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Abstract: We sought to examine the effectiveness of an acute prolonged exercise session on post-
exercise executive function in physically active adults and to assess if age or pre-exercise cognitive
performance was predictive of the magnitude of change in executive task performance. Self-registered
cyclists were recruited prior to participating in a 161-km mass-participation cycling event. Cyclists
were excluded if they had not previously participated in a similar endurance event, were young
(<18 y), or were cognitively impaired (Mini CogTM < 3 units). Immediately after completing the
exercise session, the time taken to complete Trail Making Test Part A and Part B (TMT A + B) was
assessed. A faster time to complete the TMT A + B was observed after exercise (+8.5%; p = 0.0003;
n = 62; age range = 21–70 y). The magnitude of change in TMT A + B performance (pre vs. post) was
influenced by pre-exercise TMT A + B performance (r2 = 0.23, p < 0.0001), not age (r2 =0.002; p = 0.75).
Prolonged exercise had a small-to-moderate effect on post-exercise compared to pre-exercise executive
function task performance (Cohen’s d = 0.38–0.49). These results support the effectiveness of a single
prolonged exercise bout to augment executive function in physically active adults, irrespective of age.

Keywords: cognition; physical activity; brain health; aging

1. Introduction

The 2018 U.S. Health and Human Services Physical Activity Advisory Committee re-
port present compelling evidence supporting the positive influence of chronic participation
in moderate-to-vigorous physical activity or structured exercise on cognitive function across
the human lifespan [1,2]. However, the novel recommendation from this report–promotion
of single session or acute bouts of exercise to elicit cognitive benefits–was derived primarily
from laboratory-based studies (i.e., behavior restricting), which limit the generalizability of
those recommendations to real-world settings. Stated differently, while laboratory-based
studies provide evidence of the efficacy of a single aerobic exercise session, the ability to
deduce the potential effectiveness (i.e., the effect observed in real-world settings) is limited
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under these conditions. Indeed, under real-world conditions, adults likely incorporate
personalized behavioral strategies to reduce the onset of perceptual or muscular fatigue
(e.g., listening to music, ad libitum fluid consumption, rest breaks, social interaction, etc.) [3]
and increase enjoyment, which conceivably results in increased compliance and adherence
to evidence-based exercise guidelines [4]. Thus, with the growing recognition of exercise
as medicine [5], it is imperative that, similar to pharmacological prescriptions, consider-
ation be given as to how exercise/physical activity prescriptions translate from clinical
settings to real-world environments and the various factors that influence the effectiveness
of single sessions.

The c extant literature suggests that several factors may influence the cognitive-
enhancing benefit of a single exercise/physical activity bout: age, duration, and pre-exercise
cognitive task performance [6–14]. Chief among these is age, in that older adults tend to
achieve greater post-exercise cognitive improvements than younger adults; however, few
studies have examined different age groups under similar conditions [6–13]. This has led
to a paucity of data on middle-aged adults. Further, a minimal exposure/dosage of 10 min
has been recommended to observe an exercise-induced cognitive enhancement [6–13],
but despite data showing that longer duration (i.e., 45 min) may be superior to shorter
durations [15], data on prolonged duration exercise (e.g., marathon or ultra-endurance
events) is lacking. As such, uncertainty remains about whether "mega-doses" of exercise
also promote post-exercise cognitive enhancement. Further, a recent systematic review
and meta-analysis of individual participant data by Ishihara and colleagues [14] showed
that post-exercise effects on executive function were largely driven by pre-exercise task
performance. Thus, a plausible confounder in prior studies examining the effect of an
acute exercise bout on cognition may be heterogeneity in baseline task performance. Hence,
accounting for this variable is encouraged in future research.

To our knowledge, only two studies have investigated the influence of a single pro-
longed exercise bout (>2 h) on cognitive function [16,17]. However, these 2 studies pro-
duced equivocal results, potentially due to small sample sizes and differences in the study
population. Therefore, the primary objective of the present study was to examine the
effectiveness of a single prolonged aerobic exercise session on post-exercise executive
function task performance in physically active adults and to examine the association of
age and pre-exercise executive function task performance with the magnitude of change
in executive function task performance (pre vs. post). We hypothesized that a single
prolonged aerobic exercise session would improve post-exercise executive function task
performance in a cohort of physically active adults and that both pre-exercise cognitive task
performance and age would be associated with the magnitude of post-exercise executive
function task improvement.

