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Abstract: A quantitative understanding of the relationship between comprehensive health levels,
such as healthy life expectancy and their related factors, through a highly explanatory model is
important in both health research and health policy making. In this study, we developed a regression
model that combines multiple linear regression and a random forest model, exploring the relationship
between men’s healthy life expectancy in Japan and regional variables from open sources at the city
level as an illustrative case. Optimization of node-splitting in each decision tree was based on the
total mean-squared error of multiple regression models in binary-split child nodes. Variations of
standardized partial regression coefficients for each city were obtained as the ensemble of multiple
trees and visualized on scatter plots. By considering them, interaction terms with piecewise linear
functions were exploratorily introduced into a final multiple regression model. The plots showed
that the relationship between the healthy life expectancy and the explanatory variables could differ
depending on the cities’ characteristics. The procedure implemented here was suggested as a useful
exploratory method for flexibly implementing interactions in multiple regression models while
maintaining interpretability.

Keywords: linear regression; regression tree; healthy life expectancy; health policy making

1. Introduction

Measuring health levels and identifying related factors are one of the key roles in
health policy making. Among several health indicators, healthy life expectancy (HLE) has
been widely used because it provides comprehensive information on the functional health
status of populations [1–5]. In Japan, the second term of the national health promotion plan
named “Health Japan 21” began in 2013, which aimed to extend HLE as a main goal [6].
There has also been health research on HLE at local levels in Japan suggesting that socio-
demographic and other regional factors are associated with HLE, though a comprehensive
understanding of factors related to HLE remains to be elucidated due to the complexity
arising from its multifactorial nature [7,8]. Based on a multiple linear regression analysis
of the 331 secondary medical areas of Japan, it was suggested that regional factors, such
as the tax revenue of tobacco and the proportion of elderly single-person households,
have a negative association with HLE, whereas those such as the number of dementia
supporters and the proportion of graduates with a university degree or higher have a
positive association [8].

Linear regression is a versatile tool in health research to quantitatively analyse the
relationship between one or more explanatory variables and an outcome variable of interest,
e.g., HLE [8–10]. While its relative intuitiveness helps researchers and policy-makers under-
stand results, the assumption of simple linearity may not hold true where the relationships
between variables are more complex. Adding interaction and/or polynomial terms may
be beneficial to account for nonlinearity; however, it should be carefully applied because
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increasing model complexity can lead to reduced interpretability of the model and/or
overfitting. Determining nonlinear terms to include with appropriate functional forms may
also be difficult when there is a lack of prior information. These concerns extend to locally
weighted regression as well, where selecting an appropriate weight function that is both
effective and interpretable can be challenging.

Other ways to extend linear regression concerning nonlinearity include using piece-
wise models, where partitioning a dataset into pieces and regression thereof may be
performed either sequentially, as in M5′, or simultaneously, as in MPTree [11–14]. The use
of decision tree-based splitting combined with linear regression in each leaf enables these
approaches to maintain the interpretability of both of the submodels. Single tree models,
however, are prone to overfitting and may lack generalization ability; crisp node splitting
may not sufficiently reveal relationships between the difference of estimated coefficients
in multiple linear regression for each leaf and characteristics of the leaves indicated from
conditions for splitting where true clusters have continuous variations. Though the MPTree
model constructs a single regression tree by recursive binary partitioning with relatively
high prediction accuracy and small numbers of terminal leaf nodes [12], its reliance on the
use of polynomial regression functions may make it difficult to intuitively interpret the
relationships between variables represented by the model.

To address these challenges, we developed “sylvan linear regression”, which is a novel
regression model implemented by combining multiple linear regression and an ensemble of
tree-based models known as random forest. Random forest is an ensemble-learning method
that builds multiple decision trees on bootstrapped sample sets while randomly selecting a
subset of features for node splitting [15,16]. By aggregating predictions of the trees, random
forest improves accuracy and stability with reduced overfitting. The capability to capture
complex interactions and nonlinear relationships between variables with varying degrees
of influence is another strength of random forest. Sylvan linear regression also adopts
bootstrap sampling and random feature selection to create a diverse ensemble of decision
trees each leaf of which has estimated regression coefficients by node-wise fitting with
multiple linear regression, as described in the Section 2. This paper aims to demonstrate the
use of this model for exploring heterogeneity of relationships between municipal factors
and HLE as a representative case, where changes in regression coefficients of the ensemble
calculated for each sample are examined.

