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Abstract: Syndromic aortic diseases (SADs) encompass various pathological manifestations affecting
the aorta caused by known genetic factors, such as aneurysms, dissections, and ruptures. However,
the genetic mutation underlying aortic pathology also gives rise to clinical manifestations affecting
other vessels and systems. As a consequence, the main syndromes currently identified as Marfan,
Loeys–Dietz, and vascular Ehlers–Danlos are characterized by a complex clinical picture. In this
contribution, we provide an overview of the genetic mutations currently identified in order to have a
better understanding of the pathogenic mechanisms. Moreover, an update is presented on the basis
of the most recent diagnostic criteria, which enable an early diagnosis. Finally, therapeutic strategies
are proposed with the goal of improving the rates of patient survival and the quality of life of those
affected by these SADs.

Keywords: aneurysm; dissection; Marfan syndrome; Loeys–Dietz syndrome; vascular Ehlers–Danlos
syndrome; syndromic aortic diseases

1. Introduction

Syndromic aortic diseases (SADs) are congenital diseases that encompass aortic mani-
festations such as aneurysm formation, dissection, and aortic rupture, which can also occur
in non-dilated vessels. These conditions (according to genetic disorders) are often just one
aspect of a more complex clinical picture. The underlying genetic mutations of SADs can
also give rise to manifestations in other body systems.

When a specific genetic mutation associated with a particular clinical and physical
phenotype can be identified, we refer to syndromic aortopathies as Marfan syndrome
(MFS), Loeys–Dietz syndrome (LDS), and vascular Ehlers–Danlos syndrome (vEDS). On
the other hand, we refer to non-syndromic aortopathies when aortic manifestations result
from gene mutations that change components of vascular smooth muscle cells but are not
associated with other systemic abnormalities. However, it is not always possible to identify
the specific genetic mutation responsible for these conditions at present.

The genetic basis plays a key role in defining not only the best diagnostic program but
also the most fitting medical therapy or surgical treatment.

The aim of this review is threefold. First, we summarize the current genetic evidence
on the basis of SADs. Second, we describe the pathophysiological processes in order to
define the new diagnostic approaches currently recognized. Finally, we try to define the
time and type of the surgery or, alternatively, when there is no indication for surgery, the
most appropriate medical treatment in accordance with the latest guidelines.
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2. Genetic Basis and Pathophysiology

Recent advancements in the study of DNA sequencing led to the identification of a
large series of genes responsible for the alterations of the great vessels’ connective tissue.

These breakthroughs have significantly contributed to our understanding of the un-
derlying pathophysiology and have unveiled potential therapeutic targets [1].

The major pathways genetically implicated in the development of SADs include
proteins involved in the formation of:

− Extracellular matrix (ECM);
− vascular smooth muscle cells (VSMCs);
− transforming growth factor-beta (TGF-β) [2].

The ClinGen Aortopathy Working Group has put forth a systematic classification of
the genes whose variation predisposes to thoracic aortic disease.

The classification consists of a scale based on how strong the link is between genetic
variation and aortic diseases (Figure 1) [3].
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2.1. Marfan Syndrome

MFS is an autosomal dominant syndrome of the connective tissue that affects the
cardiovascular, skeletal, ocular, pulmonary, and nervous systems, with a prevalence of one
in 5000/10,000 persons [4]. MFS is caused by mutations in the FBN1 gene that encodes
fibrillin-1, a major component of the extracellular matrix [5].

The FBN1 also interferes in the down-regulation of TGF-β (transforming growth
factor-β) through TGF-β cytokines (large latent complexes (LLC) that contain latency-
associated peptide (LAP) and latent TGF-β binding protein (LTBP) anchored to the extra-
cellular matrix with fibrillin-1). In the presence of mutated fibrillin-1, the altered pathway
leads to an overexpression of TGF-β (Figure 2) [6].

TGF-β binding to receptors activates the SMAD-dependent canonical cascade. SMAD-
independent noncanonical pathways are also activated, and the activation of extracellular
signal-regulated kinases (ERK1/2) becomes an important driver of aortic aneurysm forma-
tion (Figure 3) [7]. In several studies, it has been shown that angiotensin II (AngII) type 1
receptor blockers (ARBs), such as losartan, have a protective role in aneurysmal formation
by preventing noncanonical ERK1/2 activation [8].
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Figure 3. FBN1 mutation and aortic aneurysms. The overexpression of metalloproteinases (MMP2;
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determines the formation of aortic aneurysms. Adapted with permission from [7].

