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Abstract: The implementation of carbon peaking and carbon neutrality is an essential measure to
reduce greenhouse gas emissions and actively respond to climate change. The net carbon sink effi-
ciency (NCSE), as an effective tool to measure the carbon budget capacity, is important in guiding the
carbon emission reduction among cities and the maintenance of sustainable economic development.
In this paper, NCSE values are used as a measure of the carbon budget capacity to measure the
spatiotemporal evolution of the carbon neutral capacity of three major urban agglomerations (UAs)
in China during 2007–2019. The clustering characteristics of the NCSE of these three major UAs,
and various influencing factors such as carbon emissions, are analyzed using a spatiotemporal cube
model and spatial and temporal series clustering. The results reveal the following. (1) From the
overall perspective, the carbon emissions of the three major UAs mostly exhibited a fluctuating
increasing trend and a general deficit during the study period. Moreover, the carbon sequestration
showed a slightly decreasing trend, but not much fluctuation in general. (2) From the perspective of
UAs, the cities in the Beijing–Tianjin–Hebei UA are dominated by low–low clustering in space and
time; this clustering pattern is mainly concentrated in Beijing, Xingtai, Handan, and Langfang. The
NCSE values in the Yangtze River Delta UA centered on Shanghai, Nanjing, and the surrounding
cities exhibited high–high clustering in 2019, while Changzhou, Ningbo, and the surrounding cities
exhibited low–high clustering. The NCSE values of the remaining cities in the Pearl River Delta UA,
namely Guangzhou, Shenzhen, and Zhuhai, exhibited multi-cluster patterns that were not spatially
and temporally significant, and the spatiotemporal clusters were found to be scattered. (3) In terms
of the influencing factors, the NCSE of the Beijing–Tianjin–Hebei UA was found to be significantly
influenced by the industrial structure and GDP per capita, that of the Yangtze River Delta UA was
found to be significantly influenced by the industrial structure, and that of the Pearl River Delta
UA was found to be significantly influenced by the population density and technology level. These
findings can provide a reference and suggestions for the governments of different UAs to formulate
differentiated carbon-neutral policies.

Keywords: urban agglomerations; carbon budget; NCSE; influencing factors

1. Introduction

Global carbon dioxide emissions reached an unprecedented peak in 2020 [1], and
the resulting climate change and greenhouse effect have attracted widespread attention.
Determining how to cope with and promote the early achievement of the dual carbon goals
in each country has become an important issue for global academics [2]. The reduction
of greenhouse gas emissions and the improvement of carbon sequestration in terrestrial
ecosystems are two key ways to achieve a carbon balance [3], as well as effective measures
by which to achieve carbon neutrality in cities [4]. In terms of carbon emission reduction, the
high speed of urbanization in developing countries has driven economic development, and
cities account for more than 70% of global CO2 emissions [5] and are under tremendous
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pressure. However, due to the ambiguous understanding of the relationship between
emission reduction and economic development, many regions try to reduce emissions
by controlling the rate of industrial development; this leads to a contradiction between
economic development and the reduction of CO2 emissions. In terms of carbon sinks, the
impact of land use and land cover changes (LUCCs) on the amount of carbon sequestered by
regional ecosystems has been considered, as agroforestry ecosystems can increase natural
carbon sinks, with positive effects on the carbon balance [6,7]. China, as the world’s largest
developing country, has actively taken relevant measures and proposed the dual carbon
goal of reaching peak carbon emissions by 2030 and achieving carbon neutrality by 2060 [8].

For developing countries, limiting economic development is an unsustainable path to
carbon-neutral development. The improvement of the carbon emission efficiency (CEE)
should not only avoid affecting the economy, but should also consider the role of carbon
sequestration by vegetation (CSV). From the perspective of developing countries, the CEE
has been calculated by taking the gross domestic product (GDP) as the desired output and
CO2 emissions as the undesired output with constant labor, capital, and energy inputs;
however, this process does not consider the role of CSV in promoting the urban carbon
balance [9,10]. The sole reliance on reducing carbon emissions can affect economic devel-
opment, especially for developing countries. The delineation of China’s three zones and
three lines and the long-term implementation of afforestation programs have led to CSV
playing a substantial role as a natural carbon sequestration process. Research has found
that from 2020 to 2050, China’s forest vegetation will absorb 22.14% of CO2 emissions [11].
To integrate the CEE and CSV, the net carbon sink efficiency (NCSE) is used as an indicator
to measure the carbon balance standard. The concept of NCSE is the efficiency value
calculated by adding CSV as the desired output to the evaluation framework of the CEE.
It is sustainable for economic development, more in line with the national conditions of
developing countries, and also aids in the understanding of the potential carbon reduction
under different levels of economic development.