2. Materials and Methods

HLE of men was calculated as an outcome variable with the HLE calculation program
published by a Japanese Ministry of Health, Labour and Welfare research group [17], in
which we used municipal lifetime tables and data of the number of people requiring support
in the long-term care insurance system, with care level 2 and above being a surrogate of
unhealthy status. The mean and standard deviation of the men’s HLE across the cities
were 79.39 and 0.77, respectively. We collected statistical data with a base year of 2015
from 544 cities that have a population of at least 50,000, using open data sources of the
Japanese government and a specified non-profit organization [18–21]. We conducted the
analysis using all 544 cities for which data were collected. The cities included in our
analysis represent approximately 84.2% of the national population of Japan, which had a
total of 1741 municipalities in 2015. When surveys as the data source were conducted only
every few years (i.e., not annually) and did not cover the base year of 2015, we linearly
interpolated data from the nearest years or applied the last observation carried forward
if values of the newer year were not provided yet. The list of 16 explanatory variables is
shown in Table 1, with their abbreviations which are used in the following sections. The
original data sources for each variable are as follows: proportion of graduates with tertiary
education or higher (TE), the Population Census (Kokusei Chousa); Proportion of elderly
(aged ≥ 65) single-person households, men (ES), the Population Census; unemployment
rate (UE), the Population Census; proportion of workers aged 65 and over (EW), the
Population Census; proportion of primary industry workers (PW), the Population Census;
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proportion of primary and secondary industry workers (IW), the Population Census;
proportion of car-only commuters (CM), the Population Census; taxable income (TI), the
Survey of Municipal Taxation Status (Shichoson Zei Kazei Jokyo To no Shirabe); financial
strength index (FI), the Survey of Local Government Finances (Chiho Zaisei Jokyo Chosa);
municipal tobacco tax collection (TB), the Survey of Local Government Finances and the
Population Census; number of dementia supporters (DS); Ninchisho (Dementia) Supporter
Caravan and the Population Census; number of participants in community-based salons for
preventive care (CS), the Survey Results on the Long-term Care Prevention Projects and the
Comprehensive Projects for Long-term Care Prevention and Daily Life Support (Regional
Supporting Projects) (Kaigo Yobo Jigyo oyobi Kaigo Yobo Nichijo Seikatsu Shien Sogo Jigyo
(Chiiki Shien Jigyo) no Jisshi Jokyo ni Kansuru Chosa Kekka) and the Population Census;
total population (TP), the Population Census; proportion of inhabitable areas (IA), the
Municipalities Area Statistics of Japan (Zenkoku Todofuken Shikuchoson Betsu Menseki
Cho); population density in inhabitable areas (PD), the Municipalities Area Statistics of
Japan and the Population Census; Proportion of population without flush toilet (NT), the
Survey on Disposal of General Waste (Ippan Haiki-butsu Shori Jigyo Jittai Chosa). All the
variables were standardized for further analysis.

Table 1. List of 16 explanatory variables.

Variable Unit/Calculation Abbreviation

Proportion of graduates with tertiary
education or higher % TE

Proportion of elderly (aged ≥ 65)
single-person households, men % ES

Unemployment rate % UE
Proportion of workers aged 65 and

over % EW

Proportion of primary industry
workers % PW

Proportion of primary and secondary
industry workers % IW

Proportion of car-only commuters % CM
Taxable income yen, per taxpayer, ln-transformed TI

Financial strength index basic financial revenue divided by
basic financial need FI

Municipal tobacco tax collection thousand yen, per thousand people
aged ≥ 15, ln-transformed TB

