
Citation: Sadoine, M.L.; Smargiassi,

A.; Liu, Y.; Gachon, P.; Fournier, M.;

Dueymes, G.; Namuganga, J.F.;

Dorsey, G.; Nasri, B.; Zinszer, K.

Differential Influence of

Environmental Factors on Malaria

Due to Vector Control Interventions

in Uganda. Int. J. Environ. Res. Public

Health 2023, 20, 7042. https://

doi.org/10.3390/ijerph20227042

Academic Editors: Giusy Diella,

Francesca Apollonio and

Francesco Triggiano

Received: 20 July 2023

Revised: 23 October 2023

Accepted: 6 November 2023

Published: 9 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Differential Influence of Environmental Factors on Malaria Due
to Vector Control Interventions in Uganda
Margaux L. Sadoine 1,2,* , Audrey Smargiassi 2,3, Ying Liu 2,3, Philippe Gachon 4 , Michel Fournier 5,
Guillaume Dueymes 4, Jane Frances Namuganga 6, Grant Dorsey 7, Bouchra Nasri 1,2 and Kate Zinszer 1,2

1 Department of Social and Preventive Medicine, School of Public Health, Université de Montréal,
Montreal, QC H3N 1X9, Canada

2 Center for Public Health Research, Université de Montréal, Montreal, QC H3N 1X9, Canada
3 Department of Environmental and Occupational Health, School of Public Health, Université de Montréal,

Montreal, QC H3T 1A8, Canada
4 ESCER (Étude et Simulation du Climat à l’Échelle Régionale) Centre, Université du Québec à Montréal,

Montreal, QC H2L 2C4, Canada
5 Montreal Regional Department of Public Health, Montreal, QC H2L 1M3, Canada
6 Infectious Diseases Research Collaboration, Kampala P.O. Box 22418, Uganda
7 Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
* Correspondence: margaux.sadoine@umontreal.ca

Abstract: Background: Few studies have explored how vector control interventions may modify
associations between environmental factors and malaria. Methods: We used weekly malaria cases
reported from six public health facilities in Uganda. Environmental variables (temperature, rain-
fall, humidity, and vegetation) were extracted from remote sensing sources. The non-linearity of
environmental variables was investigated, and negative binomial regression models were used to
explore the influence of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs)
on associations between environmental factors and malaria incident cases for each site as well as
pooled across the facilities, with or without considering the interaction between environmental
variables and vector control interventions. Results: An average of 73.3 weekly malaria cases per
site (range: 0–597) occurred between 2010 and 2018. From the pooled model, malaria risk related
to environmental variables was reduced by about 35% with LLINs and 63% with IRS. Significant
interactions were observed between some environmental variables and vector control interventions.
There was site-specific variability in the shape of the environment–malaria risk relationship and
in the influence of interventions (6 to 72% reduction in cases with LLINs and 43 to 74% with IRS).
Conclusion: The influence of vector control interventions on the malaria–environment relationship
need to be considered at a local scale in order to efficiently guide control programs.

Keywords: malaria; prevention; control; indoor residual spraying; bednets; environment; epidemiology

1. Introduction

Despite significant progress made over the past 20 years, malaria remains a public
health challenge worldwide, having resulted in over 247 million cases and an estimated
619,000 deaths in 2021 [1]. The control and elimination of malaria relies primarily on
insecticide-treated nets (ITNs), prompt treatment with artemisinin-based combination
therapies, and indoor residual spraying of insecticide (IRS). Accurate and timely surveil-
lance can also constitute an effective tool in disease burden monitoring and intervention
evaluation to guide public health policy. In 2006, an enhanced health facility-based malaria
surveillance system was established in Uganda to provide high-quality data at sentinel
sites, through the electronic collection of laboratory-confirmed cases of malaria. In Uganda,
malaria is highly endemic, and more than 12.6 million cases were confirmed in 2021 [1].
It was the first country to introduce the mass distribution of long-lasting insecticidal nets
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(LLINs), which began in 2013. Since then, similar campaigns have been implemented every
3–4 years, including in 2017–2018 and most recently in 2020–2021 [2]. Uganda is one of the
countries with the highest LLIN coverage, with 83% of households reportedly owning at
least one LLIN in 2018, compared to 16% in 2006 [3]. Uganda has also used IRS since 2006,
which is targeted to selected high-burden areas.