Mutations in TGF-β signaling pathway-related genes play a decisive role in the patho-
genesis of MFS because these genetic alterations lead to structural changes in the connective
structure of the vessels, which facilitate dilatation and dissection [6]. In the aortic wall
of patients with MFS, it has been seen fragmentation and disorganization of elastic fibers
in the media layer, calcification, and thickening of all layers due to the accumulation of
collagen and amorphous matrix, in addition to focal intimal thickening in all vessels [9].
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Additionally, Radonic et al. have demonstrated how this altered collagen structure leads to
the synthesis of degradation products that attract inflammatory cells. The inflammatory
process, in turn, aggravates disease severity in patients with MFS [10].

2.2. Loeys-Dietz Syndrome

Loeys–Dietz syndrome (LDS) is an autosomal dominant connective disorder caused
by mutations in different members of the TGF-β pathway.

In order to give an account of the different mutations, a new classification was put
forward in 2014 that defines LDS variants in IV types. Initially, LDS was classified into
two types, depending on the severity of craniofacial features (type 1) or skin features
(type 2). However, evidence that certain genetic mutations were more associated with the
onset of aortic aneurysmal disease or dissection led to a categorization based on those
genetic mutations that were deemed responsible [11].

In the aftermath of this classification, two other forms of LDS were proposed: type 5
associated with the TGFB3 mutation and type 6 determined by the SMAD2 mutation.

Bertoli-Avella et al. analyzed 11 families with a history of syndromic aortic aneurysms.
The analysis showed that in 43 subjects, there was a correlation with TGFB3 mutations. A
strong correlation in human aortic tissue between TGFB3 loss-of-function (LOS) mutations
and enhancement of the TGF-β signaling pathway was highlighted. Furthermore, in sub-
jects affected by this mutation, not only cardiovascular involvement (thoracic/abdominal
aortic aneurysm and dissection, mitral valve disease) but also clinical features typical of
LDS (hypertelorism, bifid uvula, cleft palate) were present [12,13].

Gene mutations of TGFBR1 and TGFBR2 result in overexpression of the TGF-β path-
way, resulting in increased connective tissue growth factor (CTGF) and increased nuclear
accumulation of phosphorylated SMAD2 (pSMAD2) [14]. SMAD2, after its phosphory-
lation, has a fundamental role in the control of gene transcription; therefore, its altered
functioning determines an alteration of the cellular signal. Mutations affecting the SMAD2
gene (especially the missense and nonsense variants) are related to the most recently identi-
fied type of LDS, LDS type 6. Micha et al. were among the first to associate the SMAD2
mutation with a new form of LDS, starting from the analysis of three families with a history
of aneurysm and dissection in which there was evidence of overexpression of SMAD2 at
the level of the aortic wall [15].

It has also been observed that the SMAD3 protein also plays a key role in the activa-
tion/repression of the TGF-β pathway. In particular, truncating mutations that delete nearly
the complete MH2 domain in SMAD3 lead to an increase in the activity of TGF-β [16].

Thus, immunohistochemical evidence of increased expression of TGF-β receptors,
TGFBR2 and TGFBR3, as well as intracellular downstream effectors of the TGF-β pathway,
SMAD2 and SMAD3, in the aortic media of LDS patients demonstrates that the TGF-β
pathway has a crucial role in the pathogenesis of aortic aneurysm and dissection [17].

In fact, the overexpression of the TGF-β pathway in SMCs leads to a loss of basal
SMAD signaling, decreased expression and activity of contractile molecules, and altered
stress-related signaling [18]. Initially, the histopathologic features of MFS and LDS appear
to overlap. Actually, it was then seen that in LDS, diffuse media degeneration is more
represented, i.e., increased medial collagen, a diffuse form of elastic fiber fragmentation,
and extracellular matrix deposition [19].

