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Abstract: Groundwater serving as a drinking water resource usually contains manganese ions
(Mn2+) that exceed drinking standards. Based on the Mn biogeochemical cycle at the hydrosphere
scale, bioprocesses consisting of aeration, biofiltration, and disinfection are well known as a cost-
effective and environmentally friendly ecotechnology for removing Mn2+. The design of aeration
and biofiltration units, which are critical components, is significantly influenced by coexisting iron
and ammonia in groundwater; however, there is no unified standard for optimizing bioprocess
operation. In addition to the groundwater purification, it was also found that manganese-oxidizing
bacteria (MnOB)-derived biogenic Mn oxides (bioMnOx), a by-product, have a low crystallinity
and a relatively high specific surface area; the MnOB supplied with Mn2+ can be developed for
contaminated water remediation. As a result, according to previous studies, this paper summarized
and provided operational suggestions for the removal of Mn2+ from groundwater. This review also
anticipated challenges and future concerns, as well as opportunities for bioMnOx applications. These
could improve our understanding of the MnOB group and its practical applications.

Keywords: manganese-oxidizing bacteria; biofilter; groundwater; Mn removal; biogenic Mn oxides

1. Introduction

The elements on Earth have their own biogeochemical cycle pathways on the biosphere
scale, and they may interact with one another [1,2]. These cycles are critical to the water
ecosystem [1]. For example, the effective circulation of nitrogen elements from nitrate to
nitrogen gas in the hydrosphere can prevent eutrophication. This implies that water or
wastewater treatment technologies can be developed using the redox cycles [3].

It is critical to understand the macroscopic manganese (Mn) cycle. The element Mn
is abundant in the earth’s crust. It is ranked fifth among metal elements and second only
to iron among transition metals [4]. The Mn element has 11 valence states, ranging from
−3 to +7; however, only +2, +3, and +4 are naturally present in the biosphere [5]. Dis-
solved Mn2+ can be found in a variety of water bodies, including surface water (rivers and
lakes) [6–8], groundwater [9,10], and oceans [11]. Because free or dissolved Mn3+ is extremely
unstable, it is easily transformed into Mn2+ or Mn4+ through disproportionation [12], or an
oxyhydroxide (MnOOH) is formed. Mn oxides (MnOx) are typically found in sediments and
Mn ores, appearing in a complicated form of Mn4+, Mn3+, and Mn2+. The interconversion of
Mn2+, Mn3+, and Mn4+, as shown in Figure 1, forms the biogeochemical cycle of Mn at the
hydrosphere scale. MnOx is the most powerful natural oxidant in pathway I, with typical
redox potentials of 1.23 V [13] and 1.51 V [14], respectively (Equations (1) and (2)). As a result,
a redox reaction between MnOx and reducing substances (such as organic matter in sediments)
might occur, resulting in the release of Mn2+ into the surrounding aquatic environment. As
in pathway II, the dissolved Mn2+ will be re-oxidized into MnOx by manganese-oxidizing
bacteria (MnOB) and oxygen. In comparison to oxygen, however, it appears that the MnOB
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group dominates pathway II due to a greater oxidation rate [15], which is several orders of
magnitude higher [16].

MnO2(s) + 4H+ + 2e− = Mn2+ + 2H2O E0 = 1.23 V (1)

MnOOH(s) + 3H+ + e− = Mn2+ + 2H2O E0 = 1.51 V (2)
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MnOB have received attention throughout the past 20 years. The number of publications
retrieved with the keywords “manganese oxidizing bacteria or bioMnOx” from well-known
publishers is increasing. VOSviewer software (version 1.6.18) was used to process Web of
Science Core Collection data. The most common topics, as can be seen in Figure 2, are the
oxidation and removal of Mn2+, the characterization and use of bioMnOx, the identification
of MnOB, and multicopper oxidases. On the one hand, compared to the removal of Mn2+

