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Abstract: The purpose of this study was to develop sedentary cut-points for the activPAL and evaluate
their performance against a criterion measure (i.e., activPAL processed by PALbatch). Part 1: Thirty-five
adults (23.4 ± 3.6 years) completed 12 laboratory activities (6 sedentary and 6 non-sedentary activities).
Receiver operator characteristic (ROC) curves proposed optimal Euclidean Norm Minus One (ENMO)
and Mean Amplitude Deviation (MAD) cut-points of 26.4 mg (ENMO) and 30.1 mg (MAD). Part 2:
Thirty-eight adults (22.6 ± 4.1 years) wore an activPAL during free-living. Estimates from PALbatch
and MAD revealed a mean percent error (MPE) of 2.2%, mean absolute percent error (MAPE) of 6.5%,
limits of agreement (LoA) of 19% with absolute and relative equivalence zones of 5% and 0.3 SD. Estimates
from PALbatch and ENMO revealed an MPE of −10.6%, MAPE of 14.4%, LoA of 31% and 16% and 1 SD
equivalence zones. After standing was isolated from sedentary behaviours, ROC analysis proposed an
optimal cut-off of 21.9 mg (herein ENMOs). Estimates from PALbatch and ENMOs revealed an MPE of
3.1%, MAPE of 7.5%, LoA of 25% and 9% and 0.5 SD equivalence zones. The MAD and ENMOs cut-points
performed best in discriminating between sedentary and non-sedentary activity during free-living.

Keywords: agreement; auto-calibration; equivalence; free-living; criterion validity; accelerometry

1. Introduction

Sedentary behaviour (SB) is defined as any waking behaviour characterized by an
energy expenditure ≤1.5 metabolic equivalents, while in a sitting, reclining or lying po-
sition [1]. The health consequences of excessive sedentary time are well established with
recent meta-analyses reporting a non-linear positive dose-response relationship for time
spent sedentary with all-cause mortality and cardiovascular disease (CVD) mortality [2,3].
Recent estimates from studies that have captured time spent sedentary using accelerome-
ters, indicate that adults spend approximately 8 h/day sedentary [4]. These estimates are
broadly in line with recently proposed thresholds of 6–8 h/day of total sitting time whereby
the risk for all-cause and CVD mortality increases rapidly [2] and ≥9.5 h/day of sedentary
time for higher risk of death [3]. From these findings it seems clear that substantial health
benefits can be gained by limiting the time individuals are sedentary and replacing this
time with more physical activity (PA). Therefore, being able to correctly identify SB and
separate it from light-intensity physical activity (LPA) is crucial. Doing so, would enhance
our understanding of the relationships between SB and health indicators as well as the
health improvements that may be seen if intervening to reduce SB.

The gold standard device for the objective measurement of SB is the thigh-worn activPAL
(PAL Technologies Ltd., Glasgow, UK) [5]. The activPAL device has demonstrated a sensitivity
of between 96% to 98% for correctly identifying SB against direct observation in laboratory
based studies replicating activities of daily living [6,7]. Precise estimates of SB were also
evident under free-livings conditions that consisted of two 6 h observations, as well as demon-
strating a sensitivity to reductions in sitting time [8]. Although the activPAL proprietary
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software has a built in algorithm that can estimate energy expenditure (expressed as metabolic
equivalents (METs)) [9], time spent in moderate-vigorous PA (MVPA) is not usually provided.
Previous studies have found the activPAL to overestimate METs at slower walking speeds
but underestimate METs at faster walking speeds when compared against indirect calorime-
try [10,11]. Furthermore, the activPAL has been shown to overestimate time spent in MVPA
compared to the ActiGraph (ActiGraph, Pensacola, FL) when worn concurrently [12]. As
many research-grade accelerometers (i.e., ActiGraph, Axivity and GENEActiv) are unable to
differentiate between postures, researchers interested in capturing both PA and SB require
study participants to wear ActiGraph and activPAL devices concurrently [13,14]. Clearly such
an approach would provide valuable insights into PA and SB given their prominence within
recent international PA guidelines [15–17]. Nonetheless, such approaches are not cost effective
and can increase the burden for research participants.