2.3. Vascular Ehlers-Danlos Syndrome

Ehlers–Danlos syndromes (EDS) are a heterogeneous group of hereditary connective
tissue disorders characterized by extreme clinical and genetic variability. Initially, six
main types of EDS were classified by Villefranche Nosology (1997) [20]. But in 2017,
the International EDS Consortium proposed a revised EDS classification that recognizes
13 subtypes. The classification is based on the correlation between the gene and the
corresponding phenotype. Furthermore, for each of the subtypes, a set of clinical criteria
suggestive of the diagnosis has been proposed (Figure 4) [21].
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The vascular Ehlers–Danlos syndrome (vEDS) is an autosomal dominant disorder that
results from mutations in the COL3A1 gene, which encodes the pro-alpha1 chain of type III
procollagen [22], affecting approximately 1 in 50,000 to 250,000 people [23].

Just under 700 (exactly 670) mutations regarding COL3A1 have been identified: Mis-
sense substitutions affecting one of the glycine residues of the [Gly-X-Y]343 repeat within
the triple helical region of type III collagen (the majority), splice-site variants of exons
encoding a triple helix sequence leading to an in-frame exon skipping and generation
of a shorted translated product also altering the stable assembly of type III procollagen
homotrimers, rare frameshifts, non-sense, small or large deletions (that result in a reduction
of mature procollagen and haplo-insufficiency) [24].

Therefore, the different genetic mutations that lead to a destabilization of type III
procollagen are responsible for the different degrees of phenotypes. In particular, a more or
less precocious onset of major events (vascular, digestive, or obstetric) has been highlighted
based on the type of genetic mutation affecting COL3A1 (Figure 5) [25].

Usually, glycine missense and splice-site mutations (mutations called dominant nega-
tive, DN) are the variants associated with an earlier and more severe course of the disease.
Furthermore, it has been seen that patients with COL3A1 DN mutations have a greater
risk of aneurysms, dissections, and ruptures of medium-sized vessels (such as the carotid
arteries) compared to the aorta [26].

The aberrant III pro-collagen causes fragility of the vessels, with a consequent lower
resistance to wall stress and a higher risk of spontaneous ruptures. At the histological
level, in the mouse model, a progressive fragmentation of the tonic intima and of the media
was highlighted, with sparing of the adventitia, leading to the proliferation of smoothelin-
positive medial vascular smooth muscle cells as well as fibroblasts and the production of a
collagenous scar [27].
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3. Diagnostic Approach

The diagnosis of SADs relies on three fundamental elements: obtaining a thorough
medical history, conducting a comprehensive physical examination, and performing
genetic screening.

Clinical criteria play a significant role in characterizing specific syndromes and fa-
cilitating the diagnostic process. In particular, the presence of aortic aneurysmal disease
in young individuals can serve as an initial indication that prompts consideration of
genetic counseling.

The American Heart Association proposes a protocol for the genetic study of patients
with thoracic aortic disease presenting syndromic features, a family history of thoracic
aortic disease (TAD), and/or an early age of disease onset. If the genetic test is positive, it
will be necessary to proceed with the genetic study of the first-degree relatives. However, if
the genetic test is negative or reveals variants of unknown significance (VUS), the family
members will have to undergo instrumental examinations (ETT, CT, MRI) for the study of
the aorta (Figure 6) [28].
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Among the various diagnostic techniques, magnetic resonance imaging (MRI) plays a
leading role in the assessment and follow-up of aortic dilatation thanks to the accuracy of
the data it can provide but also to the safety of the method in young patients (absence of
ionizing radiation), pregnant women, or in cases of chronic kidney disease as there is no
need for intravenous contrast. Furthermore, the evolution of 4D-flow provides, through
the study of blood flow encoded in three-dimensional velocity, numerous hemodynamic
parameters, including wall shear stress (WSS), pulse wave velocity (PWV), kinetic energy,
and turbulent kinetic energy (TKE), which allow a comprehensive analysis of complex
blood flow patterns. Therefore, MRI can be considered a risk stratification tool [29,30].

From a surgical point of view, thanks to ECG triggering and therefore processing
a study synchronized with the heart rate, it is possible to minimize movement artifacts
and obtain highly detailed images of aortic anomalies as well as anatomical relationships
with contiguous anatomical structures. For this purpose, the introduction of magnetic
resonance angiography (MRA) has further increased the definition of the spatial rela-
tionships between the structures of the mediastinum. The use of paramagnetic contrast
medium within the vascular system increases the contrast between the vessel and sur-
rounding anatomical structures, regardless of flow and velocity patterns, thereby reducing
pulsatility artifacts [31].