Number of dementia supporters per thousand people aged ≥ 65,
ln-transformed DS

Number of participants in
community-based salons for

preventive care
per thousand people aged ≥ 65 CS

Total population person TP
Proportion of inhabitable areas % IA

Population density in inhabitable
areas person, per hectare PD

Proportion of population without
flush toilet % NT

Sylvan linear regression, a regression model proposed in this work, firstly builds
multiple trees by recursive binary node splitting of bootstrap sample sets generated by
random sampling with replacement (Figure 1a). Given a tree node and a candidate subset
of j features randomly selected for node splitting, the model reiteratively finds a sin-
gle breakpoint of the features for the two child nodes under the conditions as follows
(Figure 1b): (1) the sum of the mean-squared errors (MSE) of multiple linear regression for
each child node is minimized; (2) the resulting reduction in errors obtained by subtracting
the sum from the MSE for the parent node exceeds a certain constant fraction (α) of the
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MSE for the root node (Er); (3) the child node sizes do not fall below a predefined minimum
limit (m). The second and third conditions are introduced to avoid overfitting. Multiple
regression analyses on each node of the generated trees were conducted by including
all 16 variables listed in Table 1 as explanatory variables, regardless of a set of selected
variables as features considered for node splitting. After all nodes of all the generated trees
have turned into leaves, i.e., splitting has stopped for every tree, regression coefficients
of the ensemble are calculated for each sample by taking the means of the regression
coefficients of all the single leaves to which each was assigned across the trees (Figure 1a).
The procedures are illustrated in Figure 1. The regression model was implemented in
Python; the generation of each decision tree was based on the algorithm using stacks [16].
Hyperparameters of the model must be tuned through cross-validation to optimize the
MSE of predicted values obtained by averaging predictions from multiple linear regression
models of the leaves. We conducted a 20-fold cross-validation with 200 trees for each round.
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Figure 1. Procedures of sylvan linear regression. (a) Construction of a forest consisting of decision
trees; (b) flowchart of building a single tree.

After the generation of a forest comprising decision trees with bootstrap sample sets
for each, we created scatter plots of all the sample cities for each explanatory variable
with the averaged regression coefficients on Y-axes to explore potential interactions of the
variables. The first principal component (PC1) of the standardized explanatory variables
was selected as the X-axes variable under the assumption that plotting with PC1, the
single variable indicating the direction with the largest variance of the original dataset, on
the X-axes effectively visualizes the heterogeneity of Y-values and possible interactions
with explanatory variables. Putative two-way interaction terms suggested by the plot
were exploratorily added as additional explanatory variables in the final multiple linear
regression model; an interaction term between an explanatory variable x and a specific
variable z (PC1 in this case) was not given as the simple product of x and z, but as the
product of x and the image of z under one of the following piecewise linear functions with
exploratorily defined parameters:
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lins(z; a, b) = f (z)− f (0), where f (z) = max
(

min
(

z− a
b− a

, 1
)

, 0
)

(1)

linz(z; a, b) = f (z)− f (0), where f (z) = max
(

min
(

b− z
b− a

, 1
)

, 0
)

(2)

trpz(z; a, b, c, d) = f (z)− f (0), where f (z) = max
(

min
(

z− a
b− a

, 1,
d− z
d− c

)
, 0

)
(3)

The subtraction by f (0) was employed as a centering factor so that interaction terms
should vanish when z = 0. The hyperparameters of the functions were manually determined.

3. Results

Figure 2 shows scatter plots of standardized linear regression coefficients (β) of ex-
planatory variables on Y-axes against PC1 on X-axes for each data point across all the cities
included in the analysis. The regression coefficients of the ensemble were calculated by
using the sylvan linear regression model comprising 5000 trees trained with hyperparam-
eters m (minimum node size), j (number of features considered for node splitting), and
α (proportion of improvement in errors required for node splitting with respect to the
error at the root node) tuned via the aforementioned cross-validation to be 45, 4, and 0.02,
respectively. Table 2 summarizes the loadings of PC1, which indicate the contribution of
each regional variable to it, showing the characteristics of the variable used for X-axes in
Figure 2. PC1 had an explained variance ratio of 39% and appeared to be mainly related to
urbanization. In each scatter plot in Figure 2, the dispersion of the data points along the β

values of the Y-axis reflects the potential instability of the estimates in the simple multiple
regression model where the weights of the municipalities are equally treated. Among the
scatter plots, those without apparent changes in the distribution of the β values along
PC1 of the X-axis (e.g., ES, FI, IA) may mean that the current model does not sufficiently
capture the heterogeneity of the relationships between variables or they are indeed almost
homogeneous. On the other hand, the scatter plots that exhibit changes in trends along PC1
(e.g., EW, IW, TI) suggest that there can be higher-order relationships between variables
which may be captured by introducing interaction terms.

Table 2. Loadings of the first principal component of the explanatory variables.

Variable Loading for PC1 Variable Loading for PC1

TE 0.84 FI 0.63
ES 0.59 TB −0.056
UE −0.18 DS −0.21
EW −0.59 CS −0.24
PW −0.78 TP 0.38
IW −0.75 IA 0.66
CM −0.87 PD 0.81
TI 0.85 NT −0.65
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Figure 2. Quantitative relationships between standardized partial regression coefficients (std. β) of
the explanatory variables for each city aggregated from the sylvan linear regression model and PC1.
Red dotted lines, β = 0; orange dashed lines, estimated β as constants; violet solid lines, approximated
β as piecewise linear functions of PC1.