from groundwater by chemical oxidants such as chlorine, potassium permanganate, and
ozone, the oxidation of Mn2+ to Mn3+ and Mn4+ using MnOB without any chemicals offers
a low-cost and environmentally friendly method of removing Mn2+ for drinking purposes.
However, there are currently no specifications for the design or operation of bioprocesses
that can be referenced as a guide, which could result in a number of operational issues, such
as excessive energy use. Moreover, in addition to groundwater purification, because the cycle
in Figure 1 is regulated by numerous environmental factors [17], organic compounds such as
antibiotics [18] and dyes [19] can be absorbed and degraded by biogenic MnOx (bioMnOx). It
possesses advantages over chemical approaches for the treatment of contaminated water since
it is a natural biosorbent and oxidant. However, the release of Mn2+ has been demonstrated
during the degradation of organic compounds, which can lead to secondary pollution or a
decrease in reactivity.
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Therefore, the properties of MnOB and bioMnOx were investigated in this paper.
The bioprocess for removing Mn2+ from groundwater using functional MnOB was
evaluated, and its operational suggestions were also concluded. Moreover, this paper
suggests a suitable process technique in accordance with the applications of bioMnOx
in bioremediation. It is possible to provide an in-depth comprehension of foundation
research and engineering construction.

2. The MnOB Group
2.1. The Phylogenetic Diversity of MnOB

Microorganisms that can oxidize Mn2+ into insoluble bioMnOx are known as Mn oxidizing
organisms, and these organisms include bacteria, eukaryotes, fungi, and others [20]. As
can be observed, the MnOB group has received the greatest attention, most likely because
of its significant contribution to Mn2+ oxidation. Although MnOB can be isolated, most
of them are still impossible to distinguish through pure culture. This can be attributed to
selection differences in the medium [20], spontaneous loss of Mn oxidation ability in the
laboratory [21], or to the fact that some MnOB strains do not oxidize Mn2+ alone [22]. Leptothrix,
Pseudomonas, Hyphomicrobium, and Bacillus have so far been recognized as typical MnOB
genera [15,20,23,24]. According to Hope et al. [25], Leptothrix is a dominant MnOB in Mn
removal biofilters. Burger et al. [26] found that only one of four full-scale water supply plants
had Leptothrix in its biofilters, whereas the other three plants that tested positive for biological
Mn removal did not. Cheng et al. [27] demonstrated that Gallionella and Crenothrix were
the dominant MnOB in a pilot-scale biofilter. Yang et al. [28] indicated that in addition to
Pseudomonas, Hyphomicrobium, and Bacillus, the MnOB in a biofilter were also dominated by
Acinetobacter, Pedomicrobium, Hydrogenophaga, and Microbacterium. This implies that the well-
known, typical MnOB may not exist in a Mn-rich environment. Table 1 lists the MnOB group
identified in various Mn environments. In addition to the typical MnOB genera mentioned
above, there are a number of additional MnOB found in rivers, lakes, oceans, groundwater,
and Mn deposits. These bacteria belong to a variety of phyla; isolated MnOB differ from one
another even in the same water environment. Furthermore, some MnOB remain unrecognized.
According to [22], the majority of the MnOB members in a culture belong to the phylum
Nitrospirae but are distantly related to Nitrospira and Leptospirillum.

In general, highly abundant bacteria in the Mn environment are considered
MnOB [29–31], but it is crucial to clearly identify MnOB from other functional bacteria. This is



Int. J. Environ. Res. Public Health 2023, 20, 1272 4 of 14

because the Mn cycle frequently occurs in conjunction with other cycles of substances present
in the Mn environment, resulting in the coexistence of functional bacteria. The results indicated
that functional bacteria involved with Mn/Fe oxidation–reduction [32], nitrogen transforma-
tion [33], and sulfur oxidation [34] can be discovered in the Mn environment at the same time.
As previously observed, these functional bacteria are likely to contribute significantly to the
overall bacterial community or have a positive relationship to MnOB [31,34]. Therefore, it is
essential to accurately identify the MnOB group.

Table 1. The MnOB-related group detected from various Mn environments.