Current research on CEE is usually focused on two topics, namely computational meth-
ods and impact factor analysis. Among the different computational methods of CEE, the
most widely used is data envelopment analysis (DEA), and several extension models have
become the mainstream methods for the calculation of environmental efficiency [12]. Based
on its measurement, scholars have used panel models and spatial econometric models to
study the impacts of various factors on regional CEE. It has been found that technological
progress, economic development, population agglomeration, foreign investment, and the
industrial structure all have significant impacts on CEE. Technological aspects are crucial
for the reduction of pollution emissions [13], and green technology is often considered a
key tool to achieve energy efficiency, emission reduction, and economic growth as an influ-
ential factor to improve CEE [14]. Economic development, population growth, and rapid
urbanization accelerate CO2 emissions [15,16]. Factors related to urban expansion [17] and
overpopulation [18] cause LUCCs, which increase the impervious surface [19] and hinder
the carbon uptake of soils to impact the carbon balance of terrestrial ecosystems, which in
turn has a negative impact on regional CEE [20]. Foreign investment also plays a significant
role in promoting energy efficiency; the improvement of foreign investment quality can
promote energy efficiency and a low-carbon economy [21]. Industrial restructuring is the
main way to reduce the energy intensity [22] and CO2 emissions [23,24] and is also one of
the most important means by which to promote CEE improvement [25].

The studies reviewed previously are deficient in at least two aspects. On the one
hand, the contemporary studies on carbon balance mostly analyze cross-sectional data from
some specific years and cannot unify both continuous time series and spatial dimensions,
inevitably ignoring some periodically occurring spatiotemporal clustering patterns [26].
The use of a spatiotemporal cube model (STC) combined with local outliers may allow for
the analysis of the distribution characteristics of NCSE values both spatially and tempo-
rally [27]. On the other hand, most of these previous studies were focused on the national
scale [13,28] and analyzed the different characteristics of CEE present in the spatial pattern.
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At the city level, research on the relationship between LUCCs and the carbon balance
has found that the overall carbon balance level of most cities is in a deficit [29–34], and a
carbon balance cannot be achieved within the urban system. However, the scale involved
in national-level studies is too wide, and it not only ignores the dynamic characteristics of
urban development but also makes it difficult to reveal the microscopic changes in land
use and the differential effects of carbon emissions on NSCE. Moreover, the characteristic
scale of city-level studies is too small, and there may be an overlap of administrative
boundaries regarding the calculation of carbon emissions and sequestration, which will
also produce neighbor-avoidance effects on neighboring cities. In contrast, the scale of city
agglomerations, as aggregates of neighboring spatial and natural features, can be better
used to study the LUCCs brought about by urban expansion and the impacts of carbon
revenues and expenditures on NSCE. It can also be used to formulate reasonable regional
development measures from the perspective of regional integration. However, there are
relatively few research results at this scale.

In general, research on urban agglomerations (UAs) over long time series can help
to reveal the key factors of NCSE differences among UAs. Beijing–Tianjin–Hebei (BTH),
the Yangtze River Delta (YRD), and the Pearl River Delta (PRD), as the three most typical
UAs in China, have important impacts on carbon emissions in China and even globally.
Therefore, in this study, these three major UAs were selected as the research object, the
temporal evolution and spatial distribution characteristics of CO2 emissions were analyzed,
and the CSV and NCSE of the UAs during 2007–2019 were investigated by the STC model.
A comparative analysis of the influencing factors of the NCSE was conducted based on
the two-way fixed-effects model to explore the commonality and individuality of carbon
revenues and expenditures among the three UAs.

2. Data Acquisition and Research Methodology
2.1. Overview of the Study Area

The BTH, YRD, and PRD UAs were selected as the research objects (Figure 1), among
which the BTH UA includes 13 cities in the Beijing, Tianjin, and Hebei Provinces, with a total
area of 218,000 km2, including three major geographical units: the northwest mountainous
area, the southeast plain, and the eastern Bohai sea. The core area of the YRD UA includes
16 cities in Jiangsu Province, Zhejiang Province, and Shanghai City, with a total area of
131,000 km2. The cities are located in the lower reaches of the Yangtze River bordering
the Yellow Sea and the East China Sea, and at the meeting place of the rivers and the
sea. The region is characterized by many coastal ports along the river and the alluvial
plain formed before the Yangtze River entered the sea. The PRD UA includes Guangzhou,
Foshan, Zhaoqing, Shenzhen, Dongguan, Huizhou, Zhuhai, Zhongshan, Jiangmen, and
nine other cities, with a total area of 55,500 km2. The cities are located in the south–central
part of China’s Guangdong Province at the mouth of the Pearl River. The three major
UAs account for around 5% of the country’s total land area and 33% of the population,
but contribute nearly 44% of the country’s GDP [35]. The three major UAs are important
regions for China’s economic development, and the study of the influencing factors of their
NCSE can provide an important reference for China to formulate a dual carbon policy.