In Figure 2, three types of lines are also depicted on the scatter plots: red dotted
lines are drawn at β = 0; orange dashed lines correspond to single β for each explanatory
variable obtained by vanilla multiple linear regression (i.e., without interaction terms) with
ordinary least squares as described in Table 3 (adjusted R-squared = 0.60); violet solid lines
represent changes of β as functions of PC1 into which interaction terms are incorporated,
approximating the data points with piecewise linear functions. The latter two lines were
drawn from the data of all the 544 cities by each regression analysis. The suggestively
positive relationship between HLE and TE, and the negative ones with ES, UE, and TB
in Table 3 were consistent with the previous studies, whereas the relationships with the
variables such as TI and PD were not nominally significant in this model [7,8]; in addition,
the βs of IW and IA were estimated to be positive and negative, respectively.
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Table 3. Partial regression coefficients of multiple linear regression without interaction terms.

Std. β Std. Error p-Value 95% CI

const. 0 0.027 1 −0.053 0.053
TE 0.6056 0.071 <0.001 0.465 0.746
ES −0.2048 0.058 <0.001 −0.319 −0.091
UE −0.1508 0.036 <0.001 −0.222 −0.079
EW −0.0328 0.04 0.413 −0.111 0.046
PW −0.0384 0.046 0.405 −0.129 0.052
IW 0.1705 0.052 0.001 0.069 0.272
CM −0.0849 0.06 0.16 −0.203 0.034

TI [ln] 0.0847 0.068 0.214 −0.049 0.218
FI 0.0378 0.049 0.444 −0.059 0.135

TB [ln] −0.099 0.038 0.01 −0.174 −0.024
DS [ln] 0.0524 0.029 0.075 −0.005 0.11

CS 0.0379 0.028 0.177 −0.017 0.093
TP −0.0451 0.03 0.133 −0.104 0.014
IA −0.1311 0.04 0.001 −0.209 −0.053
PD −0.0426 0.073 0.561 −0.187 0.101
NT −0.0517 0.036 0.148 −0.122 0.018

Table 4 describes the results of the regression model including interaction terms
introduced from the implications from Figure 2, interpretations of which are discussed
in the Section 4; the adjusted R-squared was 0.64 in this model. The standardized partial
regression coefficients of the original explanatory variables are consistent with Y-values on
the violet solid lines in Figure 2 at PC1 equals zero. The absolute β values of the interaction
terms are reflected in the vertical distance of the corresponding violet line segments parallel
to the X-axes.

Table 4. Partial regression coefficients of multiple linear regression with interaction terms.

Std. β Std. Error p-Value 95% CI

const. 0.1277 0.092 0.163 −0.052 0.308
TE 0.5585 0.079 <0.001 0.403 0.714
ES −0.1852 0.06 0.002 −0.303 −0.067
UE −0.2924 0.046 <0.001 −0.383 −0.201
EW −0.1223 0.049 0.013 −0.218 −0.026
PW −0.0272 0.071 0.701 −0.166 0.112
IW 0.1242 0.058 0.034 0.009 0.239
CM −0.0817 0.068 0.227 −0.214 0.051

TI [ln] −0.0853 0.126 0.497 −0.332 0.161
FI 0.0271 0.053 0.61 −0.077 0.132

TB [ln] −0.13 0.041 0.002 −0.21 −0.05
DS [ln] 0.0398 0.029 0.172 −0.017 0.097

CS −0.0409 0.039 0.3 −0.118 0.036
TP −0.0358 0.033 0.279 −0.101 0.029
IA −0.1255 0.042 0.003 −0.208 −0.043
PD 0.2084 0.2 0.299 −0.185 0.602
NT 0.0001 0.044 0.998 −0.087 0.087

const. × trpz (PC1; −4, −0.5, 0.5, 4) −0.3502 0.433 0.418 −1.2 0.5
TE × linz (PC1; −1.5, 0.5) 0.2429 0.166 0.144 −0.083 0.569

UE × trpz (PC1; −3, −2, 1, 3) −0.3759 0.081 <0.001 −0.534 −0.218
EW × linz (PC1; −3, 0.5) 0.2551 0.107 0.018 0.044 0.466

PW × lins (PC1; 0, 4) 1.0704 0.69 0.121 −0.285 2.426
IW × linz (PC1; −3, 1.5) 0.3829 0.138 0.006 0.111 0.655

CM × trpz (PC1; −4, −2.5, −1, 1) −0.2627 0.157 0.094 −0.571 0.045
TI [ln] × trpz (PC1; −2.5, −1, 1, 2.5) −0.4119 0.138 0.003 −0.683 −0.141