Environmental Conditions The MnOB Group References

River
Bacillus, Pseudomonas, Sphingomonas, Hyphomicrobium, Cyanobacteria [31]

Microbacterium, Agromyces, Mycobacterium, Arthrobacter, Pseudomonas,
Burkholderiales [35]

Aurantimonas, Rhodobacter, Bacillus, Shewanella [36]

Lake
Metallogenium, Leptothrix, Siderocapsa, Naumaniella, Bacillus, Pseudomonas [37]

Bacillus, Pseudomonas, Afipia [35]

Well
Acinetobacter sp., Bacillus, Sphingobacterium sp. [38]

Pseudomonas, Burkholderiales [35]

Mn deposits
Bacillus, Exiguobacterium, Staphylococcus, Brevibacterium, Alcanivorax sp. [39]

Hyphomicrobium, Leptolyngbya [40]
Sphingomonas, Flavobacterium, Janthinobacterium, Acinetobacter [30]

Seawater
Bacillus sp. FF-1 [41]

Citreicella manganoxidans sp. nov. [42]
Marinobacter manganoxydans MnI7-9 [43]

Activated sludge Brevibacillus [44]
Serratia marcescens [45]

Biofilter
Pseudoalteromonas sp. [46]

Flavobacterium, Brevundimonas, Stenotrophomonas [47]
Leptothrix, Pseudomonas, Methylibium [18]

Drinking water system Bacillus [35]
Lysinibacillus, Bacillus, Pseudomonas, Brevundimonas [48]

2.2. MnOB Recognition

The identification of MnOB is intended to confirm their oxidation capacity or tax-
onomic status. After the Mn2+ is oxidized, the insoluble bioMnOx, which appears as
black–brown, is often coated on the surface of MnOB [15,49]. As a result, the most direct
method of determining oxidation ability is morphological observation. For example, in a
biofilter packed with quartz sand and continually fed with Mn2+, MnOB were successfully
enhanced when the sand transformed from white to black–brown [18]. The approach can
also be used to identify MnOB in a culture medium. However, when Fe2+ and Mn2+ coexist
in water or a culture medium, MnOB must be distinguished from iron oxidizing bacteria,
as the biogenic iron oxides may coat the bacterial surface and appear similar to bioMnOx.
In such cases, the reductive Leucoberbelin blue (LBB) dye, which interacts with Mn oxides
to form a blue solution, can be utilized for further chemical detection.

The most common genotypic approach for determining the taxonomic status of MnOB
is 16S rRNA gene sequence technology, which includes DNA extraction, polymerase chain
reaction (PCR) amplification, and sequencing. The primers used in the PCR should be
specific for a particular MnOB genus. However, it is currently challenging to design enough
specific primers to detect the numerous MnOB groups. This explains why universal primers
are commonly utilized in most investigations. The universal primers allow researchers to
explore the most relevant or dominant MnOB communities in a system [19,34], but this is
dependent on the sequences deposited in the database.



Int. J. Environ. Res. Public Health 2023, 20, 1272 5 of 14

Moreover, the process by which MnOB oxidize Mn2+ is unclear. It is well accepted
that the oxidation of Mn2+ is an extracellular enzymatic reaction employing various multi-
copper oxidases (MCOs). Several genes have been identified as being involved in the cod-
ing of MCOs for Mn2+ oxidation, including mofA in L. discophora SS-1, genes in the ccm
operon of P. putida MnB1, mnxA, B, C, D, E, F, and G in P. putida SG-1; cumA in P. putida
GB-1 [5]; moxA in Pedomicrobium sp. ACM 3067; mokA in Lysinibacillus strain MK-1; cotA in
Bacillus pumilus WH4 [17]; cueO amplified from Escherichia coli [50]; and copA in B. panacihumi
MK-8 [51]. Therefore, primers based on these functional proteins can be used to identify MnOB
with the same protein gene, but further classification of MnOB still requires the assistance of
16S rRNA gene sequencing.

3. Engineering Application of MnOB for Mn2+ Removal
3.1. The Bioprocess

Groundwater, which serves as a source of drinking water, usually contains Mn2+

because of the anaerobic environment. The Mn2+ concentration should be controlled below
0.10 mg/L or 0.05 mg/L [52]. As illustrated in Figure 1, MnOB can be used to remove Mn2+

from groundwater. Figure 3 shows the bioprocess, in which a sand biofilter was built as
the functional unit, for removing Mn2+ from groundwater. This bioprocess is simpler than
conventional drinking water purification processes (coagulation, precipitation, filtration,
and disinfection) and no chemical oxidants are required. Li et al. [53] estimated that it
might save CNY 50 million in construction costs and CNY 12,000 in daily operation and
maintenance costs for a 12 × 104 m3/d water supply plant. Given that switching from a
non-biological to a biological process can greatly enhance processing capacity and save
operational costs by up to 80% [10], this provides a technical transformation strategy for
the groundwater treatment facility.
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3.2. The Aeration Unit

