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Abstract: The health risk of schoolchildren who were exposed to airborne fine and ultrafine particles
(PM0.1) during the COVID-19 pandemic in the Jambi City (a medium-sized city in Sumatra Island),
Indonesia was examined. A questionnaire survey was used to collect information on schoolchildren
from selected schools and involved information on personal profiles; living conditions; daily activities
and health status. Size-segregated ambient particulate matter (PM) in school environments was
collected over a period of 24 h on weekdays and the weekend. The personal exposure of PM of eight
selected schoolchildren from five schools was evaluated for a 12-h period during the daytime using a
personal air sampler for PM0.1 particles. The schoolchildren spent their time mostly indoors (~88%),
while the remaining ~12% was spent in traveling and outdoor activities. The average exposure level
was 1.5~7.6 times higher than the outdoor level and it was particularly high for the PM0.1 fraction
(4.8~7.6 times). Cooking was shown to be a key parameter that explains such a large increase in the
exposure level. The PM0.1 had the largest total respiratory deposition doses (RDDs), particularly
during light exercise. The high level of PM0.1 exposure by indoor sources potentially associated with
health risks was shown to be important.

Keywords: school environments; personal exposure; ultrafine particles; PM0.1; questionnaire survey

1. Introduction

In modern society, air pollution is one the most challenging problems since it can cause
severe problems not only for the environment but also for human health. This is particularly
true for fine particulate matter (PM2.5), which are particles with an aerodynamic diameter
of less than 2.5 µm [1,2]. Previous epidemiological and toxicological studies on PM2.5 have
reported a wide range of adverse health effects related to the cardiovascular and respiratory
systems, even causing premature mortality [3,4]. Since it is well established that PM2.5 is
one of the leading environmental risk factors in the global burden of disease [5] and that
the smaller the particle the more harmful its effect to human health, the focus of scientific
research in recent years has also begun to shift to tiny particles such as submicron (<1 µm)
and ultrafine particles (<0.1 µm or UFPs) sizes [6].

UFPs, also referred to as airborne nanoparticles or PM0.1, are generated from engi-
neering and combustion processes largely from vehicles, biomass burning, etc. Previous
studies confirm that PM0.1 is very harmful not only due to its size but also due to its
unique physicochemical characteristics [7–14]. PM0.1 can penetrate deeply into the alveolar
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region, then reach the bloodstream before finally being translocated to sensitive areas of the
human body. These particles can also cause oxidative stress, chronic/acute inflammatory
disorders or cancer, even at low concentrations [14–16], particularly in children [17,18].
Since children’s respiratory and immune systems are still developing, and their respiratory
rate is higher than adults, this leads to a higher possible exposure to UFPs [19–21]. Due
to the short and size-dependent lifetime of UFPs, the distribution of these particles in the
atmosphere is extremely nonhomogeneous. Some studies have reported that, the higher
the altitude, the higher the number concentration, which makes estimating the concen-
tration levels rather difficult particularly for estimating health effects on humans [11,22].
Furthermore, personal exposure in the breathing zone (PBZ ~30 cm hemisphere around the
mouth and nose) allows PM0.1 exposure to be better and more accurately evaluated with
respect to actual particle concentration levels and in every microenvironment to which
people are exposed. Hence, monitoring and characterizing data on UFPs have become
critical, particularly in the case of personal exposure for preparation to achieving “a new
normal” of post-COVID-19.

Previous investigations on children’s daily personal exposure to UFPs before the
COVID-19 pandemic have been intensively conducted in European and Australian cities/
countries [23–26], while it has also been studied in Bhutan [27], Ghana [28] and China [29].
These studies have identified the home microenvironment to be the most significant con-
tributor to children’s daily exposure to UFPs, with many factors related, but it is mainly due
to cooking activities [23,24,27–29]. In Southeast Asia (SEA) cities/countries, just one pilot
study currently has been conducted [30], but it has still not given sufficient information
about daily exposure to UFPs, whereas the ambient PM0.1 levels in most SEA countries
were found to be much worse than in Western countries [31], confirming the necessity to
extend investigations in the form of personal exposure. In addition, information concern-
ing exposure to UFPs based on the critical sources and exposure status during pandemic
conditions are needed; in Indonesia, schoolchildren were allowed back to school at the end
of 2021 after spending almost one year online.

Although many previous studies have emphasized the exposure to UFPs in terms of
number and surface area [10,11], information on the actual mass of UFPs or PM0.1 remains
limited due to the limitation of air sampling tools for PM0.1. On the other hand, the mass
concentration is essential for comprehensively understanding the characteristics of UFPs
linked not only to doses and mass, but also chemical components. Studies on mass base
exposure to size-segregated particles down to the PM0.25 level have largely been conducted
on elderly people in the indoor home [32], mail carriers while delivering mail outdoors [33],
and the indoors and outdoors of residential homes [34]. However, personal exposure
to size-segregated particles down to the PM0.1 level is still scarce, particularly regarding
schoolchildren during the COVID-19 pandemic.

Within this context, the objective of this study was to evaluate the exposure to size-
segregated particles down to PM0.1 by targeting junior high school students who live in
different urban settings (urban and suburban) in the medium-sized city of Jambi, Indonesia.
Their health risks are also discussed through their respiratory deposition doses based on
personal PM exposure data. A questionnaire survey was used to collect information on
schoolchildren from selected schools and included collecting information such as personal
profiles, living conditions, daily activities and health status. Size-segregated ambient
particles at selected locations in school environments (five schools) were collected for a
24-h period, while the personal exposure of PM to 40 selected schoolchildren from those
schools was evaluated during the daytime using a personal air sampler capable of collecting
PM0.1 particles.

