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Abstract: Advancements in Bayesian spatial and spatio-temporal modelling have been observed in
recent years. Despite this, there are unresolved issues about the choice of appropriate spatial unit
and adjacency matrix in disease mapping. There is limited systematic review evidence on this topic.
This review aimed to address these problems. We searched seven databases to find published articles
on this topic. A modified quality assessment tool was used to assess the quality of studies. A total
of 52 studies were included, of which 26 (50.0%) were on infectious diseases, 10 (19.2%) on chronic
diseases, 8 (15.5%) on maternal and child health, and 8 (15.5%) on other health-related outcomes.
Only 6 studies reported the reasons for using the specified spatial unit, 8 (15.3%) studies conducted
sensitivity analysis for prior selection, and 39 (75%) of the studies used Queen contiguity adjacency.
This review highlights existing variation and limitations in the specification of Bayesian spatial and
spatio-temporal models used in health research. We found that majority of the studies failed to report
the rationale for the choice of spatial units, perform sensitivity analyses on the priors, or evaluate the
choice of neighbourhood adjacency, all of which can potentially affect findings in their studies.

Keywords: Bayesian; spatio-temporal; adjacency matrices; conditional autoregressive model

1. Introduction

The advancement of geographic information systems in medicine and public health
has led to an increase in spatial modelling, which is an important component of spatial
epidemiology that analyses georeferenced data on health and health-related outcomes [1,2].
This growth is primarily due to improvements in the availability of data with geographic
information and advancements in statistics, particularly in computing speed, which enables
researchers to apply advanced spatial and spatio-temporal models that consider spatial,
and both space and time dimensions, respectively [3,4].

Small-area-level analysis, also known as disease mapping, is a key component of
spatial epidemiology [5]. It involves the use of georeferenced data to create maps that
show the spatial distribution of health outcomes or diseases at a fine-grain level, such as a
neighbourhood or census tract. By analysing these maps, researchers can identify patterns
and hotspots of disease, as well as explore the relationship between health outcomes and
environmental factors such as air pollution, water quality, and access to healthcare [6].
This approach has become increasingly important in public health research, as it can guide
policy decisions and interventions aimed at improving population health [7].

Disease mapping in regional areas with low population counts is often limited by
data sparseness. To address this challenge, the Basag, York, and Mollie (BYM) model
was developed in 1991, which allows borrowing of strength in outcomes from nearby
locations [8]. The conditional autoregressive (CAR) model is often applied in small-area
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ecological studies to map outcome measures to an area level and to identify relationships
with covariates [9,10].

This modelling technique is often used to describe the spatial variation of quantities of
interest in the form of summaries or aggregates over subregions [11]. The CAR model ran-
dom effect component contains both spatially structured and unstructured spatial random
effects known as convolution prior [12]. Since different geographical areas generally have
similar environmental conditions if they are neighbouring areas, the CAR model borrows
information from the neighbours that share a common boundary (neighbour) for each areal
unit in the data analysis [13]. There are four variants of CAR priors: intrinsic, convolution,
Cressie, and Leroux [14].

The Modifiable Area Unit Problem (MAUP) is a statistical concern that occurs with
the aggregation of spatial data by modifying the shape, size, and/or the orientation of
spatial locations in geographic areas [15]. This problem has two interrelated effects: firstly,
grouping the same data into larger geographic areas can lead to different inferences, and
secondly, variability in results may occur due to different formulations of the areas [16].
Research conducted by Mei Ruu Kok et al. [17] found that estimates obtained from different
spatial scales can vary significantly. When analysing area-level data, it is necessary to deter-
mine the appropriate spatial scale of analysis beforehand. A study conducted by Hanigan
et al. [18] showed that the spatial scale had a significant impact on statistical inference and
concluded that the appropriate spatial scale should be identified for spatial analysis.

The effectiveness of the smoothing properties of the CAR model relies on the types
of adjacency matrices or neighbours that are specified. Therefore, prior to risk mapping
or ecological modelling, an exploratory analysis of neighbourhood weight should be
developed. Earnest et al. conducted studies that demonstrated significant differences in the
smoothing properties of CAR models depending on the selection of adjacency matrices [13].
In addition, a study conducted by Duncan et al. [19] showed that the selection of the
adjacency weight matrix can have an immense effect on model fit and inference.