Because iron (Fe) and Mn are frequently found together in groundwater, and because
the problems they cause are comparable and can be removed simultaneously by biofilters,
they are discussed together. Bio-oxidation of Fe2+ or Mn2+ requires very little dissolved
oxygen (DO). According to Equations (3)–(5), 0.14 mg and 0.29 mg DO are required per
mg of Fe2+ and Mn2+, respectively. Therefore, there are no strict limits on the procedure as
long as the aeration unit provides appropriate DO. In general, a simple aeration technique,
such as falling water aeration, can provide the necessary level of DO. It was found that
groundwater with high concentrations of Fe2+ ~ 15 mg/L and Mn2+ ~ 2.0 mg/L could be
efficiently treated under a low DO of 4–5 mg/L [54].

4Fe2+ + O2 → 4Fe3+ +2O2− (3)
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2Mn2+ + O2 → 2Mn4+ +2O2− (4)

[O2] = 0.14[Fe2+] + 0.29[Mn2+] (5)

High aeration is thought to increase pH, hence accelerating the oxidation of Fe2+ or
Mn2+ [55]. It was discovered by Hoyland et al. [56], however, that biofilter columns operating
at pH 6.3 and 6.7 began to remove Mn2+ earlier than those operating at higher pH. This
is to be expected, given that inorganic carbon is a carbon source for MnOB [22]; yet, high
aeration removes more inorganic carbon from groundwater. Excessive aeration appears to
be unnecessary because the MnOB is active at both weak and neutral pH conditions. This
should be taken into account when designing the aeration unit.

In addition to Fe2+ and Mn2+, ammonia may be present in groundwater. The nitrifica-
tion process by which nitrifiers convert ammonia to nitrate dominates ammonia removal.
As the nitrification process takes 4.57 mg of DO per mg of ammonia, the presence of ammo-
nia pressures the aeration unit; however, the actual demand for DO was lower than the
theoretical calculation estimate. This demonstrated that autotrophic anammox bacteria,
which do not require DO, contribute to the conversion of ammonia to nitrogen gas and
nitrate, accounting for 48.5%, 46.6% [57], and 15.92% [28] of the removal, respectively. This
provides an optimization design proposal for the aeration unit. Furthermore, an additional
aerator should be installed at the bottom of the filter bed if the aeration unit fails to supply
enough DO. This constant aeration may weaken the interception ability of the filter bed,
resulting in metal oxide residues in the effluent. To ensure the quality of the water, a second
filtration step is required after the biofilters.

3.3. The Biofilter

The biofilter is the central component of the bioprocess, and its start-up and performance
are of particular interest. The main drawback of biofilters appears to be their lengthy start-
up phase, during which Mn2+ is ineffectively removed. This phase might last for weeks
or months. According to previous studies, the start-up time could be shortened by using
backwashing sludge or mature biofilter-supporting materials as inocula [30]. Moreover, during
the maturation stage of biofilters, the usage of special filtering media with Mn2+ adsorption
capacity can ensure the quality of the water [58]. The biological removal of Mn2+ has been
widely employed all around the world. It shows that the biofilter can still be operated to
remove Mn2+, even at low temperatures of 4 ◦C [4], 3–4 ◦C [59,60], and 8–14.8 ◦C [61].

The biofilters are frequently designed to operate at a lower rate of ~2 m/h at start-up
period [54]. Actually, they have a very high treatment load following the start-up period.
Štembal et al. [62] observed that at an average Mn2+ concentration of 1.06 mg/L, the biofilter’s
filtration rate can reach 24 m/h. Cheng et al. [63] discovered that when fed 8 ◦C groundwater
containing total Fe of 5–10 mg/L and ammonia of 0.9–1.3 mg/L, a pilot-scale biofilter working
at 6 m/h could tolerate a maximum Mn2+ concentration of about 10 mg/L. Fe2+ and Mn2+