2. Materials and Methods
2.1. Site Locations and Characteristics

Five public schools in Jambi City, located in Sumatra Island, Indonesia, were selected
as target sites for the present study (Figure 1). Jambi City is the capital city of Jambi
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Province, with a total population of 606,200 people in an area of 205.4 km2 [35]. As shown
by the authors [36], the air pollution in the urban area of Jambi City is strongly affected
by road vehicles. In addition, from July to October, peatland fires become a key factor
concerning air pollution since Jambi City is surrounded by large peatland areas [37]. It also
has a significant impact on cross-border pollution in other countries, including Singapore,
Malaysia, Southern Thailand, Brunei and the Philippines [38–40]. This, however, drastically
dropped during the COVID-19 pandemic in the past two years [41].
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In Jambi City, there were 26,998 schoolchildren aged 12 to 15, who were educated in
73 junior high schools, which included 26 public and 47 private institutions [42]. Thus,
five public schools located on prominent roadsides (RS) with a larger student population
than private schools were chosen; three in the urban area (U1, U2 and U3) and two in the
suburban area (SU1 and SU2) (Figure 1). Medium-sized cities in Indonesia are generally
inter-connected with other cities so that there is a large difference in traffic characteristics
between urban areas (the central part of a city) and suburban areas (the outer areas of the
city). This may cause a large difference in micro-environments from the PM pollution point
of view. Since contributions of each micro-environment experienced by participants to
personal exposure is a key issue of this study, different school environments were selected
based on different categories, i.e., a central city area, an urban area and a suburban area.

2.2. Questionnaire for Schoolchildren’s Characteristics and Behaviors

A questionnaire survey was conducted to collect information on schoolchildren from
the selected schools and included personal information and daily activities via Google
Forms (https://forms.gle/DK31RnwKfLcmposV7, accessed on 23 March 2022). Living
conditions, daily activities and health status were then analyzed. The questionnaire was
administered to a total of 719 children (U1: 12.2%, U2: 21.7%, U3: 33.1%, SU1: 21.7%, and
SU2: 11.3%) aged 12–15 years, consisting of 276 males (38.4%) and 443 females (61.6%),
where the female ratio was slightly larger than that of schoolchildren overall (~50%). Health
outcomes other than respiratory symptoms, e.g., via spirometry tests, were not evaluated
in the present study in order to have minimum contact with participants and others under
the COVID-19 pandemic conditions.

2.3. Air Sampling in School Environments

Size-segregated ambient PM at selected locations in school environments were col-
lected for 24 h. At two locations, namely, the school gate (SG) and schoolyard (SY), the
sampling was conducted simultaneously and repeated three times on weekdays and once

https://forms.gle/DK31RnwKfLcmposV7
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on the weekend. In urban school 1 (U1), sampling was conducted two times on weekdays
and once on the weekend. Information on the protocol is summarized in Table 1.

Table 1. Description of selected schools and ambient sampling sites in school environments.

Type Total Area
(m2) Site Sampling Description

U1 Urban 5537
SG = 2.8 m to RS Surrounded by hospitals and bank offices, with 71 teachers, 392 male students, and

482 female students.SY = 41.1 m to SG

U2 Urban 4819
SG = 1.3 m to RS Located in the first central business district (CBD) area of Jambi city in a shopping center,

with 57 teachers, 360 male students, and 386 female students.SY = 22.1 m to SG

U3 Urban 4816
SG = 6.5 m to RS Located near to a former bus terminal which was not in operation, with 89 teachers,

505 male students, and 569 female students.SY = 52.3 m to SG

SU1 Suburban 8800
SG = 4.9 m to RS Situated the same as SU2, with 54 teachers, 380 male students, and 396 female students.

The roadside was crowded with light vehicles (LV), private and mass vehicles, as the
inter-provincial highway, but buses and trucks did not pass in this way.SY = 35.3 m to SG

SU2 Suburban 13,141 SG = 3.0 m to RS Located near a roadside used as people and logistic goods transportation to other
provinces, with 52 teachers, 358 male students, and 337 female students.SY = 51.6 m to SG

A cascade impactor that was devised using inertial filter technology [43] was used for
the air sampling. The air sampler is herein referred as “Ambient Nano-Sampler (ANS)”
(Figure 2a). The ANS consists of four impactor stages (PM>10, PM10–2.5, PM2.5–1.0, PM1.0–0.5),
an inertial filter (IF) stage (PM0.5–0.1) and a backup filter (PM<0.1) located downstream of
the inertial filter stage [44]. It was operated at an airflow rate of 40 L min−1. Two sets
of ANS were simultaneously run for 24 h at the SG and SY. Quartz fibrous filters (QFF)
(2500 QAT-UP, Pall Corp., New York, USA) with a diameter of 55 mm were used in all
impactor and backup filter stages after a pre-treatment procedure described below. The
IF stage consisted of a cartridge with a circular nozzle of Ø 5.25 mm containing webbed
stainless-steel fibers (fiber diameter, df = 9.8 µm, Nippon Seisen Co. Ltd., Osaka, Japan, felt
type, SUS-316) of designed total weight that was packed uniformly.
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2.4. Evaluation of Personal Exposure

The personal exposure of schoolchildren to PM was evaluated using a personal air
sampler capable of collecting PM0.1 particles. The personal exposure near the breathing
zone of each participant was evaluated for 12 h during the daytime. The measurements
were designed to start at 7:30 in the morning before the participants traveled to each school
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and were continued until 7:30 p.m. Eight participants were selected from each school
(total 8 × 5 = 40 participants). The participants also answered survey questions while
providing written informed consent. They were requested to behave normally and to fill
out the time activity diary (TAD) for each 15-min time slot (e.g., 07:00–07:15, 07:15–07:30,
07:30–07:45, etc.).

The participants who were able to complete the measurements numbered 34 and
comprised nine boys and 25 girls, i.e., five (U1), eight (U2), six (U3), eight (SU1), and seven
(SU2) (details in Table S1). Four students could not complete the sampling because the
portable pump had stopped functioning before finishing the sampling, and two others
failed for some other reason.