2.2. Data Sources and Processing
2.2.1. Calculation of the Main Variables

(1) Calculation of carbon emissions and carbon sequestration

The carbon emission factor method published by the Intergovernmental Panel on
Climate Change (IPCC) is the most widely used to calculate the amount of carbon re-
leased [36,37]. However, the default emission factor of the IPCC is not fully applicable
to the national conditions of China. The carbon emission accounting data used in this
study were derived from the China Carbon Accounting Database of the Carbon Emission
Accounts and Datasets (CEADs) [38]. This database compares the Chinese default factors
issued by the IPCC and the National Development and Reform Commission of China
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(NDRC), based on which a new carbon emission factor is developed based on the actual
situation of each industry [39]. The data of various types of carbon emissions reported
in this database were summed to obtain the total carbon emissions data, and the specific
expression is given by the following equation:

CEit = CEEit + CEAit + CEIit + CEUit (1)

where CE is the carbon emissions data, CEE is the carbon emissions due to energy con-
sumption, CEA is the carbon emissions due to agricultural production, CEI is the carbon
emissions due to industrial production, and CEU is the carbon emissions due to urban
waste. The subscripts i and t denote the city and year, respectively.

Figure 1. The location and LUCC map of the three major UAs in China.

The carbon sequestration factor method is used for the calculation of the solid car-
bon data [40,41]. LUCC data were obtained from Landsat’s annual Chinese land cover
dataset [42]. The various types of LUCC data were extracted and fused by municipal divi-
sion, and the areas of different LUCC types were calculated separately for each city. Carbon
sequestration was estimated separately for different LUCC types, and the sequestration
coefficients of specific LUCC types are reported in Table 1. Among them, cropland is both a
carbon source and a carbon sink, and the carbon sequestered by cropland mainly comes
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from cropland soil. The specific calculation method for carbon sequestration data is given
by Equation (2).

CSit = ∑ Tit·δ (2)

where CS is carbon sequestered the amount contributed by different LUCC types, T is the
area of each LUCC type, and δ is the carbon sequestration coefficient of each LUCC type.
The subscripts i and t denote the city and year, respectively, and the carbon sequestration
coefficients for different utilization types are reported in Table 1.

Table 1. The carbon sequestration coefficients based on the LUCC type dataset.

LUCC Type Unit Carbon Sequestration Factor (δ) Source

Grassland t/hm2 0.95 [43]
Cropland t/hm2 1.7 [44]

Shrub t/hm2 0.134 [45]
Barren t/hm2 0.005 [46]
Forest t/hm2 1.21 [47]
Water t/hm2 0.24 [46]

(2) NCSE calculation

The NCSE value is calculated by adding CSV as a desired output to the CEE assessment
framework to calculate the efficiency value [48] as a measure of carbon balance, namely
carbon neutrality without affecting economic development. In this study, the DEA approach
was used to measure the urban NCSE as a measure of carbon neutrality. Traditional DEA
models, such as the Charnes, Cooper, and Rhodes (CCR) and Banker, Charnes, and Cooper
(BCC) models, calculate the production efficiency when only the desired output is available.
The super-efficient slacks-based measure (SBM) model, however, is based on the DEA
model. It overcomes the shortcomings of the ordinary DEA model, namely that it cannot
evaluate multiple decision-making units (DMUs). It distinguishes the differences between
the effective units of DEA, and it can rank the DMUs effectively. Thus, the decision results
will be more realistic [49]. In this case, it was assumed that there are n DMUs, each of which
has three vectors, namely inputs, desired outputs, and non-desired outputs. The expected
output of S1 and the undesired output of S2 were generated using m inputs, respectively,
represented by x ∈ Rm, yg ∈ RS1, and yb ∈ RS2. The matrices X, Yg, and Yb are, respectively,
defined as X = [x1, x2, . . . , xn] ∈ Rm×n, Yg = [yg

1 , yg
2 , . . . , yg

n] ∈ RS1×n, and Yb = [yb
1, yb

2, . . . , yb
n]

∈ RS2×n. Assuming that X > 0, Yg > 0, and Yb > 0, the production possibility set is defined
as follows [13].

P =
{
(x, yg, yb)/x ≥ Xθ, yg ≥ Ygθ, yb ≤ Ybθ, θ ≥ 0

}
(3)

This equation incorporates the non-desired output into the SBM model of the evalua-
tion DMU (x0, yg

0 , yb
0), as follows:

ρ = min
1− 1

m

m
∑

i=1

S−i
xi0

1 + 1
S1+S2

(
S1
∑

r=1

Sg
r

yg
r0
+

S2
∑

r=1

Sb
r

yb
r0

) (4)

s.t. : x0 = Xθ + S−, yg
0 = Ygθ − Sg, yb

0 = Ybθ − Sb; S− ≥ 0, Sg ≥ 0, Sb ≥ 0, θ ≥ 0.

