. Although MRCI alone could predict 70% of the time, typically the best
predictors record accuracies of 90%. Perhaps a larger data set would yield better results.
This study’s findings are also limited in their generalizability, as the data were obtained
from a single medical center and may not be representative of the general population.

5. Conclusions

Home medication history is a robust predictor of ICU mortality, LOS, and the need
for MV. The predictive capabilities of traditional patient acuity scoring systems improve
with the addition of MRCI scores at admission. Racial attributes appear to determine
the degree of importance that medication regimen complexity occupies with respect to
clinical outcomes. In spite of our encouraging findings, future research should aim to
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validate these findings not only across larger samples but across subpopulations of varying
demographic characteristics. Indeed, incorporating strategies to mitigate racial bias and
introduce fairness in predictive algorithms could help pharmacists better attend to patients
and, in turn, improve outcomes and reduce overall healthcare costs.
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