The environment plays a critical role in malaria transmission. Both the development
and survival of the mosquito and the parasite rely on a certain threshold of rainfall, temper-
ature, vegetation, and humidity [4,5]. The link between these factors and malaria has been
widely studied, although few studies have analyzed the combined effects of environmental
factors and malaria control interventions in statistical modelling [6]. Furthermore, there has
not been much work exploring the differential influence of the environment with malaria
control interventions, yet this information could inform control programs. Chaves et al. [7]
demonstrated a reduced average effect of temperature on P. falciparum transmission after an
ITN distribution campaign, while Carrasco-Escobar et al. [8] showed a time-varying change
in slope in the dose–response effect of evapotranspiration, precipitation, and minimum
temperature on malaria incidence during and after community interventions (health work-
ers training, LLIN distribution, and community education), leading to reduced incidence
rates of malaria.

The objective of this study was to investigate the influence of vector control inter-
ventions (IRS and LLINs) on associations between various environmental factors (rainfall,
humidity, temperatures, and enhanced vegetation index) and malaria incident cases, using
data from six public health facilities in Uganda.

2. Materials and Methods
2.1. Study Sites

This study used data from six malaria reference centers (MRCs) that are part of a health
facility-based malaria surveillance program—the Uganda Malaria Surveillance Program
(UMSP). UMSP began in 2006 in collaboration with the Uganda National Malaria Control
Division at six sentinel sites across the county, reflective of the diversity of Uganda’s malaria
transmission intensity [9]. These MRCs are high-volume level III/IV public health facilities
with functional laboratories and are part of a larger MRC network that was expanded from
2014 to 2020 to include over 70 sites across the country. Each MRC captures individual-level
data for all patients presenting to the outpatient department [9]. The captured information
includes the following: socio-demographic variables including age and sex; village of
residence; history of fever; whether malaria was suspected; whether laboratory testing
was performed if malaria was suspected; what type of laboratory test was performed
(rapid diagnostic test (RDT) or malaria microscopy); test results; diagnoses given; and
treatments prescribed. This information is collected using a standardized register—HMIS
002: Outpatient register [9]. Initially, a data manager at each site was employed on a
full-time basis by UMSP to enter data electronically using Epi Info 3.5.1 (Centers for Disease
Control and Prevention, Atlanta, GA, USA). However, data entry was transitioned to health
information assistants employed by the government at each facility.

To ensure that data collection procedures between sites were the same over time, only
the original MRCs of the UMSP program were included in our study. These correspond
to Aduku health center level IV (HCIV) in Kwania district, Kamwezi HCIV in Rukiga
district, Kihihi HCIV in Kanungu district, Kasambya health center level III (HCIII) in
Mubende district, Nagongera HCIV in Tororo district, and Walukuba HCIV in Jinja district.
The locations of the districts are shown in Figure 1. Daily data provided by UMSP were
converted to a weekly resolution for the period from 2010 to 2018 given the large number
of zeros reported by some sites.



Int. J. Environ. Res. Public Health 2023, 20, 7042 3 of 13

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 3 of 14 
 

 

The locations of the districts are shown in Figure 1. Daily data provided by UMSP were 
converted to a weekly resolution for the period from 2010 to 2018 given the large number 
of zeros reported by some sites. 

 
Figure 1. The distribution of study districts and malaria reference centers categorized by control 
activities. 

2.2. Vector Control Interventions 
In Uganda, vector control efforts for malaria are focused on use of LLINs and IRS 

[10]. In 2013–2014, the Ministry of Health launched its first universal LLIN coverage cam-
paign, through which LLINs were provided free of charge and targeting at least one LLIN 
for every 2 residents to over 90% of households [11]. This was followed by a second uni-
versal campaign in 2017/2018, which resulted in 26.5 million nets distributed, achieving a 
coverage of 95% [10]. The distribution dates for the first campaign were as follows: No-
vember 2013 in the districts of Mubende, Tororo, and Jinja; in May 2014 in the districts of 
Kwania, Kanungu, and Rukiga. The second mass distribution campaign was conducted 
in February 2017 in Kwania district, May 2017 in Tororo and Jinja districts, June 2017 in 
Kanungu and Rukiga districts, and November 2017 in Mubende district. We considered 
the period of LLIN coverage to begin on the first of the month following LLIN distribution 
and 2 years of nets’ survival. Net survivorship in African countries ranges between 6 
months and 4 years, with 25 to 44% of nets unusable after 24 months and an insecticidal 
bio-efficacy of less than 3 years [12–16]. 