where S−i denotes the input redundancy, Sg
r denotes the desired output deficiency, Sb

r denotes
the desired output excess, θ denotes the weight vector, and ρ denotes the efficiency value,
which is within the range of [0,1]. The DMU is determined to be valid only when ρ = 1; when
0 < ρ < 1, the unit is inefficient. In the efficiency evaluation, the DMU will mostly appear in
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the 100% efficiency state, so it is necessary to distinguish the DMU and the influencing factors
to ensure that the efficiency value is close to the real level. The model for this is

ρ∗ = min

1
m

m
∑

i=1

xi
xi0

1
S1+S2

(
S1
∑

r=1

yg
r

yg
r0
+

S2
∑

r=1

yb
r

yb
r0
)

(5)

s.t. : x ≥
n

∑
j=1, 6=k

θjxj; yg ≤
n

∑
j=1, 6=k

θjy
g
j ; yb ≥

n

∑
j=1, 6=k

θjyb
j ; x ≥ x0, yg ≤ yg

0 , yb ≥ yb
0, θ ≥ 0.

where ρ∗ denotes the efficiency value of the DMU, which can exceed 1. The definitions of
the other variables are the same as those for Equation (4).

To more accurately assess the NCSE, and with reference to previous studies [9,10],
three inputs were chosen, namely labor, capital, and energy. The GDP and CSV are desired
indicators, and CO2 emissions are non-desired output indicators. The measurement results
of these indicators are reported in Table 2.

Table 2. The input–output index system.

Variable Type Representation
and Unit Measurement Index Representation and Unit

Input
Capital input Investment stock of fixed assets (million RMB)
Labor input Employed workers (ten thousand people)

Energy consumption Coal consumption (ten thousand tons)

Desirable output GDP Annual real GDP (billion RMB)
CSV Carbon sequestration of vegetation (million tons)

Undesirable output CO2 emissions Energy consumption CO2 emissions (million tons)

(3) NCSE influencing factor data

According to the Introduction, the influencing factors of the NCSE may include the
population density, industrial structure, per capita GDP, science and technology level,
foreign investment, per capita road area, built-up area, road area, etc. These indicators are
introduced in Table 3. The influencing factors were calculated based on statistical yearbooks
across China from 2007 to 2019, including the China Statistical Yearbook, Beijing Statistical
Yearbook, Tianjin Statistical Yearbook, Hebei Statistical Yearbook, Shanghai Statistical
Yearbook, Jiangsu Statistical Yearbook, Zhejiang Statistical Yearbook, and Guangdong
Statistical Yearbook.

2.2.2. Spatiotemporal Cube Model (STC) Local Outlier Analysis

The STC is defined as a 3D visual form of geographic phenomena represented by the
horizontal (spatial) and vertical (temporal) axes of the cube. It is a spatiotemporal model
based on the aggregation of sample points, and can be used for geovisual analysis [55].
Each cube consists of attribute values corresponding to a specific period, with the start
time at the bottom and the end time at the top, and the magnitude of these values can
be distinguished by the use of different colors. In this study, the analysis was performed
by calculating the NCSE values for the three UAs. Each cube represents the NCSE val-
ues for one city for one year, and multiple cubes were arranged vertically according to
temporal order and aggregated into a spatiotemporal sequence. Statistically significant
clusters and outliers in the spatiotemporal environment were calculated by examining the
spatiotemporal statistical differences within the study area and its neighboring regions [56].
The neighborhood distance and neighborhood time step parameters were then used to
estimate the Anselin Local Moran’s I statistics for each cubic bar column. A total of six
tests were included: non-significance (the location was never statistically significant), high–
high (H–H) clustering (the type of statistical significance of the position was always only
H–H clustering), high–low (H–L) clustering (the type of statistical significance was always
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only H–L clustering), low–high (L–H) clustering (the type of statistical significance was
always only L–H clustering), low–low (L–L) clustering (the type of statistical significance
was always only L–L clustering), and multiple clustering (there were multiple statistically
significant types of clustering and outlier types).

Table 3. The introduction of the variables.

Variable Type Variable Meaning and Unit
of Variable Calculation Method Possibility Reference

Dependent
variable NCSE Net carbon sink

efficiency (%) See Section 2.2.1 [20]

Independent
variable

PD Population density
(people/km2)

Ln (Number of
population/area)

Population congregation will cause
the built-up area to expand rapidly,

placing enormous pressure on
urban energy consumption and the

ecological environment
(PD→−NCSE)

[15,16]

INS Industrial
structure (%)

Ln (Tertiary
industry output

value/secondary
industry output value)

Industrial upgrading and
adjustment help to eliminate

high-energy-consumption
industries (INS→ +NCSE)

[50,51]

PGDP GDP per
capita (RMB)

Ln (Total GDP/total
population)

Economically developed countries
pay more attention to

environmental protection and thus
invest more in emission reduction

(PGDP→ +NCSE)

