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Abstract: Aquatic environments could be reservoirs of pathogenic yeasts with acquired antifungal
resistance. The susceptibility to antifungal agents of yeasts present in the wastewater and natural
waters of the city of Cali was evaluated. Samples were taken from two types of water: drinking
water (Meléndez River, drinking water treatment plant “Puerto Mallarino” in the Cauca River) and
wastewater (South Channel of the Cauca River, “Cañaveralejo-PTAR” wastewater treatment plant).
Physico-chemical parameters, heavy metal concentration, and yeast levels were determined using
standard procedures. Yeasts were identified using API 20 C AUX (BioMérieux) and sequence analysis
of the ITS1-5.8S-ITS2 and D1/D2 regions of the large subunit of the ribosome. Susceptibility assays
against fluconazole and amphotericin B using the minimum inhibitory concentration (MIC) test
were determined using the microdilution method. The influence of physico-chemical parameters
and heavy metals was established using principal component analysis (PCA). Yeast counts were
higher at WWTP “PTAR” and lower at Melendez River, as expected. A total of 14 genera and
21 yeast species was identified, and the genus Candida was present at all locations. Susceptibility tests
showed a 32.7% resistance profile to fluconazole in the order DWTP “Puerto Mallarino = WWTP
“PTAR” > South Channel “Navarro”. There were significant differences (p < 0.05) in the physico-
chemical parameters/concentration of heavy metals and yeast levels between the aquatic systems
under study. A positive association was observed between yeast levels and total dissolved solids,
nitrate levels, and Cr at the “PTAR” WWTP; conductivity, Zn, and Cu in the South Channel; and
the presence of Pb in the “Puerto Mallarino” DWTP. Rhodotorula mucilaginosa, Candida albicans, and
Candida sp. 1 were influenced by Cr and Cd, and Diutina catelunata was influenced by Fe (p < 0.05).
The water systems explored in this study showed different yeast levels and susceptibility profiles,
and, therefore, possible genetic differences among populations of the same species, and different
physico-chemical and heavy metals concentrations, which were probably modulating the antifungal-
resistant yeasts. All these aquatic systems discharge their content into the Cauca River. We highlight
the importance to further investigate if these resistant communities continue to other locations in the
second largest river of Colombia and to determine the risk posed to humans and animals.
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1. Introduction

Yeasts constitute an important component in the microbial community of aquatic envi-
ronments and are comparable to other microorganisms such as bacteria and protozoa [1,2].
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Aquatic environments and sediments are important habitats to study microorganism diver-
sity, and yeasts can be easily found in these ecosystems, presenting phenotypic plasticity
and adaptations to tolerate salinity, environmental temperature, oxygen saturation, and
acidity [3–5]. In this sense, several pathogenic or opportunistic yeasts can be isolated
from lakes [6–9], rivers [7,9,10], drinking water [7,11], and wastewater [1,4,5,12]. They
are susceptible to acquiring resistance to medical antifungals, such as fluconazole, which
is the most widely used agent in the clinic as primary treatment [13], and triazole fungi-
cides, which are frequently used in agriculture [14], while some of them have intrinsic
resistance, such as the species Candida krusei, Rhodotorula mucilaginosa, and Meyerozyma
guilliermondii [15,16]. Furthermore, yeasts can acquire secondary resistance due to previous
contact with antifungals in patients, or low drug activity in tissue or blood associated with
immunosuppressed patients [17,18]. The increase in fungal infections has been accentuated
by antifungal drug resistance being a serious public health problem. Reports of yeast
strains resistant to commonly used antifungal drugs in aquatic environments are becoming
more frequent, so these environments can present potential health risks to people who use
contaminated water. For example, Medeiros et al. [9] found isolates of Candida spp. resistant
to itraconazole and fluconazole in the lakes and rivers of southeastern Brazil. Milanezi
et al. [4] conducted a study in the Rio Grande do Sul, Brazil, and found a high frequency
of Candida spp. and Debaryomyces spp. resistant to azole antifungals and amphotericin B.
Several studies reported the isolation of pathogenic yeasts resistant to antifungal agents
from lakes, lagoons, rivers, and wastewater treatment plants (WWTP), mainly in South
America [6,8] and South Africa [1,7,10,12]. In Colombia, the intensive use of azole antifun-
gals without medical prescription, or their use as a prophylactic in immunosuppressed
patients, increased the number of cases of resistant yeasts, mainly of C. albicans [19] or the
C. parapsilosis complex [20]. The approach to this problem has focused mainly on studies
from the clinical point of view [19–21]. Even though a high load of antifungals in the
environment has been documented, more than 80% are azoles. This can be explained to
the wide use in clinical therapy and the use of fungicides due to its low cost and systemic
action, which allows both the prevention and treatment of fungal diseases, long-lasting
stability in the environment and broad antifungal spectrum. [14,17,20–22]. Several studies
around the world have revealed high levels of antifungal azoles in the aqueous phases of
WWTP effluents, after their use in homes, hospitals, or agricultural industries [22,23], and a
low elimination rate of these antifungals has been reported [24,25]. At the same time, some
yeasts isolated from contaminated water have the potential in biotechnological processes
to produce ethanol, biodiesel, and carotenoid pigments, among others [26]. Therefore, the
objective of this study was to determine yeast levels in aquatic environments in the city of
Cali, Colombia, and their fluconazole and amphotericin b susceptibilities. Furthermore, we
aimed to establish their associations with physico-chemical parameters and heavy metal
concentrations, with the purpose of driving further research and public policy interventions
to control the quality of aquatic systems and strengthen the response to fungal infections
and antifungal resistance.