A personal air sampler shown in Figure 2b was used for the exposure measurements.
The Personal Nano-Sampler (PNS) was developed and revised by Furuuchi et al. (2010)
and Thongyen et al. (2015) [45,46] and is applicable for the evaluation of PM0.1 exposure.
The PNS consists of two impactor stages (PM10 or 2.5/1) and two IF stages (PM0.4–1, PM0.1)
that are configured in line, and a backup filter located downstream of PM0.1 IF. The first
stage of the pre-cut impactor was covered by silicon grease (Dow Corning, 03253589) to a
uniform thickness of around 0.2 mm during each sampling. Teflon-bound glass fiber (TBF)
filters (TX40HI20-WW Pall Corp., New York, NY, USA) with diameters of 10 and 47 mm
were attached on the second pre-cut impactor (PM1–2.5) and used as a backup filter. The
pre-cut inertial filter consists of webbed SUS fibers (the same fibers that are used for ANS)
packed in a circular nozzle. The main inertial filter consists of five-layer mesh TEM grids
(Silver mesh G600HSS, 600 mesh, mesh width df = 5 µm, pitch = 42 µm, mesh thickness
t = 8 µm) sandwiched by five spacers with a circular hole diameter of 1.9 mm (spacer
thickness = 30 µm) in an aluminum cartridge [46], and it was used for collecting PM0.1–0.4.
A portable battery pump (ASP-6000, KOMYO RIKAGAKU KOGYO K.K., Kawasaki, Japan)
was connected to the outlet of the PNS unit by a flexible resin tube. The sampling air flow
rate was 4.0 L min−1.

2.5. Filter Preparation and Weighing

The QFF filters were pre-baked for 1 h at 350 ◦C to remove any possible contamination
following the guidelines of The Ministry of Environment, Japan [47] for the future chemical
analysis. The QFF and TBF filters and IF cartridges were both stored in a weighing chamber
(PWS-PM2.5, Tokyo Dylec Corp., Tokyo, Japan) for 48 h at a controlled temperature of
21.5 ± 1.5 ◦C and relative humidity of 35 ± 5%. The filters were then weighed before and
after sampling using an electric microbalance (Sartorius Cubis MSU2.7S-000-DF, minimum
digit (MD) = 1 µg) installed inside the weighing chamber.

2.6. Quality Assurance and Quality Control

The pump flow rate was calibrated using a HORIBA VP-4U bubble flow meter. Filters
for sampling were accompanied by travel blanks to account for possible contamination
during the sampling and transportation. Each filter was placed into a plastic (polyethylene)
bag while covered by aluminium foil to avoid any chemical contamination. Each mass
of filter samples was subtracted from the mean value of travel blank filter. The sample
concentrations below the blank value were excluded from the data. The minimum detection
limit (3σ) based on the evaluation of travel blanks was 5 µg (47-mm TBF filter), 2 µg (10-mm
TBF filter), and 115 µg (55-mm QFF filter), respectively. These values were somewhat lower
than the minimal value of filter samples, or 17 µg (47-mm TBF filter), 4 µg (10-mm TBF
filter), and 119 µg (55-mm QFF filter), respectively.

Before the sampling, the participants received a lecture in which the study design
including objectives and items for reliable measurements, etc. were outlined to ensure that
the data collected for personal exposure were acceptable. The detailed methodology was
also provided concerning how to record the details of the TAD and how to wear the PNS.
Before the sampling, the participants were requested to learn how to operate the PNS by
themselves. In order to immediately respond to any problems during the measurements,
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the SNS through mobile phones was used for the communication between the surveyors
and the participants. Pump batteries were charged after each measurement, and a new
measurement was then started after checking for equipment malfunctions.

2.7. Estimation of Respiratory Deposition Doses by Personal Exposure

The respiratory deposition doses (RDDs) were also estimated to determine the total
deposition in the respiratory tracts for each size fraction of particles (PM<0.1, PM0.1–0.4,
PM0.4–1.0 and PM1.0–2.5) during a day (±12 h). According to the International Commission
on Radiological Protection (ICRP), RDDs can be evaluated by Equation (S1) [48]. All
particles were assumed to penetrate completely via the nose or mouth into the respiratory
tract. The particle deposition fraction (DF) was calculated in three regions of the respiratory
tract, i.e., the head airways (DFHD) (Equation (S2)) with the inhalable fraction (IF) calculated
by Equation (S3), tracheobronchial (DFTB) (Equation (S4)) and alveolar (DFAL) (Equation
(S5)), to determine the RDD values. The ICRP model (1994) [49] has often been used
in previous studies for adults, generally in light exercise and seated conditions. The
calculation of RDDs for schoolchildren was first used in this study based on previous studies
concerning particle deposition in children. Children might have a slightly larger DF [19,20]
and have a greater ventilation rate per body weight or lung surface area, which may result
in different tissue burdens compared with adults [21]. However, these differences only
affected the mouthpiece [50] for increasing tidal volume compared with normal relaxed
breathing. Thus, Bennet & Zeman (1998) [50] concluded that the deposition fraction of 2-µm
particles is not different in children aged 7–14 years compared with adults, particularly
during resting with spontaneous breathing, while a clear difference in DF from adult values
was found for children younger than 9 [51]. In addition, the relative contributions to their
tidal volume regarding the rib cage and abdomen by the posture of children were essentially
the same as that in adults [52]. Person gender and physical activity status determined
the values of a tidal volume or VT (m3 breathe–1) and the typical breath frequency or
f (breath min–1) [53–55]. Therefore, the RDD values were calculated separately for the
exposure of male and female students. Two different exposure conditions were assumed,
i.e., light exercise and seating. In light exercise, the VT and f values were assumed to be
9.9 × 10−4 (12.5 × 10−4) m3 breath−1 and 21 (20) breath min−1 for males and females,
respectively. In the seated position, 4.6 × 10−4 (7.5 × 10−4) m3 breath−1 and 14 (12) breath
min−1 were used for females and males, respectively [48].

2.8. Statistical Analysis

The normal distribution status of the quantitative data was first checked before apply-
ing a statistical analysis, using the Shapiro–Wilk test for 7 ≤ number of samples (N) ≤ 50
and the Lilliefors test for 5 ≤ N ≤ 6 [56]. Parametric and non-parametric tests were used to
analyze the data by ANS, PNS, and schoolchildren’s characteristics, respectively (Table S2).
A ρ-value of less than 0.05 was also considered for all the performed tests.