With recent technological advancements, tri-axial research grade accelerometers can
provide users with the collected raw accelerometer data that can facilitate comparisons
between devices using identical processing methods. Using open-source accelerometer
processing and analyzing software such as GGIR, previous studies have examined the
comparability of the same/different devices within and between body locations with
promising findings for future data harmonization [18–20]. The widely used raw acceleration
MVPA cut-point of 100 milli-gravitational units (mg) is often applied to raw acceleration
accelerometer data to estimate time spent in MVPA, and to facilitate comparisons between
devices [18,21]. Laboratory derived cut-points have also been proposed for adults to
estimate time spent sedentary [22–24], yet subsequent cross-validation of these in free-
living settings against a thigh-worn criterion method (i.e., activPAL or axivity) tend to show
modest accuracy [22,25]. Several factors may influence these findings including differences
in device wear locations, sampling frequencies, processing methods, algorithms to detect
non-wear as well as the limited number of activities used in the laboratory protocol by
Hildebrand and colleagues. Future research should aim to address these issues, where
possible, to minimize the influence of factors which may exacerbate differences in the time
spent sedentary.

One such approach that removes the reliance upon using proprietary algorithms from
PAL Technologies Ltd. to process data collected from the activPAL device has recently
been proposed [20]. As the activPAL device collects raw acceleration data across three
axis, the raw data can be downloaded using PAL Technologies Ltd. freely available
software and saved in raw format as .csv files, to be subsequently processed using the open-
source software GGIR [20,26]. Notwithstanding the obvious benefits of transparency and
reproducibility for the research community when using GGIR, users also have the ability to
adapt and expand the functionality of GGIR by specifying certain input arguments and/or
selecting certain output variables. When using the raw acceleration data for instance, users
can quantify the overall levels of activity, the intensity distribution across the monitoring
period, as well as describing the intensity of the most active periods of the day across a user
defined duration. The potential therefore of reporting these outcomes alongside validated
raw acceleration cut-points that can quantify the time spent sedentary, holds enormous
appeal. Yet to the best of our knowledge, no raw acceleration cut-points have been proposed
that can quanitify time spent sedentary for the activPAL device. In view of the gaps in the
literature identified above, the aims of this study were: (1) To provide activPAL specific
cut-points for discriminating between SB and typical light-intensity physical activities using
the open-source software GGIR (part 1); (2) To explore the performance of the cut-points in
an independent sample during free-living (part 2).

2. Materials and Methods
2.1. Laboratory-Based

A convenience sample of thirty-five adults (14 females; age 23.4 ± 3.6 years;
BMI = 23.6 ± 3.1 kg/m2) were recruited from the University of the West of Scotland
student body via email and word of mouth. All participants were informed of the study
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aims and provided informed consent, after approval from the ethics committee of the
University of the West of Scotland (application 8692-7016). Data collection took place
between September 2019 and November 2019.

2.1.1. Procedures

All study procedures were explained to participants upon arrival at the laboratory.
Thereafter, participants were asked to wear an activPAL Micro4 (PAL Technologies LTD,
Glasgow, UK; herein activPAL) on the anterior midline of the right thigh using nitrile
sleeves and a Hypafix dressing. The activPAL is a triaxial accelerometer with a dynamic
range of ±4 g. ActivPAL devices were initialized using PAL Connect version v8.10.8.75 to
record data using the default settings (20 Hz, 10 s minimum sitting and upright period). The
same computer was used to initialize all devices which were programmed to commence
data collection after distribution.