2. Materials and Methods
2.1. Study Area and Sampling

The study was performed in Cali (at coordinates 3◦27′00′ ′ N 76◦32′00′ ′ W), a city
located in southwestern Colombia. The weather of the city is warm, and in the course
of the year, the temperature generally varies from 19 ◦C to 30 ◦C. Water samples were
collected from four water systems: Melendez River (south of the city), the intake from the
drinking water treatment plant (DWTP) “Puerto Mallarino” (intake is located on the Cauca
River and supplies 76% of drinking water to the city), and wastewater samples were taken
from a rainwater channel in Navarro, called “South Channel” (this channel also receives
wastewater from a part of the community in the south of the city), and the municipal
WWTP (best known as “PTAR”), which discharges its water into the Cauca River, the main
river of the city and the second biggest river in Colombia. A schematic illustration of the
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sampling sites and how they are connected is shown in Figure 1. For fungal isolation, the
water samples were taken in triplicate using a plastic container tied to a rigid support, in
a sterile 500 mL amber glass container, protected with an aluminum seal and/or Teflon
cap, fully filled in January 2018 (dry season) and May 2018 (wet season). The samples were
taken at a depth of approximately 0.5 m and as far as possible from the shore, trying not to
disturb the bottom and avoiding backwaters or stagnant areas, and were immediately sent
to the laboratory in a cooler to be processed and to start the analysis within six hours of
taking the sample. One liter (in triplicate) of collected water samples was divided into two
equal portions of 500 mL, one of which was stabilized with nitric acid for the determination
of heavy metals, while the other was used for the analysis of physico-chemical parameters;
samples were kept at 4 ◦C for no more than two days before being analyzed [27].
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Figure 1. Location of the sampling stations. South Channel: rainwater canal; DWTP: drinking water
treatment plant “Puerto Mallarino”, Cauca River; WWTP: wastewater treatment plant “PTAR”; and
Melendez River. The map on the right was modified from www.4UMaps.com (accessed on 21 October
2022) under the license Data CC BY-SA by OpenStreetMap.

2.2. Yeast Isolation and API20C Tests

Serial dilutions (10−1–10−3) were made with peptone water (Oxoid Ltd., Hampshire,
United Kingdom). Equal volumes (200 µL) from each dilution were spread over the surface
of Dicloran Rose Bengal Chloramphenicol (DRBC) (Merck, Darmstadt, Germany) and
CHRomagar Candida™ agar plates (BBL International Inc., London, UK). All the plates
were incubated for 48 h at 30 ◦C. Colony counts were performed on individual plates.
Representative yeast colonies were selected and grouped by morphotype, isolated, and
conserved using Saboraud Dextrose Agar (Merck) immersed in sterile mineral oil and
cryopreserved in glycerol 30% (v/v). A macroscopic evaluation of colonies was performed
with a stereoscope (Celestron Lab’s S10-60 Stereo, Celestron, LLC, Torrance, CA, USA)
taking account of the shape, edge, surface, appearance, elevation, brightness, and con-
sistency. All the yeasts were evaluated for sugar assimilation using the API 20C AUX
system (BioMérieux, Marcy l’Etoile, France) according to the manufacturer’s instructions.
Several carbohydrates were evaluated, including D-Glucose, Glycerol, 2-keto-Gluconate cal-
cium, L-Arabinose, D-Xylose, Adonitol, Xylitol, D-Galactose, Inositol, D-Sorbitol, Methyl-
D-Glucopyranoside, N-Acetyl-Glucosamine, D-Lactose (Bovine), D-Maltose, D-Sucrose,
D-Trehalose, D-Melezitose and D-Raffinose [28]. The galleries were incubated at 30 ◦C for
72 h in an airtight box containing a small volume of water to create a humid atmosphere.

www.4UMaps.com
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The observation of yeast growth was considered positive. The negative control contained
no carbon source, and the positive control contained glucose. The carbohydrate assimi-
lation profile obtained for each tested isolate was interpreted using ApiwebTM software
(BioMérieux, reference: 40011).

2.3. Molecular Identification

For DNA extraction, each yeast liquid culture was centrifuged for 2 min at 12,000× g
and the supernatant was discarded. DNA was extracted using Kit GeneJet (Thermo Fisher,
Waltham, MA, USA) and resuspended in 50 µL of TE (10 mM Tris, 1 mM EDTA, pH 7.4).
DNA was visualized on a 1% (w/v) agarose gel and its concentration and purity were
determined using a Nanodrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA,
USA). The ITS1-5.8-S-ITS2 (Internal transcribed spacer, ITS) and D1/D2 domain of the large
subunit of the ribosome (LSU) regions were amplified using the polymerase chain reaction
(PCR) procedure in a final volume of 25 µL. A total of 5 µL of genomic DNA (approximately
1 ng/µL) was taken and resuspended in 20 µL of the PCR mixture comprising 0.4 µL
primer Forward 20 pmol/µL, 0.4 µL primer Reverse 20 pmol/uL, 1 µL 1 mM dNTPs,
1.5 mL MgCl2 50 mM 0.2 µL sterile milli-Q H2O, 0.6 µL dimethyl sulfoxide (DMSO), 0.2 µL
of Taq Polymerase (5 U/µL) (Bioline, London, United Kingdom), and 2.5 µL of 10X Buffer.
We used ITS5/ITS4 primers for the ITS region and NL1/NL4 primers for the LSU region.
PCR products were analyzed using 1.5% (w/v) agarose gel electrophoresis in 1X TAE
buffer (tris base, acetic acid, EDTA, distilled water), and run at 100 V for 1 h. To visualize
band migration, the gel was stained with SybrGreen (LONZA) and observed under UV
light. A 100-bp or 1-kb ladder (Gibco BRL, Burlington, ON, Canada) was used to estimate
amplicon size. Amplification products were purified and sequenced on an ABI 3130 Genetic
Analyzer (Applied Biosystems, Waltham, MA, USA) at CorpoGen company. Subsequently,
the sequences were edited, assembled, and compared in Genbank and Mycobank databases
using the Basic Local Alignment Search Tool (BLAST) algorithm. A 98.41% or 99.5%
threshold was used for identification at the taxonomic level of species for ITS and LSU,
respectively [29].