can be removed simultaneously in a one-stage biofilter, where Fe2+ is removed in the top
filter layer and Mn2+ is bio-oxidized and removed in the lower layer. However, the effect
of Fe2+ on Mn2+ removal should be considered. This is mostly due to the dissolution of
bioMnOx into Mn2+ by Fe2+ in the biofilter bed [64], which needs a thicker filter bed or a
longer start-up period to remove Mn2+. It was shown that the start-up time of a one-stage
biofilter required more than 6 months at Fe2+ concentrations up to 12 mg/L, compared to
1–3 months at Fe2+ values of 7 mg/L. In newly constructed biofilters, mature sand that is
coated with bioMnOx or MnOB is usually dispersed as inoculum on the upper filter layer.
The redox interaction between high Fe2+ and Mn oxides should be carefully monitored.

4. The Widespread Application of MnOB-Produced BioMnOx

4.1. Characterization of BioMnOx

BioMnOx is widely used because of its excellent physicochemical properties. Powder
X-ray diffraction (XRD) patterns are used to investigate the phase properties. This implies
that nearly all bioMnOx has low crystallinity and an amorphous structure, as evidenced by
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its disordered structure [18,50,65–68]. When compared to standard JCPDS or PDF cards,
these fresh bioMnOx compounds contain one or more characteristic peaks of the model
compounds, indicating the precursor of Mn ore minerals [18].

The particle size range of bioMnOx is at the nanoscale [49], but it aggregates to a larger
micrometer scale as aging time increases. According to Zhou and Fu [69], the surface area
of bioMnOx, which ranges from 98 to 224 m2/g, is frequently greater than that of chemically
synthesized MnO2. This is inconsistent with our findings that the bioMnOx produced by a
biofilter has a surface area of 39.1 m2/g [18], while the as-prepared MnO2 shows similar
values of 35.41 and 39.29 m2/g [70]. The larger the particle size, the smaller the specific
surface area. The aggregation of bioMnOx with prolonged aging time is mostly responsible
for the reduced surface area in biofilters. Furthermore, crystallinity also increases with
aging time, resulting in crystal phase succession [71]. As illustrated in Equations (1) and (2),
a larger surface area provides more adsorption sites for pollutants, and a lower crystallinity
promotes electron transport in redox processes. That is, using freshly generated bioMnOx
for pollution control is preferable.

Elemental valence states can be determined via X-ray photoelectron spectroscopy
(XPS). The XPS spectra demonstrate that bioMnOx has multiple valences including Mn2+,
Mn3+, and Mn4+. The redox reactions are driven by Mn4+ and Mn3+, as described in
Equations (1) and (2). Their high content suggests that more organic compounds can be
attacked, taking more electrons, but the content is affected by MnOB types or cultivation
conditions [72]. In any case, the low crystallinity, relatively high surface area, and reactivity
of bioMnOx allow it to be employed as an adsorbent, oxidant, and catalyst. It can be
concluded that the primary applications of bioMnOx in water environment remediation
focus on metal adsorption, the decolorization of organic dyes, and the degradation of
emerging pollutants, as summarized below.

4.2. Adsorption and Oxidation of Metals

Because of the cation vacancies in the crystal structure, bioMnOx is negatively
charged [49]. These negative charges can be compensated for through cation intercalation and
sorption, indicating the possibility of heavy metal removal (Figure 4). It is amazing that MnOB
can withstand high concentrations of heavy metals. In a culture medium containing 100 mg/L
Mn2+, Wan et al. [19] evaluated the heavy metal removal capacity of a MnOB consortium. The
removal of Mn2+ was reduced by 0.4%, 87.5%, 7.7%, and 22.4%, respectively, with the addition
of Fe3+ of 56 mg/L, Co2+ of 56 mg/L, Ni2+ of 58.7 mg/L, and Zn2+ of 65 mg/L; however, 72.0%
of Fe3+, 12.6% of Co2+, 44.1% of Ni2+, and 90.4% of Zn2+ could be removed simultaneously.
Meanwhile, Cu2+ did not inhibit Mn2+ removal by MnOB at values ranging from 6.4 mg/L
to 96 mg/L until it reached 128 mg/L. Bacterial cell walls, extracellular polymeric sheaths,
and bioMnOx can absorb heavy metals, but the capability of the latter is around two orders of
magnitude higher than that of the others [73]. To a certain extent, bioMnOx, which has a high
capacity for adsorbing heavy metals, can protect MnOB from toxicity. Moreover, it indicates
that bioMnOx produced by the Pseudomonas putida strain MnB1 has a seven to eight times
higher adsorption capacity for Pb2+, Cd2+, and Zn2+ than abiotic MnOx (birnessite) [74]. In
comparison to abiotic MnOx (todorokite), Bacillus sp. WH4-produced bioMnOx has a max-
imum Cd adsorption capacity that is approximately 2.96 times greater [75]. By modifying
the zeolite with bioMnOx, the removal of Pb2+, Cd2+, and Zn2+ may also be improved by
36.4–70.5% [76].