Indoor residual spraying (IRS) began in Uganda in the late 1950s and early 1960s with 
pilot projects for malaria eradication, and since then, only targeted campaigns have been 
conducted [17]. In 2006, Uganda expanded IRS to districts with high malaria endemicity, 
starting with a single round in the south-western district of Kanungu. The program was 

Figure 1. The distribution of study districts and malaria reference centers categorized by
control activities.

2.2. Vector Control Interventions

In Uganda, vector control efforts for malaria are focused on use of LLINs and IRS [10].
In 2013–2014, the Ministry of Health launched its first universal LLIN coverage campaign,
through which LLINs were provided free of charge and targeting at least one LLIN for
every 2 residents to over 90% of households [11]. This was followed by a second universal
campaign in 2017/2018, which resulted in 26.5 million nets distributed, achieving a cover-
age of 95% [10]. The distribution dates for the first campaign were as follows: November
2013 in the districts of Mubende, Tororo, and Jinja; in May 2014 in the districts of Kwania,
Kanungu, and Rukiga. The second mass distribution campaign was conducted in February
2017 in Kwania district, May 2017 in Tororo and Jinja districts, June 2017 in Kanungu and
Rukiga districts, and November 2017 in Mubende district. We considered the period of
LLIN coverage to begin on the first of the month following LLIN distribution and 2 years of
nets’ survival. Net survivorship in African countries ranges between 6 months and 4 years,
with 25 to 44% of nets unusable after 24 months and an insecticidal bio-efficacy of less than
3 years [12–16].

Indoor residual spraying (IRS) began in Uganda in the late 1950s and early 1960s with
pilot projects for malaria eradication, and since then, only targeted campaigns have been
conducted [17]. In 2006, Uganda expanded IRS to districts with high malaria endemicity,
starting with a single round in the south-western district of Kanungu. The program was
then shifted to ten high-burden districts in the north in 2007–2009. Kwania and Tororo
were among the districts to receive IRS. In Kwania, one IRS round with the pyrethroid
alpha-cypermethrin was implemented in March 2010, followed by nine rounds of the
carbamate bendiocarb approximately every 6 months, the last of which was conducted in
May 2014. After three years without IRS, one round of IRS with Actellic was implemented
in May 2017. Tororo received six rounds of IRS starting in December 2014, which began
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with three rounds with bendiocarb sprayed approximately every 6 months, followed by
three with Actellic sprayed approximately 12 months apart, with the last round included in
this analysis conducted in July 2018. We considered IRS coverage from the start date of the
month following its implementation up to the effectiveness of the final round. Based on a
previous study [17], the effectiveness of the last bendiocarb spray round in May 2014 was
estimated to have lasted 4 months after its application, and that of Actellic to have lasted
23 months. The effectiveness of Actellic was therefore considered up to December 2018.
The periods considered for the interventions are shown in Figure 2 and summarized in
Supplementary Table S1.
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2010–2018 at each malaria reference center ((A): Aduku health center; (B): Kamwezi health center;
(C): Kasambya health center; (D): Kihihi health center; (E): Nagongera health center; (F): Walukuba
health center).

2.3. Environmental Data

Data on environmental factors for 2010–2018 were obtained from remote sensing
sources. The Africa Rainfall Climatology Version 2 (NOAA NCEP CPC FEWS Africa
DAILY ARC2 daily, available from https://iridl.ldeo.columbia.edu/, last accessed on 26
May 2020) [18] was used to obtain daily precipitation data (mm/day) for Uganda, at a
0.1◦-by-0.1◦ horizontal resolution. The hourly near-surface air temperature, the hourly
maximum and minimum near-surface air temperature, and the hourly near-surface specific
humidity dataset for Uganda derived from the ERA5 re-analysis [19] at a 0.1◦-by-0.1◦

horizontal resolution were used. Data were retrieved from the Copernicus Climate Change
Service (C3S, available from https://climate.copernicus.eu/, last accessed on 30 March
2021). The gridded hourly datasets were further aggregated into daily averages.