2.4. Antifungal Susceptibility Tests to Fluconazole and Amphotericin B

The antifungal susceptibility test was performed using the broth microdilution tech-
nique, following the M27-A3 guidelines from the Clinical and Laboratory Standards In-
stitute (CLSI) [30]. Amphotericin B (AMPB, Sigma Chemical Co., St. Louis, MO, USA)
was dissolved in dimethyl sulfoxide and fluconazole (FCZ, Pfizer Central Research) was
suspended in sterile water. Microtiter plates with 96 round-bottom wells were prepared
with a range of final concentrations from 0.03 to 16 µg/mL for Amphotericin B and from
0.125 to 64 µg/mL for FCZ. Serial two-fold dilutions of the various drugs were prepared
in RPMI 1640 medium (with L-glutamine, without bicarbonate; Sigma Chemical Co.) and
buffered to pH 7.0 using 0.165 M [N-morpholino]propane-sulfonic acid solution (MOPS;
Sigma Chemical Co.). The yeast suspension was made at a McFarland concentration of 0.5
(adjusted to final concentrations of approx. 2.5 × 103 CFU/mL). The inoculated plates were
incubated for 24–48 h at 35 ◦C. Strains C. krusei ATCC 6258 and C. parapsilosis ATCC 22,019
were used as controls to detect any abnormalities and deactivation of the antifungal. To
determine the MIC, the concentration that produced a reduction in yeast growth of ≥50%
compared to control growth without FCZ and total absence of growth for AMPB after 48 h
of incubation was considered. Interpretations of the results were based on breakpoints
provided by M57S and M27M44S of CLSI [30,31]. Isolates were classified as sensitive (S),
dose-dependent sensitive (DDS), and resistant (R).

2.5. Analysis of Physico-Chemical Parameters and Heavy Metals

Physico-chemical parameter analyses (temperature, pH, turbidity, and electrical con-
ductivity) were determined in situ using a 350 multi-parameter probe (Merck, Germany).
Water samples were transported on ice to the laboratory to determine salinity, solid parti-
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cles, dissolved oxygen, total phosphorus, and nitrites according to the standard methods
described in the current National Drinking Water Quality Standard (GB5749). The concen-
trations of the seven heavy metals iron (Fe), copper (Cu), lead (Pb), cadmium (Cd), zinc
(Zn), silver (Ag), and chromium (Cr) were determined using a flame atomic absorption
spectrophotometer (Model ZEEnit 700P, Analytik Jena, Germany).

2.6. Statistical Analysis

Correlation tests were performed to investigate the relationship between physico-
chemical parameters, heavy metal concentrations, and fluconazole susceptibility values
for the different yeast species. Principal component analysis (PCA) was performed to
determine patterns and relationships in the data. Data output was provided in the form of
correlation biplots using the packages FactoMineR and ggrepel for R v4.1.1. The correlation
significance level was set at p < 0.05. A comparison between the different sampling points
for each variable was performed using Kolmogorov–Smirnov tests (p < 0.05).

3. Results

Yeast counts were different for each sample when cultured on a DRBC medium. There
were no significant differences in the number of yeasts at each sampling site during the dry
and wet seasons. A higher concentration of yeasts was identified in the intake wastewater
from the “PTAR” WWTP (2.4 × 105 CFU/mL), while the Melendez River had a lower
concentration (<1.0 × 103 CFU/mL). The “Puerto Mallarino” DWTP and South Channel
presented intermediate concentrations of yeasts (7.7× 104 CFU/mL and 3.6× 104 CFU/mL,
respectively). In the present study, we recorded a total of 73 yeast isolates from all sources.
Sixty-eight yeast isolates were identified, belonging to 14 genera and 21 species; five isolates
were not identified (Table S1). The genus Candida represented most of the yeast isolates. It
was interesting that elevated levels of species belonging to Candida (8 × 103 CFU/mL) were
also determined in the samples from the “PTAR” WWTP. Chromagar Candida medium
showed colonies of three morphotypes: C. albicans, C. tropicalis, and Pichia kudriavzevii (syn.
C. krusei). Among the yeast species identified, Rhodotorula mucilaginosa (13.7%), Candida
sp. 1 (8.2%), and C. tropicalis (8.2%) were the most frequent (Table S1, Figure 2). However,
several isolates were not identifiable to the taxonomic level of species according to the
criterium established by Vu et al. [29] using sequence analysis. In this sense, six strains
marked as Candida sp. 1 were closely related to C. intermedia, while the strain Candida sp.
P46 (Candida sp. 2) was closely related to C. pseudolambica. The strain Naganishia sp. PM20
was related to N. diffluens and two strains of the genus Pichia were related to P. fermentans,
with 94.87% of sequence identity compared to the type strain of the species.