Int. J. Environ. Res. Public Health 2023, 20, 1272 8 of 14

Int. J. Environ. Res. Public Health 2023, 20, x 8 of 14 
 

 

Cd2+, and Zn2+ than abiotic MnOx (birnessite) [74]. In comparison to abiotic MnOx 
(todorokite), Bacillus sp. WH4-produced bioMnOx has a maximum Cd adsorption capacity 
that is approximately 2.96 times greater [75]. By modifying the zeolite with bioMnOx, the 
removal of Pb2+, Cd2+, and Zn2+ may also be improved by 36.4–70.5% [76]. 

 
Figure 4. Removal of metals by using bioMnOx. 

Although arsenic (As) is not a heavy metal, it is frequently examined alongside heavy 
metals. In aqueous environments, As3+ and As5+ are the two most common forms; how-
ever, As3+ exhibits greater metal toxicity. In Figure 4, the oxidation of As3+ to As5+ can re-
duce the metal toxicity of As. It shows that bioMnOx, whose oxidation rate (k1 = 0.23 min−1) 
is much higher than that of abiotic MnOx, can achieve quick As3+ oxidation and, subse-
quently, As5+ adsorption [77,78]. Liu et al. [79] indicated that the tolerant concentrations 
of bioMnOx for heavy metals As5+ and Mn2+ are 500 mg/L and 120 mg/L, respectively. This 
explains how biofilters may simultaneously remove Mn and As from groundwater. In a 
similar way, bioMnOx also transforms the extremely toxic Co2+ [80] and TI+ [81] into less 
hazardous metal oxides. On the contrary, the oxidation of Cr3+ by bioMnOx, which results 
in the formation of more mobile Cr6+, increases the toxicity. 

4.3. Dye Decolorization 
Up to 15% of the dyes used in various industries can be observed in industrial efflu-

ents. These dye residues are stable in water and are harmful to living organisms in aque-
ous environments; thus, they should be removed [82]. Adsorption is believed to be the 
most tested, environmentally friendly, and effective method [83]. In comparison to chem-
ically produced adsorbents, the synthesis of bioMnOx requires no additional energy input, 
indicating a low-cost adsorbent. It shows that for each gram of bioMnOx produced from a 
mixed MnOB consortium, 22 mg of methylene blue and 23.8 mg of crystal violet could be 
decolorized, respectively [19]. In addition, the bioMnOx produced by Marinobacter sp. 
MnI7-9 has a surface area of 27.68 m2/g and a maximum adsorption capacity of 115.61 
mg/g for indigo carmine [84]. 

The combination of adsorption and oxidation promotes decolorization, but the pH 
conditions must be carefully optimized. This is because the redox processes mediated by 
bioMnOx are highly dependent on solution pH. Equations (1) and (2) demonstrate that the 
bioMnOx has a higher oxidation capability at lower pHs. The release of Mn2+ from both 
self-leaching and reduction of the bioMnOx results in secondary contamination and a loss 
of reactivity under the strongly acidic pH conditions. MnOB can regenerate bioMnOx by 
the reoxidation of Mn2+ [85], but it is ineffective in strongly acidic environments. Due to 
the resorption of Mn2+ by bioMnOx, the release of Mn2+ can be decreased or absent under 
weakly acidic pH circumstances. As the pH of the solution increases, the oxidation capac-
ity decreases significantly, and adsorption could become dominant. However, the cata-
lytic reactions mediated by Mn or oxygen vacancies, as described below, may still be in-
volved in the oxidation of dyes. 