https://iridl.ldeo.columbia.edu/
https://climate.copernicus.eu/
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The 16-day Enhanced Vegetation Index (EVI) dataset with a spatial resolution of 0.005◦

by 0.005◦ for Uganda was extracted from the Moderate Resolution Imaging Spectrora-
diometer vegetation indices products (MOS13A1 v006) [20]. This dataset was available
from the U.S. Geological Survey (USGS: https://modis.gsfc.nasa.gov/data/, last accessed
on 30 March 2021). The EVI imagery products collected between January 1 and January 10
of each year between 2010 and 2018 were used to represent the vegetation coverage for the
dry season, and between June 10 and June 26 for the rainy seasons.

The daily average of meteorological variables (mean, maximum, and minimum tem-
perature, humidity, and precipitation) and EVI for the six districts (i.e., Kwania, Jinja,
Rukiga, Kanungu, Mubende, and Tororo) was produced from the above gridded meteoro-
logical and vegetation index products. Daily meteorological variables were then averaged
over one to four months before each week of malaria counts at health facilities to con-
sider the lag between the climatic suitability for malaria transmission and malaria onset.
Cumulative rainfall (mm) for the same period was calculated.

2.4. Socio-Economic Data

Malaria is known to affect more those who are economically disadvantaged and is
also a source of poverty [21]. Children from low-income communities have twice the
risk of contracting malaria compared with children from high-income communities [22].
Therefore, we controlled associations with malaria for the average monthly household
income at the sub-regional level. It corresponded to the sources of income received in cash
and in-kind earnings [23]. Data were retrieved from Uganda national household surveys
conducted in 2012–2013 and 2016–2017 by the Ugandan Bureau of Statistics [23,24].

2.5. Statistical Analysis

Potential outliers with regard to age were identified in the dataset (many people over
100 years old); therefore, patients over 70 years old (1.42%) and those with missing data
on sex (0.03%) were excluded from the analyses. Spearman rank correlation analysis [25]
was conducted to examine the correlation within meteorological variables. Mean daily
temperature was highly correlated with maximum and minimum daily temperatures
(>0.8); therefore, only maximum and minimum temperatures were considered in the
subsequent analyses.

We used a general linear model (GLM) based on a negative binomial distribution
to analyze the influence of interventions on the environment–malaria relationship in a
pooled model, combining the six MRCs (model 1); site-specific GLMs were also created. A
GLM can be used when the response variable is not distributed normally and consists of
non-negative integers [26]. A GLM is made up of a linear predictor that can be written as

yi = β0 + β1x1i + . . . + βpxp + εi

where the response yi, i = 1, 2, . . . , n is modelled using a linear function of explanatory
variables, plus an error term. The negative binomial distribution is used to deal with
overdispersion in count data [27]. The expected value of the response is given as

Y = exp(yi)

In our study, the dependent variable was the number of weekly confirmed malaria
cases, with a malaria case defined as positive malaria diagnostic test results via microscopy
or RDT. Models included the environmental variables (maximum and minimum tempera-
ture, rainfall, humidity, and EVI), vector control interventions (yes/no LLINs and IRS), and
the average monthly income of households. Sites were included in models as fixed effects.
The model’s offset was represented by the weekly number of visits to each MRC, as we
assumed that the number of malaria diagnoses can vary depending on the number of visits
at the clinics and on the transmission seasonality. Therefore, we modelled the number of
positive malaria cases among clinic visits.

https://modis.gsfc.nasa.gov/data/
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Prior to fitting the models, the nonlinear relationships between environmental vari-
ables and malaria were investigated and considered using natural cubic splines with
three knots placed at the 10th, 50th, and 90th percentiles. Model selection was based on
the Akaike Information Criterion (AIC) [28], and model diagnostics were performed to
verify the model’s fit, including Pearson and deviance residuals. The presence of resid-
ual autocorrelation was assessed through plotting the residuals according to the weeks
of observations.