The antifungal susceptibility was assessed in 49 yeast isolates after 24–48 h of growth.
The reading of the appearance of the biomass was carried out with the help of an inverted
mirror. The minimum inhibitory concentration (MIC) breakpoints for FCZ for C. albicans,
C. parapsilosis, and C. tropicalis isolates with MIC ≤ 2 µg/mL were considered susceptible,
those with MIC 4 µg/mL were considered susceptible dose-dependent (DDS), and those
with MIC ≥ 8 µg/mL were considered resistant; C. glabrata isolates with MIC ≤ 32 µg/mL
were considered DDS, while isolates with MIC ≥ 64 µg/mL were considered resistant. All
P. kudriavzevii (C. krusei) and Rh. mucilaginosa isolates were considered resistant regardless
of the MIC value. In the case of amphotericin B, yeasts with an epidemiological cutoff value
MIC ≤ 2 µg/mL were considered susceptible.

Yeast isolates with sensitivity to FCZ corresponded to 49%, followed by resistant
isolates (32.7%), and dose-dependent sensitive isolates (18.4%). All yeast strains were
sensitive to AMPB (Table 1). Inside each aquatic system, the ratios of susceptibilities were
different for FCZ. In the South Channel, the ratio of sensitivity was higher (59.1%) compared
to other susceptibilities, with the least resistance to FCZ (27.3%). On the other hand, the ratio
of sensitivity from the “Puerto Mallarino” DWTP was 36.4% and the percentage of resistant
yeasts was 36.4%. This resistant ratio was similar at the “PTAR” WWTP (35.7%). We found
variations in sensitivity to FCZ among C. tropicalis isolates according to the site sampled; for
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example, at South Channel, there were sensitive and DDS strains, but at “PTAR” WWTP we
found sensitive and resistant strains (i.e., P4). A similar trend was observed for C. albicans.
For example, strains CS55 (South Channel) and P1 (WWTP) showed an MIC of 64 and
8 µg/mL, respectively. However, strains P13B (WWTP) and PM22 (DWTP) were DDS and
sensitive, respectively, suggesting variability among populations of this species.
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ND = not determined.

Table 1. Minimal inhibitory concentrations (MIC) of yeasts associated with water systems in Cali
against Fluconazole (FCZ) and Amphotericin B (AMPB).

Strain Species Susceptibility to
Fluconazole FCZ MIC (µg/mL) AMPB MIC (µg/mL)

CS11 Rh. paludigena Sensitive 2 2

CS14 ND Sensitive 2 2

CS15 V. humicola Sensitive 0.5 0.25

CS16 C. parapsilosis Sensitive 2 0.5

CS17 D. catenulata Sensitive 0.5 1

CS18 D. catenulata Sensitive 0.5 0.5

CS19 C. tropicalis DDS 4 2

CS1A C. glabrata DDS 4 0.5

CS1B Rh. mucilaginosa Resistant * 1 2

CS21 P. fermentans DDS 4 2

CS22 ND Sensitive 0.25 2

CS23 Cr. neoformans Sensitive 0.125 2

CS24A Cr. neoformans Sensitive 2 1

CS4 T. mucoides Sensitive 2 2
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Table 1. Cont.

Strain Species Susceptibility to
Fluconazole FCZ MIC (µg/mL) AMPB MIC (µg/mL)