  

Figure 4. Removal of metals by using bioMnOx.

Although arsenic (As) is not a heavy metal, it is frequently examined alongside heavy
metals. In aqueous environments, As3+ and As5+ are the two most common forms; however,
As3+ exhibits greater metal toxicity. In Figure 4, the oxidation of As3+ to As5+ can reduce the
metal toxicity of As. It shows that bioMnOx, whose oxidation rate (k1 = 0.23 min−1) is much
higher than that of abiotic MnOx, can achieve quick As3+ oxidation and, subsequently, As5+

adsorption [77,78]. Liu et al. [79] indicated that the tolerant concentrations of bioMnOx
for heavy metals As5+ and Mn2+ are 500 mg/L and 120 mg/L, respectively. This explains
how biofilters may simultaneously remove Mn and As from groundwater. In a similar way,
bioMnOx also transforms the extremely toxic Co2+ [80] and TI+ [81] into less hazardous
metal oxides. On the contrary, the oxidation of Cr3+ by bioMnOx, which results in the
formation of more mobile Cr6+, increases the toxicity.

4.3. Dye Decolorization

Up to 15% of the dyes used in various industries can be observed in industrial effluents.
These dye residues are stable in water and are harmful to living organisms in aqueous envi-
ronments; thus, they should be removed [82]. Adsorption is believed to be the most tested,
environmentally friendly, and effective method [83]. In comparison to chemically produced
adsorbents, the synthesis of bioMnOx requires no additional energy input, indicating a
low-cost adsorbent. It shows that for each gram of bioMnOx produced from a mixed MnOB
consortium, 22 mg of methylene blue and 23.8 mg of crystal violet could be decolorized,
respectively [19]. In addition, the bioMnOx produced by Marinobacter sp. MnI7-9 has a
surface area of 27.68 m2/g and a maximum adsorption capacity of 115.61 mg/g for indigo
carmine [84].

The combination of adsorption and oxidation promotes decolorization, but the pH
conditions must be carefully optimized. This is because the redox processes mediated by
bioMnOx are highly dependent on solution pH. Equations (1) and (2) demonstrate that the
bioMnOx has a higher oxidation capability at lower pHs. The release of Mn2+ from both
self-leaching and reduction of the bioMnOx results in secondary contamination and a loss
of reactivity under the strongly acidic pH conditions. MnOB can regenerate bioMnOx by
the reoxidation of Mn2+ [85], but it is ineffective in strongly acidic environments. Due to
the resorption of Mn2+ by bioMnOx, the release of Mn2+ can be decreased or absent under
weakly acidic pH circumstances. As the pH of the solution increases, the oxidation capacity
decreases significantly, and adsorption could become dominant. However, the catalytic
reactions mediated by Mn or oxygen vacancies, as described below, may still be involved
in the oxidation of dyes.

4.4. Control of Organic Contaminants

Microorganic contaminants (MOCs) have recently been frequently found in water
bodies, indicating possible negative impacts on the ecosystem. These MOCs are stable in
water and usually difficult to degrade directly through bioactivity. As a result, physico-
chemical treatment approaches such as ozonation, advanced oxidation processes (AOPs),
and adsorption for degradation or removal have been developed. One of the physicochem-
ical processes is the decomposition of MOCs utilizing bioMnOx, which is accomplished
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indirectly by MnOB. The use of MnOB appears to be an eco-friendly and cheap alternative.
To the best of our knowledge, as illustrated in Figure 5, these MOCs that can be degraded
include, but are not limited to, antibiotics [68,72], endocrine disruptors [86,87], and pes-
ticides [88]. It implies that the process mediated by MnOB, which has the advantage of
combining adsorption and degradation, has a broad spectrum of performance.
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Amorphous bioMnOx is more reactive than commercial MnO2. As an illustration,
the data showed that MnO2 barely decomposed carbofuran, whereas MnOB indirectly
degraded 90.63% of it under the same conditions [89]. Previous research has shown that
the two reactions described by Equations (1) and (2) are commonly acknowledged as MOC
degradation mechanisms. In fact, in the liquid phase, the oxygen or Mn vacancies of bioMnOx
can catalyze the oxidation of water or oxygen to form reactive oxygen species, functioning
similarly to the AOPs (Figure 5). The catalytic capacity increases with worsening crystallinity,
which suggests more vacancies. However, the crystallinity of bioMnOx rises as it grows or
ages. This could explain why newly formed bioMnOx is more reactive than commercial
MnO2. The AOP-like degradation process induced by bioMnOx should be studied further,
since it has the potential to contribute significantly to degradation. During the degradation of
tetracycline hydrochloride by MnO2 nanomaterials, Pal et al. [90] observed that the efficiency
of tetracycline hydrochloride degradation by MnO2 nanoparticles decreased from 66% to
27% and 37% in the presence of the reactive oxygen species scavengers sodium azide and
t-butanol, respectively.