3. Results and Discussion
3.1. General Characteristics of Schoolchildren

As seen from Table S3, most of the schoolchildren had no severe respiratory problems
(68.0%), while 10% or less had respiratory symptoms, i.e., a common cold, a cough, a
cough and cold, and breathlessness. Of these students, 13.5% had suffered from COVID-19.
During the survey period, on-site schooling in the classroom was allowed for ~4 h per
day (~16%) and the schoolchildren wore masks during these periods. In addition, school
canteens were still not operational and schoolchildren who had symptoms of COVID-19
were not allowed to come to school. Their parents took them to school mostly using motor-
cycles (61.5%) or cars (29.5%), while a few of the schoolchildren used public transportation
(2.7%) or walked (6.3%). The traveling time between home and school (round-trip) was
less than 2.0 h (~4%). Hence, schoolchildren spent their time mostly on indoor activities



Int. J. Environ. Res. Public Health 2023, 20, 2947 7 of 18

(19 to 22 h, ~88%) while between 2 and 5 h per day (~12%) were spent on traveling and
outdoor activities.

The schoolchildren lived together with their parents and siblings in a house. Most of
the residents lived in housing estates that were located far from the roadside (±85.4%) but
these locations were surrounded by small roads. Residential occupant numbers were 3–4
(70.5%), 5–8 (25.7%) and >8 (3.8%). Their homes were generally ventilated by the natural
wind so that air exchange between outdoors and indoors was not very efficient, particularly
for fine particles that were generated indoors [54,57].

Indoor PM emission is associated with human activities, and it contributes signifi-
cantly to the production of fine and ultrafine particles in indoor air [58,59]. In 60.2% of
the surveyed homes, smoke caused by both cigarette smoking and cooking was observed.
According to the survey, cooking generally lasted for 2–3 h per day (±91.9%) but some
cooking required 4–5 h and >5 h (7.0% and 1.1%), respectively. In most cases, the schoolchil-
dren participated in cooking twice a day; in the morning before going to school around
8–9 A.M., and in the afternoon after coming back from school around 12–1 P.M. The average
cooking durations in the morning and afternoon were 1.4 ± 0.6 and 2.3 ± 1.3 h, respectively.
Although fewer male children participated in cooking, they spent most of their time in a
family room or in a dining room that was in very close proximity to the kitchen. Hence, it
is possible that some of the male children were also exposed to cooking activities.

3.2. Mass Concentrations of Ambient PM in School Outdoor Environments

In Table 2, the mass concentration of each size fraction of PM in the school outdoor
environments is summarized, and the mass ratio between different PM sizes is shown in
Figure 3. The average PM mass concentrations including PM0.1 as well as the peak mass
percentage for the PM2.5–10 fraction are consistent with reported observations in other cities
in Southeast Asia [60–62]. Average PM mass concentrations at the school gate (SG) were
larger than those at the schoolyard (SY) for all size ranges and site locations, particularly in
the case of the coarsest fraction (>10 µm). However, the difference between SG and SY was
larger at suburban sites while the PM distribution was rather uniform at the urban sites.
Such tendencies were possibly related, not only to the degree of influence of road traffic, but
also to emissions that occurred in the schoolyards as well as those in school surroundings.
Since the canteens in schools, the likely sources in the schoolyard area, were closed during
the pandemic period and the activities of schoolchildren were restricted to inside the yard,
the most likely anthropogenic sources may have been from traffic emissions. The larger
difference between SG and SY at the suburban site, therefore, may be attributed to a lower
background value in the area and a larger influence by heavier traffic in a neighboring
road. In Table 3, the present results are compared with those from a similar case of roadside
and schoolyard environments in Medan City in North Sumatra [63] along with roadside
values from other cities [36,64]. In the case of Medan City, the PM concentration was quite
large because of the much larger amount of traffic, and it increased in the schoolyard
probably because, in the survey year (2019), the canteen was normally operated and there
were no restrictions on schoolchildren’s activities in the schoolyard. For a detailed and
rigorous discussion on the source apportionment, a chemical component analysis is needed.
However, this issue will be addressed in the near future. From the results shown here, we
conclude that the school outdoor environment was a key area where the schoolchildren
stayed for ~4 h per day, and that the air quality was not affected by some unique sources
other than that of traffic but, on average, it was similar in both areas and typical of values
for other cities in this area.
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Table 2. Daily mean (standard deviation) and minimum–maximum of mass-size segregated particles
at school gate (SG) and schoolyard (SY).

School
<0.1 (PM0.1) 0.1–0.5 0.5–1.0 1.0–2.5 2.5–10 >10
µg m−3 µg m−3 µg m−3 µg m−3 µg m−3 µg m−3

U1 SG 3.2 ± 1.6 4.8 ± 0.6 4.5 ± 1.9 3.8 ± 1.2 7.3 ± 0.8 2.7 ± 0.4
(1.6–4.8) (4.2–5.3) (2.6–6.4) (2.5–5.0) (6.5–8.1) (2.3–3.0)

SY 3.0 ± 0.5 3.1 ± 0.7 4.4 ± 0.9 4.5 ± 0.8 11.4 ± 0.7 1.5 ± 1.3
(2.5–3.4) (4.2–5.3) (3.5–5.3) (3.7–5.2) (10.7–12.1) (0.2–2.8)

U2 SG 5.6 ± 2.9 5.3 ± 1.1 5.6 ± 3.3 8.3 ± 1.5 14.4 ± 4.9 7.4 ± 1.8
(2.7–8.5) (4.3–6.4) (2.4–8.9) (6.8–9.8) (9.6–19.3) (5.7–9.2)

SY 4.3 ± 1.5 3.3 ± 1.3 5.1 ± 0.7 5.9 ± 0.8 12.1 ± 1.9 2.5 ± 1.2
(2.8–5.8) (2.0–4.6) (4.3–5.8) (5.0–6.7) (10.1–14.0) (1.3–3.7)