[37,52]

TEC Technological
progress (pieces)

Ln (Number of patents
in the current year)

Technological progress helps to
improve efficiency and promote the

replacement of energy-intensive
industries (TEC→ +NCSE)

[13]

FDI
Foreign direct

investment (ten
thousand USD)

Ln (Amount of
foreign investment)

Foreign investment may bring
advanced technology

(FDI→ +NCSE)
[21]

PRO Per road area (m2)

Ln (Urban road
area/urban

non-agricultural
population)

The increase in the road area eases
traffic congestion and reduces

urban CO2 emissions
(PRO→ +NCSE)

[53]

BU Built-up area (km2)
Ln (Area of

built-up area)

Urban sprawl occupies green areas
and reduces the carbon

sequestration capacity of vegetation
(BU→−NCSE)

[54]

2.2.3. Two-Way Fixed-Effects Model

The NCSE and impact factor data were combined with time-series and cross-sectional
data to observe the changes in the impact factors in 38 cities within the three major UAs
from 2007 to 2019. The expression is as follows.

Yit = α + Xitβi + εit (6)

After introducing each influencing factor into the model, the panel data model of this
study were set as follows:

Yit = α + β1 ln PDit + β2 ln Sit + β3 ln PGDPit + β4 ln TECit + β5 ln FDIit + β6 ln BUit + β7 ln PROit + εit (7)

where Y is the explanatory variable denoting the NCSE. Moreover, PD, INS, PGDP, TEC,
FDI, BU, and PRO are the explanatory variables (Table 3), which, respectively, denote
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the population density, industrial structure, GDP per capita, technology level, foreign
investment, built-up area, and road area per capita. Finally, subscripts i and t denote the
region and year, respectively; α denotes constant terms, βi denotes variable coefficients,
and εit denotes residuals.

After standardizing the data, regression analysis was carried out using this model,
and F-tests and Hausman tests were performed in turn to determine whether there was
an individual time effect after adding annual dummy variables. An endogeneity problem
may arise from the mutual causality between the NCSE and each explanatory variable, and
each explanatory variable may also have a time lag effect. Thus, each explanatory variable
was taken separately with another lag period, and the robustness of the model was then
further tested.

3. Analysis of the Results
3.1. Amount of Carbon Release

The carbon emissions of the three major UAs from 2007 to 2019 were calculated
according to Equation (1). From Figure 2, it can be seen that the carbon emissions of
Chengde in the BTH UA were the lowest and those of Tianjin were the highest. Except for
Beijing, the carbon emissions of all the cities exhibited a fluctuating upward trend, among
which Langfang, Tianjin, and Baoding had the largest emissions, with increases of more
than 50%. The carbon emissions of 16 cities in the core of the YRD UA have also exhibited
fluctuating upward trends over the past decade, with as many as 13 cities presenting a
decreasing trend in carbon emissions in 2019 as compared to 2018. Shanghai was found
to always be in the leading position in the YRD UA in terms of carbon emissions, while
Zhoushan was found to have the lowest carbon emissions. The city with the highest carbon
emissions in the PRD UA was Guangzhou, while Zhuhai was found to have the lowest.
In addition, Huizhou was found to have the highest incremental carbon emissions, while
Dongguan had the lowest.

3.2. Amount of Carbon Sequestration

The carbon sequestration volumes of the three major UAs from 2007 to 2019 were
calculated based on Equation (2) and in combination with land use data. From Figure 3, it
can be seen that the overall carbon sequestration volume of the BTH UA did not fluctuate
greatly, and those of all the cities except Chengde presented a fluctuating downward trend
but decreased less. Chengde was found to have the highest carbon sequestration volume,
which increased by 16.48%. The carbon sequestration rates of all 16 cities in the YRD core
area, except for Zhoushan, displayed a decreasing trend in the past 13 years, with the
highest amount of carbon sequestration in Hangzhou and the lowest amount in Zhoushan.
The overall carbon sequestration in the PRD UA was found to be less volatile, with all cities
except Guangzhou showing a decreasing trend but with a smaller decrease. The carbon
sequestration of Guangzhou increased by 1.6%, and that of Zhongshan decreased by 9.42%.