Finally, an additional pooled model was created (model 2) to investigate the influence
of interactions between environmental variables and vector control interventions. Relevant
interactions were chosen based on the LOWESS plots and the likelihood ratio test. We
adopted a liberal approach to selecting interactions, in which the nested model had no
interaction and was compared to the main effect model with one term of interaction at a
time. A description of the final models used for analysis is presented in Table S2.

The analyses were performed using R program version 3.6.3. Models were run using
the glm.nb function from the MASS package [29], nonlinear relationships were analyzed
with the mgcv package [30], and the predictive margins at the mean of environmental
variables at each site were produced with the ggeffects package [31]. We calculated the
total predicted cases for each pool model from the predict function of the car package [32].
We also calculated the predicted cases for each site-specific model and compared their
distribution to those from the pooled model without interaction.

3. Results
3.1. Characteristics of the Study Sites

A total of 204,252 laboratory-confirmed malaria cases were identified between 2010
and 2018, with an average of 73.3 weekly cases (range: 0–597). Kihihi reported the highest
number of weekly cases (92.4 on average), and Kamwezi reported the lowest (47.2 on
average) (Table 1). The average weekly number of visits between the sites was 425, and the
highest mean was recorded in Walukuba (645 weekly visits, on average). The distribution
of environmental variables averaged over 3 months (corresponding to the best average
period selected for final pooled models) is presented in Table 2. Nagongera experienced
the most precipitation, with an average of 363 mm for 3 months, while Kamwezi received
the least amount of precipitation (a mean of 189 mm over 3 months). Kamwezi had the
lowest temperature (3-month average: 14.5 ◦C; range: 13.7 ◦C–15.7 ◦C), while maximum
temperatures were the highest in Aduku (3-month average: 28.7 ◦C; range: 26.8 ◦C–32.7 ◦C).
The distributions of environmental factors for other averaging periods are presented in
Supplementary Table S3.

Table 1. Distribution of weekly cases and visits and average income for the period 2010–2018.

Variables Aduku
(nweek = 469)

Kamwezi
(nweek = 461)

Kasambya
(nweek = 470)

Kihihi
(nweek = 469)

Nagongera
(nweek = 470)

Walukuba
(nweek = 448)

Overall
(ntotal = 2787)

Weekly cases of malaria
Mean (SD) 68.9 (61.4) 47.4 (79.1) 86.0 (59.3) 92.4 (55.4) 64.7 (52.0) 80.3 (58.6) 73.3 (63.3)

Median (Min–Max) 49.0 (1–371) 18.0 (0–597) 72.0 (0–528) 85.0 (1–303) 60.0 (0–262) 62.0 (4–319) 58.0 (0–597)

Weekly visit numbers
Mean (SD) 393 (122) 396 (175) 310 (116) 387 (121) 429 (114) 645 (148) 425 (169)

Median (Min–Max) 381 (86–799) 358 (143–1240) 299 (12–783) 381 (2–717) 425 (10–813) 653 (151–1060) 399 (2–1240)

Average income
(k–Ugandan shillings)

Mean (SD) 314 (93.6) 385 (62.7) 420 (50.3) 387 (63.4) 142 (5.75) 205 (11.6) 309 (117)
Median (Min–Max) 359 (139–370) 343 (339–476) 433 (329–463) 343 (339–476) 141 (137–152) 204 (195–222) 343 (137–476)



Int. J. Environ. Res. Public Health 2023, 20, 7042 7 of 13

Table 2. Distribution of environmental factors for 3 months, averaging periods between 2010–2018.

Environmental
Variables

Aduku
(nweek = 469)

Kamwezi
(nweek = 461)

Kasambya
(nweek = 470)

Kihihi
(nweek = 469)

Nagongera
(nweek = 470)

Walukuba
(nweek = 448)

Overall
(ntotal = 2787)

Cumulative rainfall (mm)
Mean (SD) 287 (119) 189 (98.7) 265 (99.3) 263 (112) 363 (148) 300 (118) 278 (128)

Median (Min–Max) 300 (4.67, 568) 187 (8.75, 578) 266 (46.4, 485) 257 (32.6, 575) 348 (43.7, 760) 289 (77.8, 694) 268 (4.67, 760)