U3 SG 6.6 ± 1.0 5.5 ± 2.0 9.6 ± 2.2 9.6 ± 2.3 16.7 ± 5.7 8.0 ± 2.3
(5.6–7.6) (3.5–7.5) (7.4–11.8) (7.2–11.9) (11.0–22.4) (5.6–10.3)

SY 5.8 ± 1.9 4.5 ± 1.8 8.2 ± 2.2 7.0 ± 1.8 13.1 ± 3.8 4.3 ± 1.0
(4.0–7.7) (2.7–6.4) (6.0–10.3) (5.1–8.8) (9.4–16.9) (4.0–7.3)

SU1 SG 9.7 ± 4.9 7.9 ± 1.8 13.3 ± 3.4 14.4 ± 5.1 25.8 ± 12.4 13.9 ± 5.3
(4.8–14.6) (6.0–9.7) (9.8–16.7) (9.3–19.4) (13.4–38.2) (8.5–19.2)

SY 5.8 ± 0.2 5.2 ± 1.0 10.4 ± 1.8 9.1 ± 1.8 14.6 ± 4.7 5.6 ± 1.7
(5.6–6.0) (4.2–6.2) (8.7–12.2) (7.2–10.9) (9.9–19.3) (4.0–7.3)

SU2 SG 13.8 ± 2.9 11.7 ± 0.5 10.7 ± 3.0 14.8 ± 3.5 35.4 ± 4.6 20.8 ± 4.2
(10.9–16.8) (11.2–12.2) (7.7–13.7) (11.2–18.3) (30.8–40.1) (16.5–25.0)

SY 2.4 ± 1.6 6.6 ± 1.8 7.2 ± 2.3 4.2 ± 2.8 8.1 ± 2.6 1.0 ± 0.6
(0.8–4.0) (4.8–8.5) (4.9–9.5) (1.4–7.1) (5.5–10.7) (0.4–1.6)
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Table 3. Comparison of PM mass concentration related to school environments and roadsides in the
present study and previous studies.

Location Description
Size-Resolved Particles (µg·m−3)

References
PM0.1 PM1.0 PM2.5 PM10

Jambi, Indonesia

School gate/roadside (urban, traffic) 3.3–7.0 11.6–22.2 17.4–30.8 27.5–46.3

This studySchool gate/roadside (suburban, traffic) 7.9–15.7 26.4–42.7 37.4–62.0 60.3–101.8
Schoolyard (urban, traffic) 3.1–5.6 11.0–16.7 15.8–23.5 26.5–37.1

Schoolyard (suburban, traffic) 3.2–5.0 15.7–23.1 20.6–32.4 29.4–47.6
North Sumatra,

Indonesia
Roadside (urban, traffic) 9.3–17.0 35.7–52.3 48.8–74.5 62.6–99.9 Putri et al.

(2021) [63]Schoolyard (urban, traffic) 14.3–17.5 49.8–60.7 72.1–90.4 96.5–121

Jambi, Indonesia Roadside (urban, traffic) 6.7–14.1 24.5–39.7 30.4–58.9 40.3–84.2 Amin et al.
(2021) [36]

Hanoi, Vietnam Schoolyard (urban, traffic) 8.0–20.7 41.7–128 56.7–198 69.3–246 Tran et al.
(2020) [64]
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3.3. Schoolchildren’s Personal Exposure
3.3.1. Mass-Size Fractions of PM Exposure

Figure 4 shows the average mass concentration of size-segregated particles down to
PM0.1 that the schoolchildren were exposed to for each school. Although, because of indi-
vidual differences, the actual average duration of exposure measurement was 11.8 ± 0.5 h,
the average concentration value may be acceptably regarded as the 12-h time-weighted
average (12-h TWA). The exposure to PM0.1 and PM0.4–1 appeared to be dominant-size
fractions in most cases, in which the PM0.1 accounted for around 40% of PM≤2.5, i.e., fine
particles, with an average PM0.1 exposure of 25.9 ± 10.1 µg m−3. The schoolchildren
in suburban areas were exposed to PM0.1 more heavily, exceeding 50 µg m−3 for some
children from the SU2. These high levels of PM0.1 are comparable to ambient PM levels
during remarkable episodes such as in Chiang Mai city, during the forest fire periods in
2014–2015 in northern Thailand [65] and during the peatland fire season in 2019 in Sumatra,
Indonesia [36].
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Figure 4. Average mass concentrations of size-segregated particles down to the PM0.1 fraction to
schoolchildren participants by personal exposure.

The exposure of the schoolchildren to all PM size fractions was statistically compared
considering the schoolchildren’s school origin and area where they lived (urban or subur-
ban). Concerning the results of normal distribution tests, the ANOVA test was used for the
analysis of personal exposure to PM0.1, PM0.1–0.4, and PM0.4–1. Meanwhile, for the expo-
sure to the PM1–2.5 fraction, the Kruskal–Wallis and the Mann–Whitney tests were used,
respectively, to evaluate the differences between all schoolchildren based on their school,
and between schoolchildren in urban and suburban areas. These results are summarized
in Table 4. Large differences in PM0.1 and PM0.1–0.4 with the origin of the school are noted
(F > Fcritical, the ANOVA test), while a noticeable difference between areas appeared only
in the case of the PM0.1 fraction. From the results listed in Table 5, which were obtained
through the post hoc test using αBonferroni-corrected, the largest difference between schools
for the PM0.1 was found between U3 (17.0 ± 7.5 µg m−3) and SU1 (29.5 ± 5.7 µg m−3),
while the largest difference in PM0.1–0.4 exposure was between SUI (15.0 ± 7.3 µg m−3) and
SU2 (5.6 ± 4.2 µg m−3).
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Table 4. Results of statistical tests of personal exposure to mass size-segregated particles to schoolchil-
dren participants with a significance level α = 0.05.