3.1. Marfan Syndrome

In the context of such a complex syndrome due to clinical variability, the age-dependent
nature of many of its manifestations, the absence of gold standards, and its extensive dif-
ferential diagnosis, the modified Ghent criteria are proposed as more stringent than the
previous classifications (such as Berlin nosology) and providing better guidelines to differ-
entiate MFS from related, “overlapping” conditions (Figure 7) [32].
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The Ghent criteria include clinical manifestations defined as major and minor involv-
ing several systems (skeletal, ocular, cardiovascular, and pulmonary systems, as well as the
dura, skin, and integument). The diagnosis of MFS is made in the presence of:
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− major involvement of at least two organ systems, with minor involvement of a third
organ system;

− major and one minor manifestation in different organ systems (in addition to the
FBN1 mutation known to cause MFS or a first-degree relative who was unequivocally
diagnosed based upon Ghent nosology).

The most common cardiovascular manifestations are dilatation of the aorta and mitral
regurgitation [33].

The dilatation in MFS affects the sinuses of Valsalva and the tubular portion of the
ascending aorta, giving the typical shape defined as “pear-shaped” [2]. The risk of aortic dis-
section (the leading cause of death in patients with MFS [34]) has been shown to be greater
in the presence of aortic tubular dilation than in the presence of root dilation alone [35].
Furthermore, the FBN1 truncating mutation is associated with a higher probability of
developing aortic events and with an earlier age than the missense mutation [36].

Therefore, any patient, whether a child or adult, being evaluated for MFS should
undergo an echocardiogram (Figure 8) [37]. However, at the time of diagnosis, in addition
to TTE, a global evaluation of the aorta (arc, descending aorta, and abdominal aorta by CT
or MRI) is useful.
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cludes: early-onset joint abnormalities such as osteoarthritis and osteochondritis dis-
secans; aneurysms and tortuosity of the aorta and other arteries throughout the body, 
including intracranial arteries; mitral valve prolapse and regurgitation; aortic insuf-
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− type IV (TGFB2 mutation) with a high prevalence of aortic aneurysms, mitral valve 
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Figure 8. Aortic aneurysm in MFS. (a,c) Aortic root aneurysm by MRI measured in sagittal pro-
jection and transversal projection, evaluating cusp to cusp diameters at end-diastole; (b) 3D recon-
struction of CTA imaging (d–f) of an aortic root aneurysm; the double acquisition of sagittal and
coronal images allows for a more correct transversal diameter of the aortic lumen. Adapted with
permission from [37].

Furthermore, since the growth rate of the aorta in patients with MFS is higher
than in others, continuous instrumental evaluation (echo, CT, and MRI) is essential over
time [38,39]. If the diameter of the aorta remains stable below 45 mm, annual checks can be
performed; if the aorta is larger than 45 mm, more frequent checks are recommended [40].
If TTE is not technically feasible (e.g., due to chest malformations), an MRI evaluation is
recommended to reduce the radiation rate and ensure greater protection of the kidneys.

3.2. Loeys-Dietz Syndrome

At present, there are no precise criteria for the diagnosis of LDS. Therefore, the diagno-
sis is based on the genetic analysis associated with the phenotypic study and family history.

The latest classification of LDS includes six different types (associated with specific
genetic mutations) [24]:
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− type I (TGFBR1 mutation) with the following clinical manifestations: cleft palate,
craniosynostosis, micrognathia, and/or bifid uvula; rare valve abnormalities; arterial
tortuosity; ascending aortic aneurysm and dissection; pulmonary artery aneurysm;

− type II (TGFBR2 mutation), also called vascular EDS-like LDS, with a clinical picture
characterized by aortic aneurysms, arterial tortuosity, hypertelorism, abnormal uvula,
joint laxity, pectus deformity, scoliosis, and arachnodactyly [41];