Maximum temperature (◦C)
Mean (SD) 28.7 (1.38) 23.5 (0.595) 27.7 (1.03) 25.8 (0.520) 27.8 (1.08) 26.7 (0.769) 26.7 (1.94)

Median (Min–Max) 28.2 (26.8, 32.7) 23.5 (22.3, 25.2) 27.5 (25.8, 30.8) 25.8 (24.6, 27.0) 27.5 (26.2, 31.1) 26.5 (25.4, 29.3) 26.9 (22.3, 32.7)

Minimum temperature (◦C)
Mean (SD) 21.1 (0.668) 14.5 (0.413) 17.7 (0.513) 16.2 (0.486) 17.5 (0.567) 19.5 (0.504) 17.8 (2.19)

Median (Min–Max) 21.1 (19.9, 23.1) 14.5 (13.7, 15.7) 17.6 (16.7, 19.5) 16.2 (15.1, 17.6) 17.5 (15.7, 19.0) 19.5 (18.4, 21.2) 17.5 (13.7, 23.1)

Humidity (kg·kg−1)

Mean (SD) 0.0146
(0.000771) 0.0133 (0.00219) 0.0145

(0.000986) 0.0129 (0.00195) 0.0134 (0.00170) 0.0144
(0.000985) 0.0139 (0.00167)

Median (Min–Max) 0.0147 (0.017,
0.0161)

0.0142 (0.00830,
0.0164)

0.0146 (0.0120,
0.0164)

0.0137 (0.00817,
0.0155)

0.0136 (0.00984,
0.0173)

0.0146 (0.0119,
0.0163)

0.0143 (0.00817,
0.0173)

Enhanced vegetation index
Mean (SD) 0.385 (0.0615) 0.414 (0.0295) 0.435 (0.0419) 0.459 (0.0348) 0.380 (0.0446) 0.371 (0.0454) 0.408 (0.0543)

Median (Min–Max) 0.391 (0.225,
0.519)]

0.408 (0.364,
0.496)

0.438 (0.297,
0.505)

0.465 (0.389,
0.539)

0.383 (0.244,
0.469)

0.379 (0.254,
0.457)

0.407 (0.225,
0.539)

3.2. Influence of Environmental Conditions and Intervention in the Pooled Model 1 without Interaction

The comparison between the different exposure periods (1- to 4-month averages)
showed that the smallest AIC was obtained for the environmental variables averaged
over a 3-month period. The regression coefficients of the final model with environmental
variables averaged over a 3-month period are presented in Table S4.

Predictive margins at the mean, corresponding to the predicted counts of weekly
malaria cases according to each environmental variable when all other covariates were
held constant at their mean, are presented in Figure 3 and Supplementary Table S5. The
results suggested that malaria risk increases as minimum temperature, humidity, and EVI
increase, while the risk decreased as rainfall and maximum temperature increased. The
predictive margins of environmental variables on malaria risks were reduced by 35% with
LLIN and approximatively 64% with IRS (Supplementary Table S5).
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3.3. Influence of Environmental Conditions and Interventions When Considering Interactions

LOWESS plots of the relationship between malaria incident cases and each environ-
mental variable, in the presence or absence of vector control intervention, were produced
in order to identify potential interactions. The results, presented in Figures S1 and S2, did
not clearly show the presence of interactions. Based on the likelihood ratio test, significant
interactions were identified between IRS and minimum temperature/humidity/EVI, while
all interactions between LLINs and environmental variables were statistically significant,
with the exception of humidity.

To compare the two pooled models (i.e., with and without interaction), the AICs and
the total number of predicted cases (sum of the weekly predicted cases over the period
2010–2018) and the predictive margins at the mean at each quantile for each environmental
variable were calculated. The predictive margins at the mean are presented in Figure 2 and
Table S6.

The addition of interactions in the pooled model led to a large drop in the AIC from
26,986 for model 1 (without interaction) to 26,627 for model 2 (with interaction). Results
from the predictive margins’ plots suggest that the influence of interventions was not
constant across the range of environmental variables. A less significant reduction in the
predictive margins of precipitation by LLINs was observed between 200 and 400 mm of
rain (−15% of cases at 268 mm of rain versus −60% of malaria cases at 5 mm—Table S6 and
Figure 4). The reduction in the predicted cases by IRS in relation to minimum temperatures
was greater, between 16 ◦C and 20 ◦C of minimum temperature, and beyond 20 ◦C with the
LLINs. LLINs only reduced malaria predicted cases below 27 ◦C of maximum temperature.
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Although our results highlighted interaction effects between environmental variables
and the interventions, the number of total predicted cases was relatively similar between
the two models: 198,770 cases for model 1 without interaction and 199,211 for model 2 with
interactions, compared to 204,252 observed cases.