CS45 P. kluyveri Sensitive 0.5 0.5

CS51A D. catenulata Resistant 8 2

CS51B C. tropicalis Resistant 16 2

CS55 C. albicans Resistant 64 2

CS7 C. tropicalis Sensitive 1 2

CS7B G. candidum Resistant 2 2

CS7C ND Resistant 64 2

CS9 Candida sp. 1 Sensitive 0.25 1

M2 ND Sensitive 2 2

M12 ND Resistant 64 2

P1 C. albicans Resistant 8 1

P13B C. albicans DDS 4 1

P14 C. aaseri Sensitive 0.5 0.5

P16A C. tropicalis Sensitive 2 2

P16B P. laurentii Sensitive 0.5 2

P20A D. hansenii DDS 4 2

P22 P. kudriavzevii (C. krusei) Resistant * 4 1

P24A D. hansenii Resistant 64 0.5

P24B Rh. mucilaginosa Resistant 64 2

P3 S. cerevisiae DDS 4 2

P3A Hanseniaspora
pseudoguilliermondii Sensitive 1 2

P4 C. tropicalis Resistant 64 0.5

P46 Candida sp. 2 Sensitive 0.25 2

P9A P. fermentans Sensitive 2 2

PM14 G. candidum Sensitive 0.5 1

PM15 Pichia sp. DDS 4 2

PM18 T. coremiiforme Sensitive 2 0.5

PM19 P. fermentans DDS 4 2

PM20 Naganishia sp. Sensitive 0.125 2

PM22 C. albicans Sensitive 0.5 2

PM24 Candida sp. 1 DDS 4 2

PM4A T. mucoides Resistant 8 2

PM4B P. laurentii Resistant 16 2

PM54 Candida sp. 1 Resistant 64 0.5

PM54A C. parapsilosis Resistant 16 2

* Due to intrinsic resistance, these strains were marked as resistant, despite the observed MIC. Yeast strains labeled
with “CS” were isolated from the South Channel, Navarro; yeast strains labeled with “P” were isolated from
the “PTAR” WWTP; yeast strains labeled with “PM” were isolated from the “Puerto Mallarino” DWTP, Cauca
River; and yeast strains labeled with “M” were isolated from the Melendez River. ND: not determined. DDS:
dose-dependent Sensitive.
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In the present study, PCA was used to establish associations between physico-chemical
parameters, the concentrations of heavy metals, and yeast levels from different sampling
sites. Table 2 shows the correlation between heavy metals and physico-chemical parameters
of water samples and the MIC of FCZ-resistant yeasts. High correlation values (R2 > 0.5,
p < 0.05) were obtained for the ratio of iron to T. mucoides and D. catenulate; zinc to C.
parapsilosis and D. catenulata; iron to C. parapsilosis; Cd to C. albicans, Rh. mucilaginosa, and
Candida sp 1; phosphates to D. hansenii; nitrates to Rh. mucilaginosa; pH to C. tropicalis and
D. hansenii; conductivity to C. parapsilosis; and temperature to C. parapsilosis and C. albicans.
Figure 3 depicts the distribution of the physico-chemical parameters and heavy metal
concentration variables formed by the first two axes, which explained 81.0% of the total
variance. A positive association was observed between yeast levels with total dissolved
solids and nitrate levels in the WWTP, and with conductivity in the South Channel. The
correlation between the levels of antifungal-resistant yeasts and the presence of heavy
metals varied between the sampling sites. Yeast levels of C. albicans, C. parapsilosis, Candida
sp. 1, P. fermentans, T. coremiiforme, P. laurentii, and G. candidum were influenced by the
presence of Pb in the “Puerto Mallarino” DWTP. Furthermore, C. albicans, C. tropicalis, C.
krusei, C. aaseri, Candida sp. 2, P. fermentans, S. cerevisiae, P. laurentii, and D. hansenii were
influenced by Cr in the “PTAR” WWTP. Finally, C. parapsilosis, C. tropicalis, C. krusei, C.
albicans, Candida sp. 1, P. fermentans, D. catenulata, Rh. mucilaginosa, Cr. neoformans, V.
humicola, and G. candidum were influenced by Zn and Cu in the South Channel. We also
found significant correlations between specific heavy metals and some specific fluconazole-
resistant yeast species.

Table 2. Correlations between physico-chemical parameters, metal concentrations, and MIC of
fluconazole-resistant yeasts.

Heavy
Metals/

Parameters
Cp Ct Ca Pk Rhm Tm Gc Dh Pl Dc Csp1

Fe 0.469 0.090 0.251 0.192 −0.816 0.543 0.352 −0.135 0.406 0.816 0.333
Ag 0.020 0.404 0.249 0.095 0.000 −0.089 −0.027 0.456 −0.188 −0.816 0.333
Zn 0.506 0.269 0.470 0.095 −0.816 −0.134 0.027 0.026 0.295 0.816 −0.333
Cu 0.506 0.000 0.249 0.190 −0.816 −0.134 0.188 −0.134 0.188 −0.816 −0.666
Cd −0.292 −0.324 0.805 0.024 0.816 0.208 0.000 −0.194 −0.388 −0.816 0.912
Cr −0.179 0.173 0.000 0.079 0.500 −0.198 −0.208 0.505 −0.148 −1.000 −0.182
Pb −0.066 0.172 0.331 0.239 0.000 0.172 0.147 0.000 −0.147 0.000 0.333
Mg 0.303 0.224 0.359 0.190 −0.816 −0.044 0.080 0.080 0.134 0.000 −0.333
TP 0.060 0.449 0.304 −0.047 0.000 −0.269 −0.241 0.510 −0.134 −0.816 0.000

Turbidity 0.263 0.224 0.359 0.191 −0.816 0.000 0.080 0.080 0.080 0.000 0.000
TDS 0.183 −0.022 −0.700 −0.024 −0.816 −0.135 −0.027 −0.054 0.135 0.000 −0.666

Nitrate −0.060 −0.045 −0.415 −0.429 0.816 −0.674 −0.403 0.134 −0.188 −0.816 −1.000
NT 0.101 0.314 0.304 0.000 −0.816 0.000 −0.134 0.241 0.026 0.000 0.333
pH 0.067 0.522 0.464 0.237 0.000 −0.124 0.029 0.534 0.029 0.000 −0.235

COND 0.604 0.074 0.402 0.342 −0.816 0.322 0.386 −0.178 0.326 0.000 −0.235
TEMP 0.469 0.372 0.526 0.289 −0.816 0.024 0.207 0.178 0.148 0.000 −0.235

Cp: Candida parapsilosis, Ct: C. tropicalis, Ca: C. albicans, Rhm: Rhodotorula mucilaginosa, Pk: Pichia kudriavzevii (C.
krusei), Tm: Trichosporon mucoides, Gc: Geotrichum candidum, Dh: Debaryomyces hansenii, Pl: Papiliotrema laurentii,
Dc: Diutina catenulata, Csp1: Candida sp. 1. TP = total phosphorus, TDS = total dissolved solids, NH4 = nitrate,
TN = total nitrogen, COND = conductivity, TEMP = temperature. The values in bold present a statistically
significant (p < 0.05) positive or negative correlation between variables.
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4. Discussion

Aquatic environments can become polluted because of various anthropogenic activi-
ties, such as agricultural, industrial, and medical waste production, the expansion of urban
communities without adequate sanitation infrastructure, and poor wastewater manage-
ment [1,10,12]. One of the main indicators of water quality is microorganisms, the main
concern being water intended for human consumption and recreational activities, without
neglecting surface water, groundwater, and wastewater [32]. Some studies have indicated
that the increased contamination of aquatic environments was significantly positively cor-
related with the relative abundance of yeasts; however, few studies have been conducted
to assess the quality of aquatic ecosystems contaminated with yeasts [33,34]. In this study,
yeasts were detected at all sampling sites, including the intake of the “Puerto Mallarino”
DWTP. At this plant, the order of the process carried out to treat the water is as follows:
collection, sand removal, application of activated carbon, pre-chlorination, coagulation,
flocculation, sedimentation, and filtration. In addition, there is post-chlorination and chem-
ical stabilization with lime. However, the use of chlorine alone does not guarantee the
absence of pathogenic fungi in drinking or recreational water. In fact, Ma et al. showed that
there were non-significant changes in fungal community structure observed before and
after the initiation of treatment of a hospital hot water system treated with monochloramine
in situ [35].