3.3. Analysis of the NCSE

The NCSE values of the three major UAs from 2007 to 2019 were calculated according
to Equations (4) and (5). Figure 4 reveals that only four cities in the BTH UA presented
an increase in NCSE in 2019 as compared to 2007, among which Tangshan and Langfang
had the highest increases. In contrast, Beijing displayed the greatest decrease in NCSE
as compared to 2007. Only Zhenjiang, Taizhou, and Shaoxing in the YRD UA presented
decreases in NCSE in 2019 as compared to 2007. Shaoxing had the largest decrease, while
Shanghai, Wuxi, and Suzhou had the largest increases. The NCSE values of Jiangmen,
Zhaoqing, and Huizhou in the PRD UA were decreased in 2019 as compared to 2007, and
that of Zhaoqing decreased the most. Shenzhen and Guangzhou were the two cities with
the largest increases in NCSE in the PRD UA.
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3.4. Analysis of NCSE Local Outliers

From Figure 5, it can be seen that the cities in the BTH UA with L–L clustering were
mainly Beijing during 2009–2018 and Xingtai and Handan during 2015–2019, and the only
city with H–H clustering was Chengde in 2017. Langfang presented multiple clustering
patterns and spatiotemporal clustering during the entire study period. Nanjing, Suzhou,
and their neighboring cities in the YRD UA showed a surge in NCSE values in 2019; these
cities exhibited H–H spatiotemporal clustering and their neighboring cities presented
L–H clustering. Shanghai and Hangzhou showed a multi-cluster pattern. Moreover, in
the PRD UA, Guangzhou, Shenzhen, and Zhuhai presented a multi-cluster pattern, and
Huizhou displayed H–H clustering in 2019. The remaining cities were not found to be
spatially significant.

Figure 2. The carbon emissions of the three major UAs from 2007 to 2019.
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3.5. Analysis of the Influencing Factors of NCSE

The descriptive statistics of the influencing factors of NCSE are shown in Table 4.
According to the method described in Section 2.2.3, the F-test was first used to determine
whether the fixed-effects model or the mixed regression model should be adopted. The
result was the rejection of the original hypothesis, i.e., the mixed regression model was
found to be inapplicable to this study. Then, the Hausman test was chosen to determine
whether a fixed-effects model (FE_robust) should be adopted instead of a random-effects
model (RE). However, the traditional fixed-effects model only considered individual effects,
so annual dummy variables were added to examine the presence of individual temporal
effects [57]. After considering the temporal effect, the p-value of the joint significance test
of all annual dummy variables was found to be less than 0.05, which strongly rejected the
original hypothesis of “no temporal effect”. The two-way fixed-effects model was found to
have a better fit than the fixed-effects model, and there was no multicollinearity among the
influencing factors. Thus, the two-way fixed-effects model (FE_TW_DED) was ultimately
chosen for the analysis.

Figure 3. The carbon sequestration of the three major UAs from 2007 to 2019.
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Figure 4. The NCSE maps of the three major UAs from 2007 to 2019.

The regression results of the two-way fixed-effects model show that the influencing
factors of the NCSE of the three major UAs were found to be significantly different (Table 5).
The BTH UA was mainly influenced by the GDP per capita and industrial structure; the
YRD UA was mainly influenced by the industrial structure; the PRD UA was mainly
influenced by the population density, industrial structure, and technology level. The one-
period-lagged robustness test of the model demonstrated that the correlation coefficients of
each influencing factor were basically consistent with the results of the previous empirical
analysis, and the significance of only some influencing factors had changed.
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Figure 5. The NCSE STC diagrams of the three major UAs from 2007 to 2019.

Table 4. The descriptive statistics of the influencing factors of the NCSE of the three major UAs.

Variable Obs Mean Std. Dev. Min Max

BTH

NCSE 169 0.483 0.308 0.036 1.282
PD 169 7.881 0.664 6.492 9.383
INS 169 1.159 0.935 0.413 5.168

PGDP 169 10.583 0.584 9.45 12.01
TEC 169 7.609 1.581 4.762 11.788
FDI 169 11.067 1.519 7.012 14.941
BU 169 5.013 0.966 3.758 7.292

PRO 169 15.924 3.731 5.26 27.949

TRD

NCSE 208 0.213 0.176 0.023 1.026
PD 208 7.634 0.494 6.524 8.545
INS 208 0.984 0.384 0.561 2.695

PGDP 208 11.301 0.425 10.186 12.1
TEC 208 9.469 1.19 5.1 11.519
FDI 208 12.144 1.127 8.813 14.46
BU 208 5.273 0.818 3.895 7.121

PRO 208 20.467 6.611 4.04 34.21

PRD

NCSE 117 0.185 0.222 0.032 1.063
PD 117 7.867 0.51 6.468 8.976
INS 117 0.992 0.421 0.513 2.631

PGDP 117 11.307 0.569 9.674 13.056
TEC 117 9.187 1.377 5.525 12.023
FDI 117 12.06 0.815 9.806 13.617
BU 117 5.557 0.954 4.218 7.189

PRO 117 16.016 5.447 8.28 33.47

Table 5. The estimation results and robustness tests of the two-way fixed-effects model for the three
major UAs in China.