2. Material and Methods
2.1. Study Population

This prospective and pragmatic cohort study was reviewed and approved by the
Institutional Review Board for Human Studies at an academic university in Texas (USA).
Participants were recruited via verbal solicitation within the exhibit hall 24–48 h prior to
a mass participation cycling event. All participants provided written informed consent
before completing a medical history questionnaire, which the study team assessed for the
following exclusionary criteria: <18 or >90 years of age, cognitively impaired as determined
by the Mini CogTM assessment (excluded if the score was <3/5, 1 point each for 3-word
recall and 2 points for correct clock draw), current musculoskeletal injury, fluid balance
altering illness or medication (e.g., diuretic), dietary manipulation that omitted one nutrient
or class of nutrients (e.g., vegetarian or vegan), current smoker or tobacco user, or had not
previously completed a 161 km cycling event.

At enrollment, participants’ anthropometric data were collected (body weight, height,
and body fat percentage via a three-site measurement with calibrated skinfold calibers).
Participants’ habitual gait speeds over a 4 m distance were measured as a surrogate marker
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of cardiorespiratory fitness, given its strong relationship with peak oxygen consumption in
aging adults (r = 0.74) [18]. The fastest of two trials was used for statistical analysis. Lastly,
participants were familiarized with the Borgs Ratings of Perceived Exertion scale (RPE;
scores ranged from 6 representing no exertion at all to 20 representing maximal exertion),
which correlates strongly with physiological exercise intensity parameters [19].

2.2. Exercise Duration and Environmental Conditions

All participants pre-registered for and completed the outdoor mass participation 161 km
cycling event in Wichita Falls, Texas, USA, in August of 2017 using their own bicycles. The
weather conditions on the day of the event were: Temperature = 21–31 ◦C (range); Dew
point = 20–22 ◦C (range); Peak wind speed = 22.5 km/h (mostly <16 km/h throughout the
event); and Precipitation = 0. On the event day, cyclists began to assemble as early as 4 AM,
and the event officially started at 7 AM. In the event, a total of 3373 (men = 2821; women 552)
cyclists completed the mass participation event at an average time of approximately 7 h.

2.3. Cognitive Assessments

The Trail Making Task (TMT) was selected because it can be administered easily
outside of laboratory settings, is valid and reliable [20], and measures executive functions
that are sensitive to acute aerobic exercise bouts [14,20]. To attenuate the influence of
a learning effect, participants were familiarized with the TMT battery 24–48 h prior to
the event. Familiarization consisted of each participant performing the TMT battery one
time under the instruction of a study team member. The TMT battery consists of a Part
A (TMT-A) and Part B (TMT-B). The TMT-A is a simple cognitive task that requires the
participant to connect scattered encircled numbers (1–25) in order and as quickly as possible
on an 8 by 10-inch sheet of paper and measures psychomotor speed. The TMT-B is a more
complex task that requires the participant to connect an encircled number to an encircled
letter to a number and to a letter, alternately and in order, as quickly as possible (i.e., 1 to A,
2 to B, etc.), and measures cognitive flexibility. Participants were provided a seat, clipboard,
and table in a well-lit area to complete the TMT battery. The total time to complete TMT-A
and -B was recorded with a handheld stopwatch. On the event day, participants completed
the TMT battery in sequential order (A before B) before and after completion of the cycling
event (within 5–15 min).

2.4. Outcome Variables

The primary outcome was the total time it took to complete the TMT battery and
individual parts (i.e., A and B) before and following a single prolonged exercise session.