This DWTP follows the parameters established in Colombia, according to decree 1575
of 2007 [36] and resolution 2115 of 2007 [37], that determine the physico-chemical and
microbiological quality control of drinking water. The physico-chemical analysis includes
the parameters of pH, color, turbidity, nitrate, fluoride, and residual chlorine, among others.
Microbiological standards include the absence of pathogenic microorganisms and fecal
bacteria (Escherichia coli and Enterococcus spp.), and the determination of the presence of
Giardia sp. and Cryptosporidium spp. It should be noted that fungi are not included as
potential water contaminants in these documents. The possible reasons for this may be the
lack of knowledge of the fungal load in the water, the use of divergent culture methods,
the heterogeneous mechanisms of pathogenicity of the fungi, and, consequently, the low
number of reports connecting the presence of fungi in the tap water and the appearance
of diseases in humans as stated by Kauffmann-Lacroix et al. [38]. Our results suggest
that regulations about microbiological procedures should be updated and yeast counting
included in routine analyses.

The number of yeasts was significantly higher in the “PTAR” WWTP than Melendez
River. The variability of microbial counts found in the present study could be explained by
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the different levels of water quality of these environments, as they receive different kinds
and levels of pollutants in the form of wastewater, industrial effluents, and others. How-
ever, the number of heterotrophic yeasts in the Melendez River (1.0 × 103 CFU/mL) was
higher than that reported in other rivers around the world, such as Rio Doce, Brazil
(from 10 to 466 CFU/mL) [9], some rivers in South Africa (Mooi River (from 0.5 to
9 CFU/mL) [11] and Eersterivier River catchment (1.0 × 102 CFU/mL)) [39], the River
Danube in the area of Bratislava (100–210 CFU/mL) [40], and a lake in Patagonia, Argentina
(22–141 CFU/mL) [41]. However, at the Tagus estuary, Portugal, a higher level of yeasts
was reported (5.3–3272 CFU/mL) [42]. We highlight that the threshold of environmental
quality in the eutrophic ecosystem was above 1.0 CFU/mL) [33].

An important aspect was the isolation of C. albicans, C. krusei, and C. parapsilosis,
which are related to a high burden of fungal infections in the healthcare environment in
Colombia [21]. The highest number of the genus Candida (8 × 103 CFU/mL) was counted
at the “PTAR” WWTP. Our results were consistent with the findings of Assress et al. [12],
who also found that Candida spp. were the principal species in WWTPs in Gauteng, South
Africa. The results demonstrated the attractiveness of using yeasts as a microbiological
indicator of organic pollution in aquatic ecosystems [12]. Regarding pigmented yeasts, we
found only yeasts from the genus Rhodotorula, with high carotenoid production in almost all
isolates [26]. Rh. mucilaginosa was found only at the “PTAR” WWTP and the South Channel
in high numbers. These yeasts are associated with skin diseases, and mucosal and invasive
fungal infections, especially in immunosuppressed patients, and they present a special
metabolic activity in highly eutrophicated waters or severely contaminated municipal
wastewaters, which is indicative of their association with anthropogenic activity [43].
Studies on the evaluation of the risk of infection by different species of environmental
yeasts has been little described in Colombia. For example, Rhodotorula spp. have been
isolated from the nails of patients with superficial mycosis in Antioquia, Colombia [44].
Cr. neoformans is mainly associated with the droppings of various bird species, especially
pigeons, but is also isolated from bark, tree trunk hollows, and decaying wood [45], and has
been reported in wastewater in previous studies [46]. Cr. neoformans causes opportunistic
infections that usually affect the central nervous system of generally immunosuppressed
patients, with high mortality in patients who do not receive treatment [47]. In Colombia, the
main challenge to treat infections caused by this yeast is resistance to fluconazole [48]. M.
guilliermondii is a globally distributed opportunistic pathogen that lives in various habitats.
It exists on human skin and in the surface microbiota of mucous membranes. It can cause
serious fungal infections such as candidemia [49]. It is a yeast considered a promising
species in the field of biotechnology, especially in the biocontrol of moldy bacteria during
the storage of fruits and vegetables [50]. The presence of these yeasts is understandable,
since city wastewater effluents containing antimicrobials, antimicrobial resistance-carrying
microbes, and antimicrobial resistance genes are discharged at these two sites. Among the
most reported opportunistic yeasts we found M. guilliermondii, C. lusitaniae, C. tropicalis, P.
laurentii, Rh. glutinis, and Rh. mucilaginosa in surface waters [11,39].

The main fungal pathogens in humans are Candida species, which develop resistance
to triazoles and echinocandins. However, resistance to AMPB (Polyene) is extremely
rare, despite its use for more than 60 years as a monotherapy, mainly for invasive fungal
infections [51,52]. For this reason, it is interesting to know whether amphotericin B-resistant
yeast strains can be found in the environment. The results obtained with the MIC assay
showed that all strains of the different yeast species (including Candida species) were found
to be sensitive to AMPB, with values at or below 2 µg/mL, confirming that resistance to this
antifungal is rare in the assessed yeasts, and suggesting a low interaction of this antifungal
with yeast communities in this location. This was not the case for FCZ, where 32.7% of
yeast species were resistant to FCZ. These results were consistent with results obtained
in previous studies focusing on the isolation of antifungal-resistant environmental yeast.
Brilhante et al. reported azole resistance in Candida spp. isolated from Catú Lake, Ceará,
Brazil in a high number [53]. Similarly, Medeiros et al. reported in 2008 that 50% of the
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yeasts isolated from water samples of the lakes and rivers of the Rio Doce, Brazil showed
resistance to itraconazole and less resistance to FCZ [54]. However, an evaluation carried
out in 2012 showed significant growth of yeast resistant to FCZ [9]. The yeasts isolated at
the South Channel (Navarro) showed the highest percentage of resistance (37.5%) to FCZ,
possibly associated with the high load of contaminants that this canal receives along the
south of the city.