Once fitted with the activPAL, participants performed 12 activities in a sequential order
which included 4 lying positions, 2 sitting positions and 6 upright positions (See Table 1
for a description of the activities). In the main, each activity lasted for 5 min, separated
by a 30 s break. Whereas activity 12 lasted for 2 min with a break of 2 min provided
between activities 11 and 12. The start and end times of each activity was recorded for each
participant using a digital watch synchronized with the computer which initialized the
activPAL devices. All participants were observed by the research team whilst completing
the activities which lasted approximately 70 min.

Table 1. Overview of the sedentary behaviours and light-intensity physical activities undertaken.

Posture Activity

Lying down

1 Lying on back with legs straight
2 Lying on back with legs bent
3 Lying on side with legs straight
4 Lying on side with legs bent

Sitting 5 Sitting on a chair typing on a computer
6 Sitting whilst texting on a mobile phone

Upright

7 Standing whilst using their mobile phone to browse the internet
8 Self-paced walk in a forward direction around the laboratory
9 Picking up items on the floor and placing them on a desk

10 Dusting a set area
11 Sweeping the floor of a set area

† 12 Ascend then descend a flight of stairs (out with the laboratory)
† Activities lasted for 5 min, apart from activity 12 which lasted for 2 min.

2.1.2. Data Reduction and Processing

Data was downloaded using PAL batch v8.11.1.63 and saved in raw format as time-
stamped .csv files. These .csv files were then processed using the GGIR package v2.6-0 in
R statistical software (R Foundation for Statistical Computing, Vienna, Austria,
https://cran.r-project.org/, accessed on 15 January 2023) [26]. GGIR detected sustained and ab-
normally high values, non-wear time and computed the Euclidean Norm Minus One (ENMO),
with negative values rounded up to zero, and Mean Amplitude Deviation (MAD) metrics.
Since ENMO is sensitive to poor calibration [27], back-up calibration coefficients provided
from the same activPAL device worn during free-living was used in GGIR as described pre-
viously [21,22]. This was necessary due to the short duration of the laboratory protocol and
the absence of sufficient periods of non-movement which is needed for auto-calibration in
GGIR. These files were subsequently exported to Microsoft Excel v16.61.1 (Microsoft, Red-
mond, WA, USA) for analysis using a macro developed for the laboratory protocol data. When
applying the macro, the first and last 30 s of data from each activity were excluded to pro-
vide average values for MAD and ENMO for each activity, averaged over 5 s epochs, and
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expressed in milli-gravitational units (mg). Participant files were used in subsequent analysis if
post-calibration error was <0.02 g.

2.2. Free-Living

As part of a separate study, 38 adults (15 females; age 22.6 ± 4.1 years;
BMI = 22.4 ± 3.5 kg/m2) were recruited from the University of the West of Scotland
student body via email and word of mouth and instructed to wear the activPAL device for
8 consecutive days during free-living. Ethical approval for the study was received from the
University of the West of Scotland with data collection taking place between October 2019
to December 2019 (application 16818-14107). All participants were informed of the study
aims and provided written informed consent.

2.2.1. Procedures

Participants were asked to wear an activPAL device on the anterior midline of the right
thigh using nitrile sleeves and a Hypafix dressing to waterproof [28]. ActivPAL devices
were initialized using PAL Connect version v8.10.8.75 to record data using the default
settings (20 Hz, 10 s minimum sitting and upright period). The same computer was used
to initialize all devices and programmed to commence data collection after distribution.
Participants were fitted with the device prior to leaving the data collection session and
requested to wear the device at all times for 8 days.