− type III (SMAD3 mutation) known as aneurysm-osteoarthritis syndrome, which in-
cludes: early-onset joint abnormalities such as osteoarthritis and osteochondritis
dissecans; aneurysms and tortuosity of the aorta and other arteries throughout the
body, including intracranial arteries; mitral valve prolapse and regurgitation; aortic
insufficiency; left ventricular hypertrophy; atrial fibrillation; varices; spider veins [42];

− type IV (TGFB2 mutation) with a high prevalence of aortic aneurysms, mitral valve
prolapse, aortic root aneurysm and dissection, arterial tortuosity, cerebrovascular
aneurysm and tortuosity, joint laxity, pectus deformities, and scoliosis [41];

− type V (TGFB3 mutation) provides the typical clinical features of LDS, but a clear
correlation with the risk of dissection at a young age has not been highlighted, and
furthermore, the arterial anomalies are not characterized by the typical vascular
tortuosity detectable in other forms of LDS;

− type VI (SMAD2 mutation), two different phenotypic models have been proposed.
The first foresees a purely cardiac involvement (valvular anomalies, dextrocardia),
and the second includes vascular manifestations such as aneurysms and dissections
of the thoracic and abdominal aorta (Table 1) [43].

Table 1. LDS 2023 Classification.

LDS Type Responsible Gene Cardiovascular Manifestation

LDS 1 TGFBR1

Valve abnormalities (rare): bicuspid aortic valve,
bicuspid pulmonary valve, mitral valve prolapse;
arterial tortuosity; ascending aortic aneurysm and

dissection; pulmonary artery aneurysm

LDS 2 TGFBR2
Valve abnormalities (rare); arterial tortuosity;

ascending aortic aneurysm and dissection;
pulmonary artery aneurysm

LDS 3 SMAD3

Valve abnormalities: mitral valve prolapse and
regurgitation, aortic insufficiency; left ventricular

hypertrophy; atrial fibrillation; aortic aneurysm and
dissection; arterial aneurysm and tortuosity; varices;

spider veins

LDS 4 TGFB2
Mitral valve prolapse; aortic root aneurysm; aortic

dissection; arterial tortuosity; cerebrovascular
aneurysm and tortuosity

LDS 5 TGFB3

Mitral and aortic insufficiency; aortic root dilation;
aneurysm/dissection of thoracic and abdominal
aorta; elastic fiber fragmentation observed in the

aneurysmal aortic wall; varices

LDS 6 SMAD2

Valve prolapse or insufficiency (aortic, mitral,
tricuspid, or pulmonary valve); thoracic or

abdominal aortic aneurysm; arterial and aorta
tortuosity; dextrocardia

Whereas in MFS, aortic involvement mainly affects the aortic root and ascending aorta,
in LDS there is more involvement of the epiaortic and cerebral vessels and mesenteric
arteries (Figure 9) [42].
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with dissection flap extending into the left common iliac artery; (G) saccular aneurysm of the right 
ophthalmic artery by RMI; (H) fusiform aneurysm of the left vertebral artery by 3D CTA; (I) fusiform 
dilatation of basilar artery by RMI. Adapted with permission from [42]. 
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facial appearance) are met together with confirmation of the responsible genetic mutation. 
The diagnosis should be considered and a biochemical evaluation performed in young 
people with unexplained bowel or arterial rupture, especially those with a family history 
of similar events [44]. 

Therefore, the most important vascular impairment of vEDS is the rupture of small-
medium-caliber vessels (such as renal, iliac, femoral, hepatic arteries, etc.) at a young age. 

In the event that there is aortic involvement (aneurysms or dissections), this is asso-
ciated with a high mortality rate determined by the extreme tissue fragility and by the 
high rate of complications (bleeding, sternal wound dehiscence) in the immediate periop-
erative time (Figure 10) [45,46]. 

Figure 9. Arterial anomalies in LDS. (A): Aortic root aneurysm by 3D CT angiography (CTA);
(B) Stanford type A aortic dissection extending into the brachiocephalic trunk; (C) aneurysm of
the truncus pulmonalis by CT; (D) aneurysm of the splenic artery by RMI; (E) tortuosity of the
abdominal aorta, suprarenal aneurysm of the abdominal aorta and aneurysms of the coeliac trunk,
and left common iliac artery by 3D CTA; (F) Stanford type B aortic dissection of abdominal aortic
with dissection flap extending into the left common iliac artery; (G) saccular aneurysm of the right
ophthalmic artery by RMI; (H) fusiform aneurysm of the left vertebral artery by 3D CTA; (I) fusiform
dilatation of basilar artery by RMI. Adapted with permission from [42].