Table 1 illustrates the pathogenic species C. tropicalis, C. albicans, C. parapsilosis, D.
catelunata, Rh. mucilaginosa, and D. hansenii, showing the highest MIC values to FCZ
(64 µg/mL). Similarly, antifungal resistance to FCZ has been reported in Candida species
from tropical freshwater environments in Brazil and China [9,53–55]. The presence of
environmental yeasts with high resistance to FCZ is probably due to the fact that this
azole is the most widely used antifungal in humans and animals, and it is among the most
reported drugs in hospital and home wastewater [56,57]. In addition, there are fungicides
routinely used in agriculture that share the action mechanism of azoles, which can generate
cross-resistance in yeasts found in these aquatic environments [56–58]. In Asia, some
studies reported a significant increase in resistant C. tropicalis isolated from poultry, and this
has been associated with the extensive use of azoles in agriculture [56,59,60]. Brilhante et al.
suggested that azole resistance in the Candida strains recovered from aquatic environments
would be influenced by the activity of efflux pumps [53]. Several chemical compounds
present in the environment, when interacting with microorganisms, would trigger the
expression of genes that lead to these efflux pumps or other proteins involved in resistance
to antifungals [56–58].

Rhodotorula, Candida, Pichia, and Trichosporon are yeasts typical of strongly eutrophic
waters [61], and their presence indicates that aquatic systems are significantly polluted by
industrial and municipal wastewater, where they are able to metabolize aromatic substances
and heavy metals and have been considered as good indicators of pollution [1,8,33,62]. It is
not surprising to find these yeasts in the environment; however, in a report by the WHO,
which included a list of fungal priority pathogens, it recommended carrying out this type
of study in order to provide epidemiological data that allow the establishment of local
priorities in relation to the dynamics of fungal pathogens and the prevalence of resistance
to reduce the impact of drug resistance worldwide [63].

The yeast species compositions in the aquatic systems studied were dissimilar and
were conditioned by the type of water, but also by the processing conditions. Yeast culture
is an effective way to study their diversity, as many more yeast species, especially some
possible new species, were recorded and isolated using the culture method. We found
an association between yeast levels with certain physico-chemical parameters, such as
total dissolved solids, levels of nitrites, and conductivity in the “PTAR” WWTP and South
Channel. These results can be explained by the high load of waste that these two places
receive, especially due to domestic discharges and agricultural activities that cause an
increase in the concentration of organic matter and salts that come from fertilizers. Bafico
demonstrated in his study that pollution from urban sources strongly influences the peri-
phytic community structure and dynamics of Lake Nahuel Huapi (Patagonia, Argentina),
with greater biomass and cell densities at highly contaminated sites [41,64]. In addition, the
highest number of fluconazole-resistant yeast isolates was detected at these two sites (31.3%
and 37.5%, respectively). The observed spatial variation could be attributed to site-specific
anthropogenic activities, such as eutrophication, the influx of domestic and industrial
waste, and run-off from agricultural settings. Effluents from the Melendez River, rainwater
at the South Channel (Navarro), and the WWTP (PTAR) discharge into the Cauca River. In
addition, the vicinity of the river presents different levels of human interactions (e.g., illegal
mining, steel making, informal settlements, sewage and raw pharmaceuticals discharge,
and poultry, agricultural, and industrial waste), which influence yeast counts and the
species present, and the activation or acquisition of antifungal resistance mechanisms.

The yeast count obtained during the dry and wet season did not present significant
differences at each sampling site, with the reported number corresponding to the average
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of the two sampling moments. Colombia, being a tropical country, experiences changes in
climatic conditions that are conditioned by two phenomena, the “La Niña” phenomenon
(there can be rain all year with some sunny days) and the “El Niño” phenomenon (there
can be dry days all year with some rainy days). This means that temperature and relative
humidity conditions each year are not very variable. Precipitation in January and May
2018 was 50–100 mm and 100–150 mm, respectively, with average temperatures for the two
months between 20 and 28 ◦C [65]. The yeast count obtained during the dry and wet season
did not present significant differences at each sampling site, with the reported number
corresponding to the average of the two sampling moments. For this reason, the data
from the two sampling moments were averaged. The results differed from those found
by Steffen et al., who found significant differences in site-specific yeast concentrations in
the dry summer months, when concentrations increased significantly during the rainy
months [39], and from the results of Ortíz-Vera et al., who found greater differences in
community composition (relative abundance of fungal phyla) in the dry than in the rainy
season [66].

On the other hand, heavy metal pollution in aquatic systems is a global problem
originating from increased industrialization and urbanization, since they are accumula-
tive, toxic, and carcinogenic in water bodies and biota. As seen from the result of the
PCA, there was a significantly positive correlation between levels of Candida spp., P. fer-
mentans, among others, and heavy metals, especially Cr, Zn, Cu, and Pb. There is little
open literature on the effect of metal levels on the diversity and structure of the fungal
community in aquatic environments. Assress et al. found that the distribution of classes
such as Pezizomycetes, Lecanoromycetes, Agaricostilbomycetes, Schizosaccharomycetes, and Doth-
ideomycetes was influenced by Mg and Zn concentrations [12]. Meanwhile, members of
classes Eurotiomycetes, Exobasidiomycetes, Orbiliomycetes, Glomeromycetes, Saccharomycetes and
Leotiomycetes were correlated with Ni and Mn levels, and Fe was the main environmental
parameter influencing the fungal community belonging to classes Agaricomycetes, Pucchino-
mycetes, Atractiellomycetes, Sordariomycetes, and Archaeorhizomycetes in WWTPs located in
Gauteng Province, South Africa.