Bayesian spatial and spatio-temporal modelling is a statistical technique used to
analyse and model data that have both spatial (geographical) and temporal components [20].
These models are based on the principles of Bayesian statistics, which provide a framework
for incorporating prior knowledge and uncertainty into statistical inference. In the Bayesian
framework, the posterior distribution is made up of both the prior and the data [21]. In
spatial modelling studies, most published articles have utilized non-informative priors to
simplify model formulation [22]. However, an important aspect of Bayesian spatial analysis
is determining the hyperprior distribution of the variance parameter (precision).

There have been three systematic reviews examining the use of Bayesian spatial and
spatio-temporal modelling to create risk maps in cancer, dengue, and public health research.
Wah et al. [23] conducted a review on Bayesian spatio-temporal models for cancer incidence,
Aswi et al. [24] reviewed Bayesian spatial and spatio-temporal approaches for modelling
dengue fever, and Byun et al. [25] reviewed spatial and spatio-temporal analyses in public
health research in Korea. However, our review is not limited to a specific disease or
geographic region as per previous reviews. Rather, we focus on the selection of spatial
adjacencies, areal unit, and the justification for prior selection in Bayesian spatial and
spatio-temporal modelling. Despite these reviews that have been undertaken, there are
still unresolved issues around the selection of the appropriate areal unit of analysis and the
choice of the adjacency. Our review aimed to further consider this problem.

2. Materials and Methods
2.1. Data Source and Search Strategy

This methodological systematic review adhered to the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) checklist [26]. The PRISMA checklist aids
systematic reviewers in providing transparent reporting by assisting them in clearly stating
the purpose of the review, describing the authors’ actions and methods, and presenting the
findings obtained [27]. The focus of this systematic review is on peer-reviewed health and
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health-related research that employed Bayesian spatial and spatio-temporal conditional
autoregressive models and reported the selection of the spatial unit, adjacency matrix, or
priors. We registered this review with the PROSPERO international prospective register
of systematic reviews under the registration number CRD42022371293. Our search was
comprehensive and included studies from 2012 onwards that used Bayesian spatial and
spatio-temporal conditional autoregressive models. Studies also had to have reported the
selection of the areal unit or adjacency matrix or priors for any health or health-related
outcomes, with no geographic restrictions.

We conducted a thorough search of seven databases, namely Web of Science, PubMed,
MEDLINE, Scopus, PsycINFO, Emcare, and Embase, to identify relevant studies. We also
searched Google Scholar to uncover any additional studies. The search was conducted
on 8 September 2022, using specific search terms for Bayesian spatial and spatio-temporal
studies which at least reported areal unit, adjacency matrix, or prior selection (Table S1,
Supplementary Materials). For this review, we considered studies published between
1 January 2012 and 8 September 2022, with no geographic restrictions.

The articles retrieved from each database were combined into a single file using End-
note software. This file was then imported into Covidence for further screening. During
the title, abstract screening, and full-text screening stages, duplicates were identified and
removed both manually and automatically using Endnote and Covidence. The search
was conducted using a combination of keywords including “Bayesian”, “spatial”, “spa-
tialtemporal”, “Spatial-temporal”, “spatiotemporal”, “spatio-temporal”, “space-time”,
“geo-temporal”, “geotemporal”, “geographic-temporal”, and “conditional autoregressive”,
as outlined in Table S1.

2.2. Inclusion and Exclusion Criteria

This systematic review focused on peer-reviewed articles published in English between
January 2012 and September 2022. Earlier articles were excluded as they may have used
outdated methodology and techniques. The review included articles that reported the
use of Bayesian spatial and spatio-temporal conditional autoregressive models and with
information on the selection of areal unit, adjacency matrix, and priors. Two authors (ZTT
and GAT) independently screened titles, abstracts, and full texts for eligibility, with conflicts
resolved through discussion with a third reviewer (AE). The review had no geographic
restrictions and included all health and health-related outcomes. Methodological reviews,
conference abstracts, studies in languages other than English, cluster detection studies,
animal studies, and non-Bayesian studies were excluded.