Furthermore, aneurysmal pathology in LDS is characterized by greater tortuosity of
the vessels and higher fragility of the walls.

3.3. vEhlers–Danlos Syndrome

Diagnosing vEDS is not straightforward, as many clinical features may be common
to other disorders [23]. vEDS can be diagnosed when two of four diagnostic criteria (thin,
translucent skin; arterial, intestinal, or uterine rupture; easy bruising; and a characteristic
facial appearance) are met together with confirmation of the responsible genetic mutation.
The diagnosis should be considered and a biochemical evaluation performed in young
people with unexplained bowel or arterial rupture, especially those with a family history
of similar events [44].

Therefore, the most important vascular impairment of vEDS is the rupture of small-
medium-caliber vessels (such as renal, iliac, femoral, hepatic arteries, etc.) at a young age.

In the event that there is aortic involvement (aneurysms or dissections), this is associ-
ated with a high mortality rate determined by the extreme tissue fragility and by the high
rate of complications (bleeding, sternal wound dehiscence) in the immediate perioperative
time (Figure 10) [45,46].
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4. Therapeutic Strategies
4.1. Surgical Treatment

The surgical indication for SADs is based on the size of the aneurysm, its growth rate,
and, therefore, the risk of rupture.

However, SADs comprise a heterogeneous group of genetic and phenotypic condi-
tions. Therefore, in the surgical decision, various elements must be evaluated, such as the
localization and site of the aneurysm, the presence of aortic or mitral regurgitation, but also
the clinical condition, the pathogenic variant, a personal or family history of dissection, or
a desire for pregnancy [47].

According to ESC (European Society of Cardiology) Guidelines, in MFS, patients
should undergo surgery when the aortic root maximal diameter is ≥50 mm, or 46–50 mm,
but with a family history of dissection, progressive dilation >2 mm/year as confirmed by
repeated measurement, severe AR or MR, or a desire for pregnancy [48]. Instead, in LDS,
the ESC recommends a more aggressive approach, suggesting cardiac surgical treatment at
a diameter >42 mm due to the extreme tissue fragility of this genetic disorder. In vEDS,
there is not enough scientific evidence to establish a cut-off diameter [49].

There are no significant differences between the guidelines of the American Heart
Association (AHA) [28].

The high clinical variability of SADs means that the surgical strategy, both open
and endovascular, must be personalized for the individual patient based on the clinical
condition, comorbidities, and associated risks [50].

Current techniques include replacement of the ascending aorta with aortic root re-
construction (remodeling or reimplantation), Bentall operation, arch replacement with
reimplantation of epiaortic vessels, debranching of epiaortic vessels, or the hybrid proce-
dure called frozen elephant trunk (FET) (Figure 11).

Considering the genetic etiology and the high reintervention rate these patients expe-
rience, the use of a hybrid technique such as FET allows for easier second-stage operations,
providing a platform for surgical and endovascular reinterventions [51]. Furthermore,
it has been shown that even in the aortic dissection of MFS patients, FET determines a
positive remodeling of the distal aorta, ensuring an increase in survival and freedom from
reoperation in the long term [52].

However, the rate of peri- and post-operative complications is significantly higher
than in non-syndromic patients. In fact, although the average age is lower, the underlying
connective disorder predisposes to a greater risk of respiratory failure, bleeding, and
shock [53], without significant differences between teaching and non-teaching hospitals in
terms of in-hospital mortality, overall morbidity, length of stay, or total hospital charges [54].
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4.2. Endovascular Repair

Because of the tortuosity of the vessels and the congenital tendency for aneurysmal
dilatation, endovascular treatment (TEVAR) is not the first choice in SADs, as the risk of
endoleak is significantly high [55], as is the risk of reoperation [56].

However, since it is a percutaneous treatment, the related risks are considerably
lower than with the open technique (low perioperative mortality, spinal cord ischemia, or
cerebrovascular accident) [57]. Therefore, TEVAR finds its greatest application in the event
of an emergency, in life-saving procedures in which immediate treatment and a low rate of
complications must be guaranteed.