BTH YRD PRD BTH One-Period
Lagged

YRD One-Period
Lagged

PRD One-Period
Lagged

PD 0.107 0.082 −0.139 *** 0.162 0.039 −0.106
INS 0.185 ** 0.178 *** 0.195 ** 0.277 * 0.229 *** 0.385 *

PGDP 0.268 ** 0.243 0.002 0.114 * 0.142 −0.108 **
TEC 0.027 −0.047 0.108 ** −0.097 −0.055 * 0.144
FDI −0.006 −0.003 0.154 −0.014 -0.006 0.111
BU −0.14 −0.284 -0.367 −0.184 −0.227 −0.442

PRO −0.001 0.012 -0.005 0.001 0.020 ** 0.000
R2 0.219 0.391 0.306 0.158 0.219 0.301

Note: * p < 0.05, ** p < 0.01, *** p < 0.001.
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4. Discussion
4.1. Analysis of the Carbon-Neutral Capacity of the Three Major UAs in China Based on NCSE

The state of carbon deficit poses a great threat to regional sustainable development [58]
and is a key issue that China must improve to achieve the dual carbon target in the fu-
ture. Studies have been conducted in the context of China’s singular UAs [40], typical
provinces [59], and cities [60,61]. These studies found that all scales are characterized by
carbon deficits caused by the decrease in carbon sequestration and the increase in carbon
emissions, which is basically consistent with the findings of the present research. The
results of this study show that the carbon emissions of the three major UAs all exhibited a
fluctuating upward trend during the study period, while the amount of carbon sequestra-
tion fluctuated less, presenting a trend of first decreasing and then increasing. Overall, all
three UAs were found to have a carbon deficit problem.

The NCSE is a measure of carbon balance by adding the GDP and CSV as expected
outputs to the assessment framework with constant labor, capital, and energy inputs. Thus,
the NCSE is more suitable for developing countries than measures used in previous studies,
and is also more conducive to the sustainability of economic development.

In the exploration of the spatial distributions of the NCSE in the three major UAs
in China using the STC model, different UAs were found to have different distribution
characteristics. Beijing and its surrounding cities in the BTH UA, and Guangzhou, Shen-
zhen, and Zhuhai in the PRD UA, which are the more developed cities, were found to
have a long, continuous period of exhibiting L–L clustering from the spatial perspective.
In contrast, the YRD UA is completely different because it covers more provinces and
cities, and the clustering pattern of Shanghai and Hangzhou was found to often change
spatiotemporally in a multi-cluster pattern. The total economic volume of the YRD UA
reached a new level in 2019 and became a national strategy in that year, which significantly
increased the combined influence of various factors and caused Nanjing, Suzhou, and their
surrounding cities to appear as H–H clusters in that year. In general, some cities in the three
major UAs were found to have a common spatiotemporal clustering pattern. Moreover, the
NCSE values of some cities fluctuated considerably, with more obvious fluctuations in the
YRD UA. Although the carbon emissions of some cities are still increasing, the NCSE is
also on an upward trend, which further confirms that simply relying on the reduction of
carbon emissions and ignoring other factors to achieve carbon neutrality will hinder the
sustainable economic development of developing countries.

4.2. Analysis of Influencing Factors

The causes of carbon neutrality in the three UAs were analyzed by using the NCSE as
a measure of carbon neutrality. The BTH UA is more obviously influenced by government
policy control than the other two UAs [62], and its relationship with the per capita GDP was
found to be significant and positively correlated. When economic development reaches a
certain level, residents and governments will pay more attention to improving environmen-
tal quality and promoting sustainable development [63]. With the increase in per capita
income, to meet people’s demand for ecological environment quality, city governments
will strengthen urban greening management and environmental regulation, promote the
development of the urban low-carbon economy, and thus improve the urban NCSE.

In the YRD UA, the influence of the industrial structure was found to be significant
and positively correlated with the NCSE. The upgrading of the industrial structure plays
a positive role in the NCSE and contributes to the realization of carbon neutrality. City
governments should actively promote industrial transfer, facilitate a reasonable industrial
layout, and improve the energy use and pollution control efficiency via technological
progress [51]. The YRD UA is diversified in terms of industrial categories, which mainly
include electronic equipment manufacturing, metal smelting and processing, chemical
material and product manufacturing, and the textile industry, as well as other light indus-
tries [64]. Therefore, the YRD is more significantly affected by the industrial structure as
compared to the other two UAs.
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The PRD UA was found to be significantly and negatively affected by the population
density, which is consistent with previous findings indicating that urbanization has a
negative impact on carbon sequestration [65]. Population agglomeration causes the rapid
expansion of built-up areas; this places great pressure on urban energy consumption and the
ecological environment, which has a negative impact on the urban NCSE. Shenzhen, with
an urbanization rate close to 100%, was found to have the largest rate of change in NCSE
among the cities in the PRD UA. In the process of urbanization, a large amount of arable
forest land is converted into construction land, thus leading to a decrease in land carbon
sequestration [66]. The high rate of urbanization and rapid economic development consume
large amounts of resources and energy, which in turn directly leads to an increase in carbon
emissions [67]. A more favorable factor is technological innovation, as it is crucial for the
reduction of pollution emissions [13] and can effectively improve the energy use efficiency
and energy mix conversion in cities. This, in turn, will reduce carbon emissions and is an
important means by which to promote NCSE. Shenzhen and Guangzhou were found to
have relatively high STI indices, which caused the factor of technological innovation to be
significantly and positively influential in the PRD UA.