2.2.2. Data Reduction and Processing

Upon return of the devices, data was downloaded using PAL batch v8.11.1.63 and
saved in raw format as .csv files. These files were subsequently processed in GGIR package
v2.7-2 in R statistical software (R Foundation for Statistical Computing, Vienna, Austria,
https://cran.r-project.org/, accessed on 29 March 2022) which detected sustained and
abnormally high values, non-wear time and auto calibrated the files using local gravity as
a reference [27]. The GGIR package calculated both ENMO and MAD averaged over 5 s
epochs, expressed in mg [29]. To enhance generalizability, non-wear was imputed using
the default settings in GGIR whereby invalid data were imputed by the average at similar
times of different days of the monitoring period. Participant files were used in subsequent
analysis if post-calibration error was <0.02 g and participants had ≥1 day of valid wear data
(defined as 24 h per day). The participant files that met the inclusion criteria after being
processed in GGIR, also had to provide ≥1 day of valid wear data (defined as 24 h per day)
when processed in PAL batch v8.10.12.60. Thus, data files for each day provided by GGIR
and PAL Batch were visually inspected to ensure outcomes were compared using identical
timeframes and days. Furthermore, as one of the aims of this study was to evaluate the
performance of laboratory-based cut-points in a free-living setting, sleep data was excluded
from subsequent analysis. To facilitate this, the start and end of the time in bed provided by
PAL batch was used to estimate sleep time for each valid day. A sleep log was subsequently
created for all participants using the start and end time in bed provided by PAL batch,
in GGIR. This ensured that the sleep estimates were the same between both processing
methods (i.e., PAL batch and GGIR) and helped minimize bias when comparing outcomes
between the two processing methods. Finally, time spent in SB provided by PAL batch was
used as the criterion measure in subsequent analysis.

2.2.3. Statistical Analysis

All lying down and sitting activities (activities 1–6) were grouped together and con-
sidered as sedentary behaviours. Receiver operating characteristic (ROC) analyses were
then undertaken to identify optimum ENMO and MAD cut-points to distinguish between
sedentary and non-sedentary behaviours (i.e., activities 7–12). In the ROC analyses, the
Youden index was used, defined as Youden = sensitivity + specificity −1, to optimize
sensitivity and specificity and to determine the optimal MAD and ENMO cut-points [30].
To interpret the accuracy of the cut-points, the area under the curve (AUC) was provided
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for each cut-point with values < 0.7, 0.70–0.79, 0.80–0.89 and ≥0.90 considered poor, fair,
good and excellent, respectively [31]. Prior to undertaking the ROC analyses, events files
provided by PAL batch were downloaded and visually inspected to confirm the correct
posture (i.e., sedentary, non-sedentary) was identified.

Using the free-living data (part 2), time spent in SB was provided by PAL batch for
each participant that met the inclusion criteria. Thereafter, the optimal cut-points for MAD
and ENMO provided by the ROC analyses were applied in GGIR to estimate time spent
below these thresholds (herein termed sedentary time). Agreement between time spent
in SB from PAL batch and sedentary time from GGIR was examined using mean percent
error (MPE), mean absolute percent error (MAPE), equivalence tests and Bland-Altman
plots as recommended [32]. As reported previously, a 5% threshold was used to aid the
interpretation the MPE findings and consider the practical relevance of the generated
cut-points [33]. Pairwise 95% equivalence tests were used to establish whether the 95%CI of
the mean for sedentary time fell within the proposed equivalence zone for SB [34]. Rather
than state a fixed absolute zone to infer equivalence, the required percentage needed to
reach equivalence is provided alongside the zone necessary to achieve equivalence as a
proportion of the SD [35]. Finally, Bland-Altman plots were used to assess agreement
between each processing method and to visualize the magnitude of any differences [36].
Statistical analyses were undertaken using IBM SPSS statistical software for Windows
version 25 (IBM, Armonk, NY, USA). Descriptive statistics were calculated for all outcomes
(mean ± SD) or median (25th–75th percentile) following normality testing. ROC curve
analyses were undertaken using MedCalc 14.8.1 (MedCalc Software, Flanders, Belgium)
whereas equivalence testing was undertaken in Minitab (v17) with alpha set at 0.05.