5. Further Concerns and Challenges
5.1. Groundwater Purification

The biofiltration process has been developed and engineered for at least 30 years to
remove Mn2+ from groundwater. Although Mn2+ is found in groundwater alongside Fe2+,
ammonia, or As, simultaneous removal of these contaminants has been successful. Nitrate
concentrations can reach 20 mg/L or greater in some regions, and must be decreased to less
than 10 mg/L. According to conventional nitrogen removal theory, carbon sources and anoxic
conditions are required in a biofilter for nitrate denitrification. The biofilm can reasonably
satisfy the anoxic conditions, since the MnOB has fewer DO needs. However, carbon supplies
in groundwater are typically limited; adding carbon sources to groundwater complicates the
treatment process and, more importantly, the faster growth of the heterotrophic denitrifying
bacteria may take up the required space for MnOB. The simultaneous removal of Mn2+ and
nitrate, therefore, poses new difficulties for the bioprocess.

Furthermore, the increase of pH of groundwater by over-aeration promotes the chemi-
cal oxidation of Mn2+. However, it seems that the excessive aeration is unnecessary because
it does not substantially accelerate bio-oxidation. Due to the existence of autotrophic nitro-
gen removal bacteria, even if ammonia increases the DO consumption, the real demand for
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DO is lower than that of complete nitrification. As a result, determining how to accurately
supply DO to save energy is a challenge.

5.2. Mn2+-Supplied Biofilter Application

A biofilter supplied with Mn2+ can be developed for further engineering applications
of MnOB. On the one hand, the quality of water bodies, including surface water and
groundwater, is complicated by exogenous emerging contaminants. During the biofiltration
process, these pollutants, in concentrations ranging from ng/L to µg/L, may be adsorbed
or degraded by bioMnOx. Importantly, because the amount of bioMnOx determines the
efficiency, the fed Mn2+ concentrations can be adjusted to ensure it. Regrettably, this has
rarely been reported in previous studies, and it should be studied more.

Moreover, bioMnOx is also employed to control high levels of contaminants present in
wastewater, such as heavy metals and organic compounds, as illustrated in Figures 4 and 5,
but the majority of the relevant study was conducted in flasks. Mn2+ is commonly released
during the decomposition of large quantities of organic compounds, resulting in the loss of
bioMnOx and reactivity. In addition, during the adsorption procedure, the bioMnOx may
become saturated. As mentioned, biofiltration is a feasible solution to these issues because
it not only re-oxidizes the released Mn2+ but also maintains the reactivity of bioMnOx by
oxidizing the fed Mn2+, allowing for continuous adsorption and degradation in situ, whereas
Mn2+ must be completely oxidized to avoid secondary pollution.

6. Conclusions

Mn2+ is commonly found in groundwater at concentrations above the required level
for drinking. Hence, it is necessary to remove Mn2+ from groundwater. The MnOB-
based bioprocess consisting of aeration, biofiltration, and disinfection has been discussed,
and the literature survey indicates that Mn2+ can be effectively removed without any
chemical oxidants. The aeration strength and filter bed should be optimally designed, in
accordance with the concentrations of ammonia and Fe, for energy saving and start-up
purposes. Further research should focus on the nitrate removal from groundwater by
this bioprocess. In addition, a Mn2+-supplied biofilter capable of producing bioMnOx can
be further developed for water remediation applications such as metal adsorption, dye
decolorization, and organic substance degradation.
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