Some studies have shown that the content of organic matter, calcium, and amorphous
phase can increase the sensitivity to heavy metal contamination and the persistence of
organic pollutants in different matrices (water, air, and soil), and interfere or inhibit some
enzymes and metabolic processes [67].

It is also established that the organic matter content is known to positively influence
the cation exchange capacity, buffering capacity, and retention of heavy metals; for example,
some physico-chemical factors, such as pH and oxidation reduction potential, can influence
the increased toxicity and genotoxicity of some yeasts to heavy metals [68,69].

It has been shown that the presence of heavy metals in aquatic environments influences
the structure of bacterial communities resistant to antibiotics and the permanence over long
periods of time of genes resistant to antibiotics by forming stable complexes of antibiotics
and metal ions [70]. Dickinson et al. demonstrated the co-selection of heavy metals and
antibiotics in the environment [71]. The prevalence and persistence of resistant genes to
antibiotics and heavy metals have been demonstrated in WWTPs [72]. High levels of
antibiotic resistant genes are reported to be related to high concentrations of Cr [73], Hg,
and Zn [74]. Rajasekar et al. found that Cd, Pb, and Cu had a significant positive correlation
with the sul2 and strB genes, conferring resistance to sulfonamides and streptomycin,
respectively [75]. This would explain the results of our study, where it was found that Rh.
mucilaginosa, C. albicans, and Candida sp. 1 were positively associated with the presence of
Cd, and D. catelunata was associated with Fe.

Saccharomyces cerevisiae and some pathogenic yeasts, such as C. glabrata and C. albicans,
have been reported to have ATP-binding cassette (ABC) transporters, which have evolved
to play critical roles in adapting to environmental challenges such as heavy metal stress
and multidrug resistance (PDR). For example, Yap1, Yap2, and Yap8 transporters regulate
the response to oxidative and heavy metal stress by inducing the expression of the yeast
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activator protein YCF1, the pleiotropic drug resistance elements PDR5, and the multidrug
transporter involved in multidrug resistance and singlet oxygen species resistance (SNQ2)
in response to a variety of toxic metals. Yeast ABC transporters play an important role
in plasma membrane homeostasis, the site of action of antifungals, such as polyenes and
azoles, and are involved in resistance to different drugs, which could explain the correlation
between the presence of some heavy metals and the susceptibility to fluconazole of some
yeasts isolated in this study [76,77]. In relation to the presence of heavy metals in soils,
Suillus luteus uses different mechanisms, such as the exclusion and regulation of heavy
metals through transporters located in the cell membrane and chelating agents, which are
released to the outside of the cell wall, through storage, and the trapped ions are stored
or transported in vesicles and expelled from the cells, in the same way that oxidizing
agents relieve oxidative stress caused by reactive oxygen species through reducing agents
such as cytochromes p450 (CYP450) [78]. CYP450 exists in a large number of organisms,
including bacteria, fungi, and mammals, catalyzing a variety of oxidation reactions that
allow the detoxification of xenobiotics, such as heavy metals, the metabolism of drugs,
such as antifungals, and the biosynthesis of steroids, such as ergosterol [79]. One of
these antifungals, fluconazole, acts on ergosterol biosynthesis in fungal cells by inhibiting
a CYP450-dependent fungal enzyme, lanosterol 14α-sterol demethylase. Resistance to
fluconazole can occur through the increased expression of the ERG11 gene encoding the
drug target enzyme, sterol 14α-demethylase (Erg11p), or by mutations in Erg11p that result
in a reduced affinity for fluconazole and an overexpression of efflux pumps that transport
fluconazole out of the cell [80].

However, more extensive studies are needed to determine the influence of physico-
chemical parameters, heavy metals, and other contaminating compounds in yeasts resistant
to Cd antifungals in water systems.

5. Study Limitations

Our study was based on cultivated yeasts, which limited the diversity analysis, so
it will be important in subsequent studies to carry out metagenomic shotgun and meta-
transcriptome experiments that would allow us to further explore the mycodiversity and
functional genes that are being expressed in water systems.

It is also important to include other antifungals in the antimicrobial susceptibility
analysis, and to perform an evaluation of the virulence profile, such as the production of
hydrolytic enzymes, and the adhesion capacity and formation of biofilms, which would
allow us to clarify the possible route of transmission of these pathogens to humans.

6. Conclusions

We found opportunistic yeast pathogens, such as strain-specific azole-resistant C.
albicans, C. parapsilosis, C. tropicalis, and Candida sp. 1 (closely related to C. intermedia), in
different aquatic environments, including a WWTP and DWTP. Melendez River was an
exception. These results are disturbing since this drug is frequently used as a prophylactic
treatment in HIV-positive patients. We emphasized the importance of carrying out studies
focusing on the isolation of antifungal-resistant environmental yeasts to investigate their
participation in the deterioration of aquatic environments.

The results of the correlation analysis showed a general spatial variation In the charac-
teristics of the wastewater samples. Yeast counts and some species considered opportunistic
pathogens, such as C. albicans, Rh. mucilaginosa, and D. catelunata, showed an association
with parameters and chemical compounds indicative of the presence of sewage or contami-
nated water, which act as selection agents for pathogenic yeasts.

The results indicated that the aquatic systems of the city of Cali are a reservoir of
FCZ-resistant yeasts and a potential source of invasive fungal infections, which is important
for the “One Health” approach, and, like other ecosystem services, these must be protected
and managed in a sustainable manner.
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