3. Results
3.1. Laboratory Based

The thirty-five participants completed all activities with their data files meeting the
inclusion criteria. The ENMO and MAD values for the sedentary and non-sedentary
behaviours are provided in Table 2. The ENMO values tended to be higher for sedentary
behaviours and standing compared to MAD, whereas MAD values tended to be higher
for the self-paced walk and ascending/descending stairs. Findings from the ROC analyses
revealed excellent classification accuracy for both ENMO and MAD models, with AUC
values of 1. For ENMO, an acceleration value of 26.4 mg and 30.1 mg for MAD was found
to discriminate sedentary vs. non-sedentary behaviours.

Table 2. ENMO and MAD values for sedentary and non-sedentary behaviours.

Activity ENMO (mg) MAD (mg)

Sedentary behaviours 5.1 (3.1–8.6) 4.0 (1.8–9.1)
Standing whilst using their mobile phone to browse the internet 5.6 (3.6–31.4) 4.5 (1.9–6.2)

Self-paced walk in a forward direction around the laboratory 240.5 (209.4–341.7) 316.3 (268.7–370.2)
Picking up items on the floor and placing them on a desk 201.3 (174.5–214.3) 245.4 (210.4–259.9)

Dusting a set area 73.4 (47.4–87.7) 60.2 (50.7–71.3)
Sweeping the floor of a set area 94.4 (65.1–106.9) 77.1 (57.1–88.3)

Ascend then descend a flight of stairs (out with the laboratory) 248.7 (217.2–269.2) 349.7 (298.3–364.5)

Data are presented as median (25th–75th percentile). ENMO: Euclidean Norm Minus One (ENMO) measured in
milligravity units (mg). MAD: Mean Amplitude Deviation (MAD) measured in milligravity units (mg).

3.2. Free-Living

Of the thirty-eight participants recruited, 2 failed to provide 24 h of wear time for ≥1 day
(confirmed by GGIR and PAL batch) and were removed from subsequent analysis. This left
thirty-six participant data files (14 females; age = 28.5 ± 3.6 years; BMI = 24.5 ± 3.1 kg/m2) to
be examined in subsequent analysis. No post-calibration error > 0.01 g was evident from these
data files when processed through GGIR. The activPAL was worn on average for 5.7 ± 1.5 days
with outcomes from 205 days available for analysis. Estimates of time spent sedentary from
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PAL batch was 548.8 ± 85 min/d and sedentary time from GGIR were 613.8 ± 116.1 min/d for
the ENMO metric and 561.3 ± 92.3 min/d for the MAD metric. Findings from the MPE and
MAPE analyses can be found in Table 3. Given the poorer performance of the ENMO cut-point
compared to MAD, standing still (passive standing [1]) was isolated from SB in the laboratory
and the optimal ENMO cut-point was provided by the ROC analysis to separate SB vs. passive
standing. An ENMO acceleration value of 21.9 mg (herein ENMOs) was found to discriminate
SB vs. passive standing. Despite the poor classification accuracy (AUC = 0.58), sensitivity was
near perfect (97%) with specificity lower at 43% for the ENMOs cut-point. Time spent sedentary
for ENMOs was 574.7 ± 121.3 min/d. Performance of the ENMOs cut-point was then examined
in subsequent analysis.

Table 3. Agreement of time spent sedentary from the activPAL when processed using PAL batch and GGIR.

Criterion Comparison Mean ± SD Minutes MPE ± SD MAPE ± SD

PALbatch

548 ± 85.1
ENMO 613.8 ± 116.1 −10.6 ± 26.7 14.4 ± 12.1
MAD 561.3 ± 92.3 −2.2 ± 7.9 6.5 ± 5.6

ENMOs 574.7 ± 121.3 3.1 ± 11.4 7.5 ± 6.9
MAPE, Mean Absolute Percent Error; MPE, Mean Percent Error; ENMO, Euclidean Norm Minus One; MAD,
Mean Amplitude Deviation ENMOs, Euclidean Norm Minus One cut-point separating sedentary behaviour vs.
passive standing.