4.3. Medical Therapy

The goal of medical therapy in SADs is to reduce hemodynamic stress but, given
the altered pathways in the individual genetic syndromes, also reduce the remodeling
processes affecting the aortic wall and the consequent process of dilatation.

Therefore, the drugs studied are those that pharmacologically target the TGF-β path-
way, such as β-blockers and losartan [58].

According to the latest American guidelines, β-blockers and sartans continue to be
the drugs of first choice in the treatment of SADs [28]. β-blocker drugs cause a decrease
in heart rate and reduce the rate of aortic growth. Losartan, an angiotensin II receptor
antagonist, reduces the phosphorylation of SMAD2 and inhibits the ERK-2 kinase pathway,
resulting in a negative regulation of TGF-β [59].

Although no differences in the rate of aortic dilatation or in the frequency of clinical
events were identified between the two drug groups, the use of losartan is associated with
a lower risk in the long-term management of these patients [60].

In the treatment of vEDS, the protective role of celiprolol is now established. Celiprolol
is a cardioselective β-blocker with β2 agonist vasodilatory characteristics; therefore, by
reducing the pressure, it causes a reduction of the arterial wall stress, preventing the risk of
aneurysms and/or dissections. Furthermore, a β3 adrenoceptor agonistic role of celiprolol
has been highlighted, which allows for the activation of endothelium- and nitric oxide-
dependent pathways [61]. Ong et al. demonstrated in their trial that the group treated with
celiprolol (compared to the control group) had a lower risk of cardiovascular events [62].
More recently, Frank et al., through a long-term observational study (average follow-up
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of 5 years), confirmed the increase in the survival rate in patients treated with celiprolol
(especially if administered at a dosage of 400 mg/day) [63].

5. Management in Pregnancy

The physiological, hormonal, and hemodynamic changes of pregnancy significantly
prolong the risks of aortic rupture not only during the gestational period but also in the
postpartum period [64]. Therefore, women with hereditary heart disease who wish to
become pregnant should receive a multidisciplinary evaluation as well as counseling
regarding the increased risks during pregnancy [65]. Furthermore, during pregnancy,
continuous instrumental follow-up, via ETT or MRI, is necessary for close monitoring of
the aortic diameters.

6. Prognosis

The life expectancy of patients affected by SADs has certainly undergone a significant
improvement in the last 20 years thanks to ever earlier genetic diagnoses, more defined
follow-up programs, and therefore the possibility of performing elective surgery. The event
that most negatively affects the prognosis is the occurrence of aortic dissections.

Robertson et al. showed in their study of the outcomes of patients with SADs that
aortic dissection was present in every group of genetic disorders analyzed, particularly
in MFS (especially type B dissection as a complication after surgery on the ascending
aorta) [66].

However, as emerged from GenTAC (genetically triggered thoracic aortic aneurysm
and cardiovascular conditions) data, aortic surgery in patients with MFS is associated with
excellent outcomes [67].

In LDS, on the other hand, it has been seen that some factors (TGFBR2 mutation,
female gender, aortic tortuosity, hypertelorism, and translucent skin) are associated with a
worse prognosis, understood as a greater risk of aortic dissection, and therefore, in such
circumstances, there is an indication for more timely surgical treatment [68].

Observational studies available on vEDS are still quite limited due to very small
cohorts. However, it emerges from the GenTAC that in these patients, mortality from car-
diovascular causes is higher, probably due to the greater aggressiveness of the disease [67].

7. Conclusions

SADs are genetic disorders characterized by extreme complexity both in diagnosis
and clinical management. The identification of the responsible genetic mutation is the
key element to understanding the responsible pathogenic path determined by the altered
pathway on the one hand, and to guaranteeing the patient the best treatment on the
other. Furthermore, once a diagnosis has been reached, it is crucial to prioritize genetic
counseling for both the patient and the family. The counseling serves to ensure that the
patient receives all the necessary information on the risks associated with the diagnosed
genetic disorder. The ongoing advancements in medical therapy and in the improvement
of surgical techniques and the consequent reduction in peri- and post-operative risks will
allow for the guarantee of acceptable expectations and quality of life for patients.
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