2.5. Statistical Analysis

Pre-exercise cognitive outcome variables were screened, and values ≥3 standard devi-
ations from the mean were reviewed for veracity and precision of measurement compared
to the familiarization trial. The Shapiro-Wilk test for normality and Levene’s test for ho-
mogeneity were used. Changes in the time to complete the TMT battery (pre vs. post)
were evaluated with a paired sample t-test for which Cohen’s d effect sizes were derived.
A linear regression analysis was used to assess if age or pre-exercise executive function
task performance was associated with the magnitude of change in executive function task
performance (pre vs. post). Statistical significance was set a p < 0.05. Data presented are
(mean difference [95% Confidence Interval (CI)]) unless designated otherwise. All analyses
were performed using SPSS Statistics, Version 27.0 (IBM Corp. 2020, Armonk, NY, USA).

Power analysis. To detect a statistically significant effect of prolonged exercise on time
to complete TMT A + B at an α level set of p < 0.05, power of 0.80, an effect size of 0.4,
and using a paired sample student’s t-test, a sample size of 52 participants was required
(G*Power, V.3.1.9, Aichach, Germany). To account for a possible 20% attrition, we allowed
up to 63 participants to be enrolled in this study.
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3. Results

Participant characteristics and exercise performance. A total of 63 participants were en-
rolled in this study. One participant was removed prior to statistical analyses due to
an extreme pre-exercise value significantly slower than during familiarization (TMT A
+ B = 128 vs. 233 sec; familiarization vs. pre-exercise for the excluded participant). There-
fore, data is provided on 62 participants unless stated otherwise. The majority of the sample
had robust physical function, as determined by their habitual gait speed (1.07 ± 0.16 m·s−1

(mean ± standard deviation)), were >50 years old (66.1%; range 21–70 years of age), and
identified as male (97%, Table 1). At the completion of the event, the average finish time
was 373 ± 80 min (n = 53; 11 participants were lost to follow-up) with a final reported RPE
of 16 ± 2 arbitrary units (n = 60; 2 participants were lost to follow-up).

Table 1. Participant demographics, pre-exercise cognitive function, and exercise performance.

Demographics Entire Sample (n = 62)

Characteristic
Age, y 51 (11)

20–29, # 4 [6.5]
30–39, # 4 [6.5]
40–49, # 13 [20.9]
50–59, # 31 [50.0]
60–69, # 8 [12.9]

70, # 2 [3.2]
Female gender, # 3 [4.8]

Weight, kg 87.2 (12.4)
Height, cm 177 (6)

BMI, kg/m2 27.9 (3.4)
Body Fat, % 13.8 (5.3)

Habitual gait speed, m/s 1.07 (0.16)
Cognitive Performance

TMT-A, sec 27 (10)
TMT-B, sec 56 (18)

Exercise performance
Total exercise time, min a 373 (80)

RPE, arbitrary units b 16 (2)

Values are mean (standard deviation) or number [percentage]; a denotes data provided on n = 53, and b denotes
n = 60 due to loss to follow-up; # = total number of participants in the group out of 62. Abbreviations: Trail Making
Test Part A (TMT-A) and Part B (TMT-B), Body Mass Index (BMI), and Rating of Perceived Exertion (RPE).

Cognitive Outcomes. We observed a significant improvement (i.e., decrease in time)
in the time to complete the TMT A + B compared to pre-exercise performance (−7 sec
[95% CI: −11 to −4]; p = 0.0003; Figure 1). Small to moderate effect sizes were observed
in time to complete TMT A, TMT B, and TMT A + B (Cohen’s d = 0.38–0.49; Table 2).
Regression analysis revealed that pre-exercise performance in the TMT A + B explained
23% of the variance in the magnitude of change (post vs. pre) in executive function task
performance after the event (r2 = 0.23, F1,60 = 17.92, p < 0.0001; Figure 2), but not age
(r2 = 0.002, F1,60 = 0.11, p = 0.75; Figure 2).

Table 2. Effect sizes for comparisons of time to complete cognitive task (pre vs. post-exercise).