TB [ln] × lins (PC1; −3, 2) 0.0501 0.108 0.642 −0.162 0.262
DS [ln] × linz (PC1; −2, 2.5) 0.1449 0.079 0.068 −0.011 0.301
CS × linz (PC1; −3.5, −0.5) 0.202 0.072 0.005 0.061 0.343

CS × lins (PC1; 2.5, 4) 0.0884 0.154 0.567 −0.215 0.392
TP × lins (PC1; −3.5, 0) 0.7658 0.521 0.142 −0.258 1.789

PD × linz (PC1; −4.5, −2) 1.3946 0.564 0.014 0.286 2.503
PD × linz (PC1; −2, 2.5) 0.3306 0.344 0.337 −0.346 1.007
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4. Discussion

Applying sylvan linear regression to the dataset showed multifaceted insights into
global and local relationships between HLE and the municipal factors with an improved
explanatory power. Unexplained residuals of the objective variable in the regression model
may be at least partially attributed to the measurement error of HLE itself in addition to
unincorporated factors because the calculation of HLE for cities with small populations can
be inaccurate [17].

The overall coefficients of the explanatory variables were expressed as the functions of
PC1, which were obtained from the results including the interaction terms in Table 4 and
visualized as the violet lines in Figure 2. While these violet lines were largely consistent
with the orange dashed lines representing the coefficients as single constants that were
calculated regardless of any interaction terms in Table 3, the nonzero coefficients of the
interaction terms in Table 4 suggested that the magnitude of the relationships between HLE
and the explanatory variables could vary according to PC1. For example, IW was suggested
to typically have a positive relationship with HLE; it was also implied, however, that the
strength of the relationship between them tended to become smaller with increasing PC1.
Thus, the results from multiple linear regression with interaction terms investigated via
our proposed method can be directly compared with the usual multiple linear regression
concerning regression coefficients themselves as well as their coefficients of determination
or predictive performance.

The partial regression coefficients of each explanatory variable itself, which corre-
sponded with overall coefficients at PC1 equals zero, could be calculated as those for other
PC1 scores as well. One may adopt f (a) as a subtraction term in the piecewise linear
functions introduced in the methods section, where a is a real number other than zero, so
that coefficients with PC1 of a and their precisions can be directly estimated. Interactions
between the explanatory variables and other variables than PC1 can also be visualized by
plotting data points as in Figure 2, which may lead to form alternative regression models.
There may be principal components that cover even larger variances than the first principal
component generated by linear combinations when nonlinear functions are taken into
consideration, though the intuitive interpretation of such principal components as axes
used for the exploration of interaction terms in the analysis can be difficult. The use of
variables such as kernel principal components may be one of the directions of further
research.

The application of the piecewise linear functions for one variable to summarize fluc-
tuations of the coefficients calculated for each sample from the trees allows for exploring
models that reconcile flexibility and interpretability. Since the piecewise linear functions
can be introduced in flexible combination(s) while maintaining their local linearity, we
considered these functions suitable for our purpose to extend the usual multiple regression
analysis by treating the partial regression coefficients as functions f (z) with a common
variable z. However, given that the curve fittings with piecewise linear functions to the
plots are exploratory, i.e., their parameters are manually tuned, the nominal p-values in
the multiple regression model with interaction terms should be interpreted with caution.
Other forms, such as polynomials or splines, could be employed, albeit at the expense
of simplicity. For example, it may be possible to consider higher-order interactions by
introducing quadratic or cubic terms; in such cases, however, one may also encounter
challenges of complicated and cumbersome parameter tuning of f (z) as well as difficulty
in interpreting the results. Further studies would include developing automated methods
with prespecified hyperparameters to simultaneously fit the data points of coefficients
obtained from the forest and optimize the final multiple regression model, in which vari-
able selection techniques such as Lasso could also be used, as well as establishing a solid
theoretical foundation for the sylvan regression model by elucidating its mathematical
and statistical properties in detail towards establishing the current method as an analytical
approach that can be applied to general situations.
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5. Conclusions

We demonstrated the utility of the sylvan linear regression procedure through the
illustrative exploration of factors related to the healthy life expectancy of men in Japan at the
municipal level. By introducing the interaction terms that involve piecewise linear functions
suggested from the scatter plots of the first principal components and the calculated
coefficients for each city, the final multiple regression model with enhanced explanatory
power was obtained while balancing adaptiveness and conciseness. Our newly developed
method model may pave the way for tailored, healthy city planning based on deeper
insights into the relationships between healthy life expectancy and its related factors.
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