Size-Fractions F * Fcritical * p-Value H U

Personal exposure comparison between
schoolchildren from all schools

ANOVA
PM<0.1 2.8 2.7 0.0 - -

PM0.1–0.4 3.0 2.7 0.0 - -
PM0.4–1.0 0.6 2.7 0.6 - -

Kruskal–Wallis PM1.0–2.5 ** - - 6.0 8.4 -

Personal exposure comparison between
schoolchildren in urban and suburban areas

ANOVA
PM<0.1 10.6 4.2 0.0 - -

PM0.1–0.4 1.3 4.2 0.3 - -
PM0.4–1.0 0.9 4.2 0.4 - -

Mann–Whitney PM1.0–2.5 *** - - 0.1 - 83.9

* If F > Fcritical, there are significant differences in personal exposure in comparison between all schools or between
schoolchildren in urban and suburban areas for ANOVA analysis. ** The Kruskal–Wallis test found no significant
difference of personal exposure to PM1.0–2.5 due to schoolchildren’s school. *** The Mann–Whitney test found no
significant difference of personal exposure to PM1.0–2.5 between schoolchildren in urban and suburban areas.

Table 5. Results of a post hoc test for the personal exposure of schoolchildren participants to PM<0.1

and PM0.1–0.4 with a significance level using αBonferroni-corrected = 0.005 *.

PM<0.1 GROUPS
PM0.1–0.4

p-Value (t Test) Significant? p-Value (t Test) Significant?

0.211 No U1 vs. U2 0.656 No
0.109 No U1 vs. U3 0.657 No
0.729 No U1 vs. SU1 0.214 No
0.478 No U1 vs. SU2 0.325 No
0.353 No U2 vs. U3 0.846 No
0.036 No U2 vs. SU1 0.029 No
0.03 No U2 vs. SU2 0.25 No
0.003 Yes ** U3 vs. SU1 0.06 No
0.015 No U3 vs. SU2 0.482 No
0.156 No SU1 vs. SU2 0.004 Yes ***

* The αBonferroni-corrected (0.005) is a significant level α (0.05) divided by the amount of compared combination
that can be made from the test (five situations can be 10 compared combinations: 0.05/10 = 0.005). ** Personal
exposure to PM<0.1 between schoolchildren from U3 and SU1 (p-value (t test) < αBonferroni-corrected (0.005)) was
found as the most significantly different. *** Personal exposure to PM0.1–0.4 between schoolchildren of U3 and SU1
(p-value (t test) < αBonferroni-corrected (0.005)) was found as the most significantly different.

From the above results, it became clear that the exposure level of PM0.1 was quite
high and that there was a large difference in the exposure level for the submicron fractions
(<1 µm), particularly the PM0.1. Such results can be attributed to the dominant emission
sources in each environment where participants lived and also to the amount of PM
exposure to the specific activities such as residence time and frequency of opportunities
for exposure.

3.3.2. Personal vs. Ambient School Environments of Size-Resolved PM

In Figure 5, the average PM levels for personal exposure (PE) and outdoor school
environments are compared for PM0.1, PM1 and PM2.5. The average PE levels are also
summarized in Table 6 in comparison with the average outdoor PM levels. The PE level
was 1.5~7.6 times higher than the outdoor PM level particularly for the PM0.1 fraction
(4.8~7.6 times). The ratio of PE to outdoor levels, PE/SY and PE/SG, had peaks at PM0.1
both for the urban and suburban groups. Since personal exposure depends on behaviors of
the participants, such factors that can result in higher levels of PM0.1 exposure need to be
analyzed based on the time of activity and the microenvironments of the schoolchildren
during the personal exposure measurements. According to the results of the questionnaire
survey, indoor and outdoor activities (including transit time), respectively, shared ~88% and
~12%; the large ratios of PE to SY and SG suggest that schoolchildren had opportunities to



Int. J. Environ. Res. Public Health 2023, 20, 2947 11 of 18

be exposed to more contaminated microenvironments (MEs) outside school that contained
more fine and ultrafine fractions of PMs.
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Figure 5. Size-resolved particle (PM0.1, PM1, and PM2.5) concentrations based on schoolchildren’s
school of origin: personal exposure vs. in ambient schoolyard (SY) and school gate (SG).

Table 6. Average mass concentrations of PMs: personal exposure vs. school environments.

Urban Suburban
PM0.1 PM1 PM2.5 PM0.1 PM1 PM2.5

Mass Concentration (µg m−3)

Personal
exposure (PE) 21.0 ± 3.6 55.6 ± 7.7 62.3 ± 7.4 32.8 ± 3.3 65.4 ± 1.0 75.4 ± 1.3

Schoolyard (SY) 4.4 ± 1.2 13.9 ± 3.5 19.6 ± 4.4 4.3 ± 1.5 19.4 ± 2.0 26.5 ± 4.0
School gate (SG) 3.2 ± 1.7 16.9 ± 3.7 20.8 ± 7.4 12.2 ± 2.5 34.5 ± 2.0 49.7 ± 4.5

PE/SY 4.8 4 3.2 7.6 3.4 2.8
PE/SG 4.9 3.3 3 2.7 1.9 1.5

3.4. Schoolchildren’s Exposure Due to Time-Activity and Microenvironments

During the personal exposure measurements, the participating schoolchildren also
reported the times of their activities and the corresponding microenvironments (MEs)
(Table S4). Most of their activities were at home; in the living room, kitchen/dining room,
bedroom, and other rooms in the home (total ~7 h). The transit or commuting time was
classified as “go to school,” “back from school”, “go to others” and “back from others”
(total ~1 h). “In-classroom”, “outside classroom”, “others (indoor)” and “others (outdoor)”
were further categorized to describe differences in school environments (~4 h). These three
different categories of environments—during transit, in the school environment and at
home—are discussed below as key factors that can attribute to the exposure to PMs.