The lowest MPE evident between processing methods was between PAL batch and
MAD at −2.2% with the highest MPE evident between PAL batch and ENMO at −10.6%.
Individual level differences followed a similar trend with the lowest MAPE evident between
PAL batch and MAD at 6.5%, whereas the highest MAPE was evident between PAL batch
and ENMO at 14.4%. Findings from the equivalence analyses are provided in Figure 1.
The absolute zone needed to reach equivalence for time spent sedentary provided by
PAL batch and ENMO was 16%. This corresponded to a relative zone of 1 SD to reach
equivalence. Comparisons between PAL batch and MAD revealed an absolute zone of 5%
which corresponded to a relative zone of 0.3 SD to reach equivalence. When comparing
sedentary estimates from PAL batch and ENMOs, the absolute zone needed to reach
equivalence was 9% which corresponded to a relative zone of 0.5 SD.
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From the Bland-Altman analyses provided in Figure 2a–c, mean bias between PAL
batch and ENMO was −70 min with limits of agreement (LoA) of—180 min to 41 min. This
equated to a mean bias of −12% and LoA of ±31%. The mean bias between PAL batch and
MAD was −11 min with LoA of −100 min to 79 min. This equated to a mean bias of −2%
and LoA of ±19%. The mean bias between PAL batch and ENMOs was −30 min with LoA
of −143 min to 84 min. This equated to a mean bias of −5% and LoA of ±25%.
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Figure 2. Bland-Altman plots evaluating the agreement between estimates of time spent sedentary
between different processing methods. Mean bias is represented by a solid line; 95% limits of
agreement with dashed lines. (a) Estimates of sedentary behaviour from PALbatch vs. ENMO from
GGIR, (b) Estimates of sedentary behaviour from PALbatch vs. MAD from GGIR, and (c) Estimates
of sedentary behaviour from PALbatch vs. ENMOs from GGIR.

4. Discussion

This is the first study to develop ENMO and MAD cut-points for the activPAL when
worn on the thigh to estimate time spent sedentary. Moreover, the performance of these
cut-points were subsequently evaluated in an independent sample during free-living. The
ENMO and MAD cut-points generated from the ROC analysis demonstrated excellent
discrimination between sedentary and non-sedentary behaviours. This suggested that
adults who are sedentary have ENMO and MAD values below the generated cut-points
and are unlikely to be classified as being physically active. When applying the cut-points
to free-living data, the MAD cut-points performed best demonstrating good levels of
agreement (MPE = −2.2%) and equivalence (5%; ≤0.3 SD) with SB values from PAL batch.
After isolating standing still from SB, the developed ENMOs cut-point was applied to
free-living data and demonstrated good levels of agreement (MPE = 3.1%), equivalence
(9%; 0.5 SD) and a smaller confidence interval from the Bland-Altman plot compared to
ENMO. These findings suggest that the MAD cut-point of 30 mg can be used to discriminate
between sedentary and non-sedentary behaviours, whereas the ENMOs cut-point of 22 mg
can be used to discriminate between SB and standing. Applying these cut-points to free-
living data demonstrated comparable sedentary estimates to that of the gold standard
device for the objective measurement of SB.
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It is not possible to draw comparisons of the developed cut-points with those previ-
ously published since no other study has reported cut-points for the activPAL device using
the processing methods detailed here. Nonetheless, comparisons can be made with other
studies that have looked to propose sedentary cut-points from other accelerometers worn on
different wear sites. Findings from this study revealed that the magnitude of accelerations
were considerably larger for activities that required participants to move whilst standing,
as observed elsewhere [24,37]. For instance, in the study by Sanders et al., [24] adults aged
≥ 60 years wore a GENEActiv device on their non-dominant wrist and an ActiGraph device
on their left hip whilst completing sixteen structured activities in a laboratory. When com-
paring the average ENMO values between household chores (i.e., washing up at a sink and
mopping the floor) and sitting from both the GENEActiv (128 mg vs. 8 mg) and the ActiGraph
(15 mg vs. 3 mg), the magnitude of accelerations between these activities were evident. Larger
differences were also evident when comparing ENMO values when walking on a treadmill
(GENEActiv = 209 mg; ActiGraph = 105 mg) to that of sitting [24].