3.4. Effect of Environmental Characteristics and Intervention at Each Site

Models developed separately at each site differed from the pooled model 1. Contrary to
the pool models that were developed with environmental variables averaged over 3 months,
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smaller AICs were obtained for site-specific models with environmental variables averaged
over 4 months for Aduku, Kamwezi, Kasambya, Nagongera and Walukuba, while for
Kihihi, the best AIC was for a 2-month average. The predictive margins at the mean for
each environmental variable with and without intervention for each MRC are presented
in Supplementary Figure S3. LLIN induced a reduction in malaria cases in all regions but
Nagongera, ranging from 6 to 72% (Supplementary Tables S7–S12). IRS reduced more
malaria cases in Nagongera (−74% predicted cases—Table S11) than in Aduku (−43%
predicted cases—Table S7).

The comparison of the weekly malaria predictions distribution at each site from the
pooled model without interaction and the site-specific models is presented in Figure S4.
The results suggest that the pooled model provides similar predictions of weekly malaria
cases as the site-specific models.

4. Discussion

We analyzed health facility-based surveillance data to examine the influence of envi-
ronmental factors on malaria incident cases in the presence or absence of vector control
interventions as well as examining interactions and estimations using pooled and site-
specific models. We found that malaria risk was reduced more with IRS compared to
LLINs. Certain interaction effects were observed between the interventions and some
environmental variables. However, the predictions between the pooled models with and
without interactions were relatively similar. Finally, at the site level, the effects of the
environment on the risk of malaria were very heterogeneous, and interventions reduced
the environmental influence in most regions.

Malaria vector control interventions using chemical insecticides have proven to be
highly effective at reducing the disease incidence and mortality [33]. A meta-regression
on LLIN use in Asia and Africa demonstrated a decrease in malaria prevalence of 56%
(OR = 0.44, 95% CI: 0.41–0.48) [34], while some country-specific studies have showed a
lower risk of malaria with LLIN ownership in Benin (IRR = 0.6, 95% CI: 0.37–0.99) [35], and
LLIN use in Uganda (aRR = 0.15, 95% CI: 0.11–0.22 to aRR = 0.87, 95% CI: 0.70–1.09) [3].
The benefits of IRS have also been demonstrated, with a reduction in malaria prevalence
of 62% (RR = 0.38, 95% CI: 0.31–0.46) [36] and a significant protective effectiveness in
several studies conducted in Africa (median 28.5%, IQR 8.8–47.3%) [37]. Although the
effectiveness of these two types of interventions has been demonstrated in several contexts,
few have looked at the modification of environmental influence on malaria in the presence
of antivectorial interventions. The results of the pooled model 1 confirmed the protective
effects of IRS and LLIN on malaria risk, and pooled model 2 highlighted their influence in
modifying the effects of environmental determinants on malaria risk.

Malaria transmission is a complex phenomenon, and multiple factors can impact the
effectiveness of interventions, such as the type of insecticide and the environmental charac-
teristics in which it is used. Environmental conditions, particularly temperature, have been
found to influence the effectiveness of insecticides against Anopheles mosquitoes [38–41].
Some insecticides have a potential for toxicity, which increases with increasing tempera-
tures (such as carbamates), or with decreasing temperatures, as is the case for pyrethroids
and DDT [39,42]. Therefore, analyzing the possible effects of interactions between envi-
ronmental factors and control interventions is essential to improve our understanding
of this complexity. However, the effect of interventions under variable environmental
conditions has been the subject of little work, and to our knowledge, only one other study
has examined statistical interactions between interventions and meteorological factors,
showing a variable influence of LLINs depending on the level of ambient temperature and
normalized difference vegetation index [43].