3.4.1. Schoolchildren’s Exposure during Transit and during School Environments

Previous studies using personal online PM sensors concluded that commuting en-
vironments provided the highest opportunity for exposure, particularly to UFPs, and
that it occurred in a very short time period per day [23,29]. In the present cases, the
schoolchildren’s commuting activity was mostly between home and school accompanied
by parents for about 1 h, either using a motorcycle or a car. Such a difference appears to
be reasonable because of the direct exposure to a traffic environment during transit by
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motorcycle. Although the contribution of commuting between the school environment and
personal exposure PM levels was not so large, it would appear that on-road exposure is an
important factor.

On the other hand, exposure in a school environment contributed less than 10% to the
total exposure while schools were fully operative [24,28]. In this study, the influence of the
school environment on schoolchildren’s exposure tended to be lower than in normal situa-
tions since school activity had just started again after nearly one year of online instruction
and accounted for 4 h per day, and school canteens, as the most possible source in the yard
area, were still closed. As discussed above, personal exposure levels were 1.5~7.6 times
higher than the outdoor PM levels, particularly for PM0.1 (4.8~7.6 times).

3.4.2. Influences of Indoor Home Sources of PM on Personal Exposure

Since it was indicated that activities while schoolchildren were at home were the
most important for exposure to PMs, their characteristics in each ME at home and PM
concentrations during personal sampling were analyzed. As possible parameters related
to indoor sources, the number of occupants, time period of cooking per day and smoking
status at home were evaluated, as in the following (Table 7).

Table 7. Personal exposure to size-resolved airborne particles by the characteristics of schoolchildren.

Description PM0.1 PM1 PM2.5
(µg m−3)

Smoking
status at

home

Urban
Yes 21.4 ± 9.8 58.5 ± 19.4 64.7 ± 19.9
No 19.3 ± 10.0 50.2 ± 17.2 58.7 ± 18.1

Suburban
Yes 33.1 ± 13.5 68.6 ± 18.7 80.3 ± 19.9
No 31.0 ± 3.7 56.7 ± 10.6 62.0 ± 11.9

All
Yes 27.3 ± 12.9 63.5 ± 19.4 72.5 ± 21.0
No 25.2 ± 10.0 53.5 ± 14.9 60.3 ± 15.6

Cooking time
while

personal
sampling

≤5 h n = 12 37.8 ± 10.5 68.2 ± 14.4 77.0 ± 18.1
3–4 h n = 12 24.6 ± 2.7 63.7 ± 15.6 72.0 ± 16.5
1–2 h n = 8 14.6 ± 2.2 47 ± 20.2 55.1 ± 19.9
≥1 h n = 2 7.3 37.8 45.2

House
occupants
(people)

Urban
3–4 18.8 ± 7.0 57.6 ± 16.7 66.3 ± 16.4
5–8 23.7 ± 13.2 51.8 ± 22.3 55.9 ± 22.5

Suburban
3–4 31.6 ± 11.9 60.4 ± 17.0 70.7 ± 19.7
5–8 35.1 ± 12.0 79.2 ± 10.9 88.6 ± 13.7

All
3–4 25.2 ± 11.5 59.0 ± 16.5 68.5 ± 17.8
5–8 29.4 ± 13.4 65.5 ± 22.9 72.2 ± 25.1

The average exposure level with smokers at home increased by 8~20% from that
without smokers, with the largest increase in the suburban group (29.5% for the average
PM2.5). This suggests that home smoking has a certain level of influence. However, the
findings indicated that it was not so significant probably because children were normally
not close to smoking areas at home. Meanwhile, the exposure level increased nearly linearly
with the time cooking, as shown in Figure 6a, in which the average PM concentration of each
size category are plotted against the average cooking period for male and female children.
As seen from Figure 6b, the PM0.1/PM2.5 ratio also increased linearly with the time of
cooking. The maximum PM0.1 concentration and the ratio PM0.1/PM2.5 became around five
and three times those for 1 to 5 h of cooking time, respectively. Although each individual
average value was less reliable for the cooking time <1 h (n = 2), the mass concentration
and fraction of PM0.1 for 1 h were quite similar to those of outdoor environments. The other
categories of PM tended to be similar but less sensitive to the cooking period. Although
there was a slight difference in tendency between male and female children, the data were
not sufficient to allow the differences to be specified. Regarding the number of home
occupants, the influence was not clear, with differences of 0.96~0.99 times between 3–4 and
5–8 occupants.
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From these results, we conclude that the exposure to indoor PM emissions caused by
cooking is the most important key parameter that determines the much higher exposure
level of PM compared with the outdoor PM concentration. For further discussion, the
chemical component analysis will be needed to clarify the contribution of cooking and
smoking at home and traffic during commuting.

3.5. Estimated Respiratory Deposition Doses of Each Size-Fraction of Particles

Respiratory deposition doses (RDDs) of schoolchildren calculated using Equation (S1)
are summarized in Figure 7 and Table 8. For both categories of activities, the largest
total RDDs appeared in the PM<0.1 fraction followed by PM0.4–1 and PM1–2.5, indicating
the importance of dosing by fine fraction particles with sizes less than 1 µm. The RDDs
during light exercise were larger than those for the seated position, and these were mostly
attributed to male students. Such an increase in the RDDs under conditions of light exercise
were also reported for PM2.5–10 and PM1.0–2.5 by Kumar & Jain (2021) [54] and Segalin et al.
(2017) [32]. This may be explained by an increase in breathing frequency during the light
exercise [48]. The larger RDDs for male children can be explained by a larger tidal volume
for intake that can increase the deposition of PM in the respiratory tract [32,53]. It should
be noted that the largest differences in RDDs between males and females appeared for the
PM0.1 fraction (5.9%) and, as seen from Figure 7, such quite large RDDs for PM0.1 were
mainly from the deposition of particles in the alveolar region. Since PM0.1 particles contain
large amounts of hazardous chemicals per unit particle mass [12,66], possible adverse
health influences would be predicted. For a detailed and rigorous discussion concerning
the deposition doses to children based on their time-activity and the internal dose of metals
(As, Pb, Mn, Cd, Cr) in the human body (e.g., kidney), an extended analysis, such as the
use of ExDoM2 [67–69], would be needed. However, this issue will be addressed in the
near future for schoolchildren’s personal PM0.1 exposure.