In a similar study, young adults were asked to wear an ActiGraph and GENEActiv de-
vice on their right hip, and the same devices on their non-dominant wrist whilst performing
16 activities in a laboratory setting [37]. In this study, both MAD and ENMO acceleration
values are provided for the activities undertaken. A clear distinction in acceleration values
was evident between sedentary behaviours and light intensity activities requiring ambu-
lation, regardless of metric or device location. For instance, average ENMO acceleration
values for sedentary behaviours from the wrist and hip were approximately 10 mg and
5 mg, respectively, after averaging values from both accelerometer devices. Similar values
were evident for MAD from the wrist and hip. When examining the acceleration values
for a self-paced free-living walk, average values tended to fall between 50 mg to 150 mg
regardless of device, metric, or location. In this study, the average acceleration values
associated with the self-paced walking activity were larger (∼270 mg for ENMO and ∼331
mg for MAD) than those reported from younger [37] and older adults who walked on a
treadmill [24].

Differences in acceleration values between laboratory-based validation studies are to
be expected, even if the same or similar activities are undertaken across studies. Much
like the generation of accelerometer cut-points from laboratory validation studies, the cut-
points, or acceleration values, are population and protocol specific. Moreover, differences
in acceleration values from devices worn on the thigh to devices worn on the hip and
wrist also reflect the different movements at each location i.e., wrist movements can be
independent of body posture and ambulation. Although attempts were made in this
study to design lab-based activities that reflect free-living activities, it is possible that such
attempts may not sufficiently capture the typical movements in free-living environments.
Therefore, and in accordance with best practice recommendations [38], performance of
the generated cut-points were evaluated in an independent sample during free-living
against a criterion measure (i.e., activPAL). The MAD cut-point of 30 mg performed best
followed by the ENMOs cut-point of 22 mg, despite its poor classification accuracy. The
poor classification accuracy of the ENMOs cut point is likely a consequence of the similar
acceleration values evident between the sedentary behaviours and the standing activity.
As the sensitivity of the ENMOs cut-point was near perfect however, there is little risk of
individuals being misclassified as being physically active as was found during free-living.
Furthermore, these findings highlight the importance of evaluating cut-points that are
generated in a simulated laboratory environment within a free-living setting.

From the previous validation studies that generated ENMO and MAD SB cut-points for
adults [22,24,37], only Hildebrand et al. [22] evaluated the performance of the generated cut-
points in a free-living setting against a criterion measure (activPAL). The authors evaluated
the performance of their developed cut-points for the non-dominant wrist and hip during
free-living by comparing the percentage of time correctly identified as sedentary (sensitivity)
and non-sedentary (specificity) against the activPAL. Sedentary time estimates were found
to be significantly higher compared to the activPAL regardless of the accelerometer device
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(ActiGraph or GENEActiv) or wear site with differences ranging from 84% to 86% from
the hip and 69% to 72% from the wrist. When reviewing the absolute agreement findings
across all devices and locations, specificity was poor ranging from 26% to 49% regardless
of device and location. This suggests that non sedentary behaviours that were undertaken
with minimal ambulation were likely incorrectly classified as sedentary behaviour and may
explain the large mean differences in sedentary time estimates reported by the authors.
Moreover, sedentary estimates were compared between different body locations and in the
case of the non-dominant wrist and thigh, movements could be independent on one another
which could also explain the findings of this study. Nonetheless, the mean differences in
sedentary estimates during free-living when applying the cut-points used in this study
were considerably less than those reported by Hildebrand et al. [22], providing confidence
in the proposed cut-points.