4.3. Policy Recommendations

In addition to enhancing the management of forest resources and expanding the scale
of green spaces [68,69] to improve the carbon sequestration capacity of vegetation, the three
UAs should adopt targeted improvement policies for the mitigation of the carbon deficit to
promote a carbon balance according to the significance of the influencing factors. The BTH
UA should increase investment, and the government should provide greener infrastructure
and strongly support technological innovation [70]. It should also promote the popularity
and use of new energy vehicles and increase subsidies. Regarding agriculture, low-carbon
agricultural technology should be developed and the value of food and agricultural waste
should be increased [71]. The YRD UA should continue to take advantage of its industrial
structure to develop clean energy, such as wind, water, solar, biomass, hydrogen, thermal,
ocean, nuclear, and new material energy storage, according to local conditions [72]. The
carbon trading capacity of enterprises in industrial production should be strengthened [73],
the elimination of high-energy-consuming industries should be promoted, and industrial
upgrading and adjustment should be promoted [74]. To improve the NCSE of the cities,
the PRD UA should actively consider the role of foreign investors and utilize their unique
advantages to further enhance the capacity of science and technology innovation through
domestic and foreign trade and technology exchange [21].

5. Conclusions

The three major UAs in China were selected as the research objects of this study, and
their carbon sequestration and carbon release from energy consumption were respectively
calculated according to the LUCCs during 2007–2019. The NCSE values of the three major
UAs were then calculated by the non-expectation super-efficiency SBM model, and their
spatiotemporal evolution characteristics were analyzed based on the STC model. The
findings of this study reveal the following. (1) The carbon sequestration in the three major
UAs was found to show a fluctuating trend of generally decreasing, but the interannual
variation was small. The carbon release mostly showed a fluctuating upward trend and a
deficit level in general, which cannot achieve a carbon balance. In the BTH UA, the NCSE
values of Tangshan, Chengde, and Langfang were higher than those of Beijing and Tianjin.
In the YRD UA, the NCSE values of Shanghai and its neighboring cities were higher than
those of Zhenjiang and Changzhou. In the PRD UA, the NCSE values of Guangzhou and
Shenzhen were higher than those of Foshan, Dongguan, Zhongshan, and Zhuhai. (2) The
cities in the L–L clusters in the BTH UA were mainly Beijing and its surrounding cities
during 2009–2018 and Xingtai and Handan from 2015 to 2019. The only city with H–H
clustering was Chengde in 2017. The NCSE values in the YRD UA centered on Shanghai,
Nanjing, and their surrounding cities revealed H–H clustering in 2019, while Changzhou,
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Ningbo, and their surrounding cities presented L–H clustering. The NCSE values of the
remaining cities in the PRD UA, namely Guangzhou, Shenzhen, and Zhuhai, showed a
multi-cluster pattern that was not spatiotemporally significant, and the spatiotemporal
clusters were scattered. (3) Among the three major UAs, the BTH UA was found to be
influenced by and positively correlated with the industrial structure and GDP per capita;
the YRD UA was significantly influenced by and positively correlated with the industrial
structure; the PRD UA was influenced by the population density, industrial structure, and
technology level, with the former being negatively correlated and the latter two being
positively correlated.

This study analyzed the NCSE distributions of the three major UAs in China at the
spatial and temporal scales using the STC model in the context of sustainable economic
development. This undertaking was different from previous analyses targeting individual
time points, and the research method was more scientific. The NCSE was calculated by
combining carbon emissions and CSV with constant labor, capital, and energy inputs, which
can better reflect the comprehensive ability of CO2 reduction and carbon sequestration.
Unlike the traditional single-variable analysis, the carbon-neutral status of three major
UAs in China over more than ten consecutive years was discussed in terms of carbon
emissions, CSV, and NCSE. Under different NCSE levels, the carbon-neutral policies of
each region should be formulated according to the significance of the influencing factors
in the local context. In addition, this study was characterized by some shortcomings. In
the econometric model testing, a lag of only one period was used to test the robustness
and endogeneity of the model. Moreover, because the scope of the study involved data
from different provincial and municipal statistical yearbooks over several years, there were
missing data for some years, and thus the final results may have some errors. In the future,
more advanced models and indicators should be considered and selected to measure the
carbon balance, and the influencing factors should be studied from the perspective of
counties in a more refined manner. In conclusion, China’s three major UAs have a long
way to go to achieve carbon neutrality, and as representative UAs in a developing country,
they should play a leading role as models for other urbanized regions in developing
countries to formulate carbon-neutral policies in the context of balancing development and
the environment.
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