Table 8. Descriptive characteristics while sitting or during light exercises and Mean-difference (%) in
RDD between the male and female students for different PM size stages. The mean-difference value
for RDD is calculated using male student’s RDD as a reference.

Position Student
HD TB AL Total RDD

×10−2
% of

Difference
in RDD

×10−2 ×10−2 ×10−2

(µg m−1) (µg m−1) (µg m−1) (µg m−1)

PM<0.1

Light
exercise

Female 2.0 ± 1.0 3.6 ± 1.8 16.4 ± 8.0 21.9 ± 10.7
5.90%Male 2.5 ± 0.9 4.6 ± 1.7 20.7 ± 7.8 27.8 ± 10.4

Seated
Female 0.6 ± 0.3 1.1 ± 0.5 5.1 ± 2.5 6.8 ± 3.3

2.20%Male 0.9 ± 0.3 1.6 ± 0.6 7.5 ± 2.8 10.0 ± 3.8
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Table 8. Cont.

Position Student
HD TB AL Total RDD

×10−2
% of

Difference
in RDD

×10−2 ×10−2 ×10−2

(µg m−1) (µg m−1) (µg m−1) (µg m−1)

PM0.1–0.4

Light
exercise

Female 0.6 ± 0.5 0.1 ± 0.1 1.0 ± 0.8 1.8 ± 1.3
1.50%Male 0.9 ± 0.5 0.9 ± 0.5 1.5 ± 0.8 3.2 ± 1.8

Seated
Female 0.2 ± 0.1 0.0 ± 0.0 0.3 ± 0.2 0.5 ± 0.4

0.60%Male 0.3 ± 0.2 0.3 ± 0.2 0.5 ± 0.3 1.2 ± 0.6

PM0.4–1.0

Light
exercise

Female 8.8 ± 4.9 0.7 ± 0.4 5.4 ± 3.0 14.9 ± 8.3
3.00%Male 10.5 ± 5.6 0.9 ± 0.5 6.6 ± 3.7 17.9 ± 9.8

Seated
Female 2.7 ± 1.5 0.2 ± 0.1 1.7 ± 0.9 4.6 ± 2.6

2.00%Male 3.9 ± 2.2 0.3 ± 0.2 2.4 ± 1.3 6.6 ± 3.7

PM1.0–2.5

Light
exercise

Female 9.9 ± 6.7 1.0 ± 0.7 2.3 ± 1.6 13.2 ± 8.9 −1.30%Male 9.0 ± 6.2 0.9 ± 0.6 2.1 ± 1.4 11.9 ± 8.2

Seated
Female 3.1 ± 2.1 0.3 ± 0.2 0.7 ± 0.5 4.1 ± 2.8

0.20%Male 3.2 ± 2.2 0.3 ± 0.2 0.7 ± 0.5 4.3 ± 3.0
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Figure 7. Respiratory deposition doses (RDDs) of PM1.0–2.5, PM0.4–1.0, PM0.1–0.4, and PM<0.1 particles
in headways (HD), tracheobronchial (TB), and alveoli (AL) regions during light exercise and seated
between female and male schoolchildren.

4. Conclusions

The health risk for schoolchildren was discussed based on the mass concentration of
exposed airborne fine and ultrafine particles (PM0.1) and schoolchildren’s behaviors in their
daily life during a period of the COVID-19 pandemic in Jambi City, a medium-sized city
in Sumatra Island, Indonesia. The 12-h average personal exposure level in schoolchildren
was evaluated to be 1.5~7.6 times higher than that for the outdoor level measured in
school environments and it was particularly high for the PM0.1 fraction (4.8~7.6 times).
The schoolchildren spent most of their time in indoor (~88%) environments with only
~12% for transit (~1 h) and outdoor activities including schooling (~4 h), suggesting that
the indoor environment is the dominant contributor to schoolchildren’s exposure. As
one piece of evidence for the contribution of indoor emission, the exposure to indoor PM
emission by cooking was found to be the most important parameter that describes the
much higher exposure level of PM than the outdoor PM concentrations. Such a contribution
appeared to be proportional to the period of cooking at home, particularly for the PM0.1
mass concentration and a mass fraction of PM0.1 to PM2.5. Although there was an influence
of surrounding circumstances of targeted schools, such as more influence of heavy vehicle
traffic in suburban areas, it contributed only slightly to the increased exposure. Home
smoking and a larger exposure experienced by motorcycle commuting also increased the
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exposure but still had much less influence than cooking. The largest total RDDs of PM0.1,
revealed that, particularly during light exercise, particles infiltrated deeper into the alveoli.
Overall, the study highlighted the significance of personal PM0.1 exposure, which was
identified as more varied based on location than other size-resolved PM. The high levels
of PM0.1 exposure in the present study demonstrated the larger importance of sources
that are potentially associated with health risks, particularly concerning cooking at home.
The findings of this study will aid in improving schoolchildren’s health, particularly with
respect to the PM0.1 fraction. This study can also serve as a guide for future directions
in assessing population exposure and developing air pollution mitigation strategies such
as the better management of ventilation in housing in Indonesia, especially concerning
children’s health risks. This is important during such a period of social restriction under
the COVID-19 pandemic.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph20042947/s1, Investigation of the exposure of schoolchildren
to ultrafine particles (PM0.1) during the COVID-19 pandemic in a medium-sized city in Indonesia;
Equation (S1): The respiratory deposition doses (RDDs) formula; Equation (S2): The deposition
fraction for the head airways region (DFHD) formula; Equation (S3): the inhalable fraction (IF)
formula; Equation (S4): The deposition fraction for the tracheobronchial region (DFTB) formula;
Equation (S5): The deposition fraction for the alveolar region (DFAL) formula; Table S1: Description
of schoolchildren participants for personal exposure measurements; Table S2: Statistical tests used
for data analyses; Table S3: General characteristics of schoolchildren from five schools that were
observed; Table S4: Time activity and microenvironments of schoolchildren participants during
personal exposure sampling.
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