The acceleration values of the proposed ENMO and MAD cut-points are similar in mag-
nitude, but there are differences between these metrics that limits their comparability [29].
As the raw acceleration signal contains both the movement and gravitational components,
these need to be separated. The ENMO metric removes the gravitational component by
subtracting one gravitational unit from the Euclidean Norm of the three raw acceleration
signals, to provide the movement component of the acceleration signal (i.e., ENMO) [37].
Whereas for the MAD metric, gravity is estimated as the average acceleration per mov-
ing time window. The problem with this approach however, is that the moving average
of the acceleration signal may reflect gravitational acceleration as well as low frequency
movements [29]. When the gravitational and movement components are then separated by
the GGIR algorithm to provide the MAD metric, lower amplitude movements may also
be removed by the filter. When you consider the differences in ENMO and MAD values
for the sedentary behaviours and standing activity observed in this study (Table 2), the
higher ENMO values may be a consequence of the different methods used to separate the
raw acceleration signal. Support for this assumption can be seen from a recent study which
compared the ENMO and MAD values provided from ActiGraph devices when worn at
the hip and both wrists [39]. The authors reported that agreement between ENMO and
MAD was lower during sleeping hours for all wear sites. This is likely a consequence of the
lower magnitude of acceleration values evident during this time period which resulted in
lower mean values for MAD compared to ENMO, across all wear sites. In contrast, higher
mean acceleration values were evident for MAD compared to ENMO during waking hours.
Although in this study the sleep period was removed from subsequent analyses, the find-
ings from Migueles et al., [39] and in this study suggest that sedentary time comparisons
between the MAD and ENMO cut-points should be done with caution.

With the activPAL considered the gold standard device for the measurement of SB,
the cut-points proposed in this study should not be considered as a replacement for
the PAL analysis software given the wealth of SB related outcomes provided. Rather,
these cut-points provide an additional means for researchers to analyze and interpret
their accelerometer data and explore associations with health outcomes alongside other
outcomes provided by GGIR. When using GGIR, researchers are able to report on several
additional outcomes (i.e., average acceleration; intensity gradient; MX and time when the
most/least X h of activity is undertaken), other gravitational metrics (i.e., ENMO; MAD etc.)
as well as the user having the ability to specify their own intensity-related thresholds and
data reduction approaches [40]. Therefore, the cut-points obtained in this study can be
used to provide a simple means of estimating time spent sedentary that is comparable to
estimates provided by a criterion measure. Moreover, researchers can have confidence in
these laboratory derived cut-points due to their performance in an independent sample
during free-living across an 8-day monitoring period.

This study has several strengths including being the first to develop ENMO and MAD
cut-points for the activPAL using the open-source software GGIR. The laboratory protocol
consisted of 12 activities that were included to mimic the activities and movements undertaken
by adults in a free-living setting. Thereafter, the performance of the developed cut-points
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was evaluated in an independent sample during free-living across 8 days. Another strength
of the study is the use of the same procedures to identify, and remove, sleeping hours from
subsequent comparisons. Moreover, using complete 24 h data when comparing outcomes
removed the need for different algorithms to detect non-wear. The free-living participants
demonstrated high compliance which strengthens the ecological validity of the accelerometer
data. Finally, the ENMO metric is sensitive to poor calibration [29]. Therefore, autocalibra-
tion was undertaken for all accelerometer files used in this study. Limitations include the
homogenous populations used in this study which limits the generalizability of our findings.
Furthermore, the limited number of activities undertaken in the laboratory may also be seen
as a limitation.

5. Conclusions

In conclusion, the ENMOs and MAD cut-points developed in the laboratory performed
well when applied to an independent population during free-living and supports their
practical relevance. Estimates of time spent sedentary were comparable to estimates
provided by a criterion measure, with the MAD cut-point performing best in comparison to
ENMOs. These findings suggest that users are able to process their collected activPAL data
using GGIR and apply the ENMOs and MAD cut-point to estimate time spent sedentary
alongside other GGIR metrics and outcomes. Future research may wish to undertake
additional validation studies to propose MVPA cut-points from the activPAL device to be
used alongside the cut-points proposed here.
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