In our study, the most notable interaction effects were observed between precipitation
and LLINs, maximum temperatures and LLINs, and minimum temperatures and IRS.
However, the total predicted cases from the model with interaction differ little from the
model with no interaction, suggesting that considering interactions at the pooled scale did
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not have a very significant added value. Nonetheless, given the subnational variability in
the effects of environmental factors on malaria and of interventions on malaria’s environ-
mental determinants, it may be relevant to analyze finer-scale interactions to improve the
understanding of interventions’ effectiveness. In our study, it was not possible to analyze
the interactions on a finer scale given the number of observations per site.

Importantly, although the pooled models provide a broader understanding of the
impacts of the different determinants of malaria and have the advantage of increasing
the statistical power, this is based on an average effect between sites, which omits a more
complex reality and variability. The analysis at a finer scale, i.e., on a local scale, demon-
strated that there was great variability in the effect size and direction of the environment
and in the influence of interventions on malaria risk. The reduction in malaria cases with
LLINs was the highest in Kamwezi, relatively low in Kasambya and Aduku, and absent
in Nagongera. The lack of LLIN protection at the Nagongera site has been observed in
another study [44]. Malaria Indicator Surveys [45,46] showed systematic disparities in
the accessibility, possession, and use of nets across Uganda, which could be related to the
differences in the magnitude of LLINs’ influence on malaria risk observed in our study.

For IRS, our results showed that its effectiveness was greater in Nagongera than in
Aduku. This difference could be due to differences in LLIN use [47], in entomological
inoculation rates [48], and in insecticide type. Indeed, in Ethiopia, the performance of
different insecticides was evaluated, and Bendiocarb-induced mosquito mortality was high
during the first three rounds (>90%) and gradually decreased with subsequent rounds. By
the sixth round, the mortality rate had reduced to 30% [49]. In our study, Aduku received
nine successive rounds of Bendiocarb, while Nagongera only received three rounds before
opting for Actellic. Switching the insecticide may have maintained a high level of IRS
efficacy in Nagongera compared to Aduku.

Finally, it should be noted that although the shape of the relationships between the
environmental variables and malaria cases differ between the subregions, the distributions
of weekly predicted cases are similar between the subregional and the pooled models. The
value of site-specific models therefore lies in the analysis of the influence of each individual
determinant of malaria.

There are several limitations of this study. First, surveillance data were based on
passive case detection and therefore only captured cases presenting to the sentinel health
facilities. Second, our analyses were not stratified by age and sex, resulting in an imprecise
portrait of malaria risk related to gender differences [50,51] and age [52]. Third, we used
the number of clinic visits as the models’ offset. This implies that (i) we modeled the ratio
of visits with malaria-positive diagnosis, which may not be a good proxy for a population-
based incidence rate and is highly susceptible to bias according to access to care and
diagnostic testing; (ii) we forced the case predictions to be proportional to the number of
visits. This can be problematic in a negative binomial model because if the proportion of
positive visits is high, the model can estimate a number of weekly positive visits for malaria
that exceeds the total number of weekly visits. Despite these limits, the total number
of clinic visits was used as the offset because it provided the most accurate and readily
available estimate of the population at risk, given that population-based administration
division estimates are outdated and do not necessarily reflect the catchment area of the
MRC. Fourth, although we observed no clear temporal trend in the residuals (e.g., no
seasonal trend), it is possible that there is a residual temporal dependency in the data (e.g.,
due to a correlation with cases of previous weeks); failure to consider this is a limitation
of the results that could make the confidence intervals narrower, although this is unlikely
to bias the estimates of association. Finally, the effects of LLINs were presented for a
continuous two-year period from when the nets were distributed, but accessing or owning
a net does not equate with its use [53]. Although results have shown a high rate of use of
LLINs in the Ugandan population after the first universal distribution in 2013 [11], use may
vary depending on the seasons [53] and the condition of the nets. Therefore, our findings
regarding LLINs should be interpreted with caution.
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5. Conclusions

The influence of environment and vector control interventions on malaria risk has
been widely studied. However, there has been little work on how interventions modify the
influence of the environment on malaria risk. Our study provides evidence that LLIN and
IRS have the potential to reduce the influence of environmental factors on the risk of malaria.
Malaria prevention and control programs should consider the influence of environmental
factors in their programs and interventions, given the changing climate context.
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