Cognitive Tack Cohen’s d Effect Size

Trail Making Test Part A, sec 0.38 [0.12, 0.63]
Trail Making Test Part B, sec 0.34 [0.01, 0.60]

Trail Making Test Part A + B, sec 0.49 [0.22, 0.75]
All values are effect size [95% Confidence Interval].
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Figure 2. Baseline Trail Making Test A + B performance (n = 62) accounted for 23% of the variance
in the magnitude of change following the prolonged exercise bout. Linear regression analysis of
the association between the change in time to complete the TMT A + B (post vs. pre) (∆TMT A + B;
independent variable) with (A) pre-exercise time to complete the Trail Making Test Part A + B and
(B) age.

4. Discussion

The primary novel findings of this study are threefold. First, after a single prolonged
exercise session, lasting roughly 6 h, participants performed executive function tasks
significantly faster compared to pre-exercise. Second, contrary to our hypothesis, the
magnitude (i.e., mean change in time to complete tasks) of cognitive enhancement was
not moderated by age but rather by pre-exercise executive function task performance.
Third, we observed a positive small-to-moderate effect size for a single prolonged exercise
session on improving immediate post-exercise executive function in an ecologically relevant
setting comparable to the effect sizes reported in data derived from laboratory-based
studies [9,10,12,21]. Collectively, these findings demonstrate a positive impact of a single
session of a prolonged exercise session on executive function.

To our knowledge, only two prior studies have examined the influence of a prolonged
aerobic exercise session on post-exercise executive function task performance. In a similar
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pragmatic study, Benefer et al. used the TMT battery to examine changes (pre vs. post) in
cognition following a prolonged exercise (31.6 ± 9.7 km) in 33 physically active walkers
and runners (mean age = 43 years) [16]. Interestingly, the exercise duration (~6 h) and
post-exercise TMT-A and -B completion times were comparable to our study, 2 (−9%) and
4 (−10%) seconds for the TMT-A and -B, respectively [16]. Conversely, in a laboratory
setting, Grego et al. examined the influence of 3 h of moderate-intensity cycling on a
complex executive function task in a smaller sample of young endurance-trained adults
and recreational exercisers (mean age = 30 years; n = 8) [17]. The authors concluded that
exercise-induced cognitive enhancing benefits were achieved after 1 and 2 h of exercise
with diminishing results following the last hour of exercise. However, the lack of an
exercise-induced cognitive enhancing benefit beyond 2 h is likely attributable to the small
sample size and possibly heterogeneity in baseline cognitive task performance [17].

A major strength of this investigation is our moderate sample size compared to prior
studies. Further, participants were not forced or counseled to perform a prescribed exercise
regimen (i.e., they were self-registered for the event and were free to complete the bout at
a self-selected pace/intensity) and utilized their own exercise behavioral strategies (e.g.,
listening to music, individualized diet and hydration regimens, social engagement, and/or
ad libitum rest breaks) which increases the external validity of our results. However, this
approach subsequently reduced our internal validity, and therefore caution must be taken
in extrapolating our findings to other populations. For instance, using a pragmatic design
limited our ability to feasibly account for factors that likely mitigate fatigue during the
exercise bout and improve cognition: nutritional supplementation, fluid intake, ergogenic
aids, and sleep hygiene [22–25]. Additionally, most of our participants identified as male;
therefore, precautions are needed in generalizing our findings to women [26]. In this regard,
gender as a moderator of the exercise-cognition relationship remains equivocal, with data
supporting both reduced and augmented post-exercise cognitive enhancement [10]. Lastly,
there was no control group (i.e., a group performing the cognitive battery but not exercising);
therefore, we do not know the extent to which practice effects linked to simple exposure
to the cognitive tests on 3 occasions (fam, pre-, and post-exercise), separate from exercise-
induced aerobic effects, produced the after-exercise changes in TMT completion time.

In conclusion, the key findings from this ecological investigation provide novel evi-
dence showing that healthy, physically active adults (21–70 y) can achieve exercise-induced
cognitive enhancement after a single prolonged aerobic exercise bout, regardless of age.
This finding extends the understanding of the therapeutic benefits of aerobic exercise on
cognitive function during adulthood [1,2,6]. These results encourage future research to
identify what behavioral strategies (before or during exercise) influence the magnitude of
cognitive enhancement, how those strategies influence exercise duration, and the biological
mechanisms underpinning augmented executive function task performance following a
single exercise session.
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