2.3. Data Extraction

To facilitate data extraction, a standardized template was developed in Microsoft
Excel that incorporated relevant information based on the review questions. This template
included bibliographic details, research objectives, data sources, research category, types
of adjacencies used, available spatial scales of the study country, covariate types used,
data analysis methods, modelling approaches, generated results, identified methodological
gaps, and potential future research directions.

2.4. Risk of Bias Assessment

Two authors (ZTT and GAT) independently assessed the methodological quality of
the included studies in this systematic review. We used an eight-point scoring system that
was updated and modified to evaluate each study’s quality based on its aim and objective,
model validity, and overall results. The standardised item list was employed to grade all
included studies to determine their quality and risk of bias [28,29]. The bias assessment
tool consists of eight questions with possible answers ranging from zero to two, and the
maximum score is 16. Based on the total score, the overall quality level was classified as
low (score less than 8), medium (score 8–10), high (score 11–13), or very high (score >13).
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2.5. Data Synthesis and Analysis

Microsoft Excel and STATA version 17 software were used for data entry and analysis,
respectively. The results of the included studies were synthesized and presented in the
form of text, tables, and figures. Summary statistics, such as proportions, means, medians,
and ranges, were used to describe the findings of the studies.

3. Results
3.1. Characteristics of Included Studies

The search for relevant articles using seven databases and manual search in Google
and Google Scholar resulted in 1535 published articles. After removing 819 duplicates
using Covidence and Endnote software, 716 articles were eligible for title and abstract
screening. Of these, 419 articles were excluded based on title screening and 165 articles
were excluded based on abstract screening. After full-text review of 132 articles, 80 articles
were excluded, leaving 52 studies that met the eligibility criteria for this systematic review.
The details of the excluded and included studies can be found in Table S3 and Figure 1,
respectively.
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3.2. Publications by Year and Country of Study

This review encompasses studies that have been published since 8 September 2012.
The number of publications experienced a significant increase after 2017, peaking in 2020.
A considerable proportion of studies, almost two-thirds (n = 33, 63.4%), were published
after 2015. From this review, Australia (n = 11, 21.15%) and Indonesia (n = 6, 11.5%) were
identified as countries with a high number of publications (refer to Figures 2 and 3).
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3.3. Summary Statistics of Included Studies

Of the total of 52 studies, 26 (50.0%) were on infectious diseases, 11 (21.1%) on
malaria [30–39], 8 (15.3%) on Dengue fever [40–45], 4 (7.6%) on HIV [46–49], and 3 (5.7%)
on TB [50–52]. Overall, 10 (19.2%) studies were on chronic diseases [53–62], 8 (15.5%) on
maternal and child health [63–66], 3 (5.7%) on nutrition [67–69] and 5 (9.6%) were applied to
other health-related outcomes [58,70–73]. Most of the studies (42, 80.7%) used an ecological
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study design [30,31,33,34,37–47,51–56,58–62,64–67,69,71–81]. Twenty-four studies (46.1%)
used data from a national health survey or Demographic and Health Survey (DHS), while
twenty other studies (38.4%) used data from hospital/administrative records. The studies
included in this review used different spatial units for mapping. The number of spatial
units in the reviewed studies ranged from a minimum of 10 to a maximum of 1325. About
9 (17.3%), 7 (13.1%), 6 (11.5%), and 6 (11.5%) studies’ spatial unit of analysis were dis-
tricts [37,44,46,56,62,68,74,81], counties [32,34,48,49,52,75,77,78], regions [30,31,38,59,72,80],
and provinces [35,41,45,50,51,53], respectively. The majority of the studies (80.7%) used
years as a temporal unit measure and 9 (17.3%) studies used months as a temporal unit
measure. A total of 46 (88.5%) studies used the MCMC estimation technique for their
Bayesian modelling [31–33,35–52,54,55,57–65,68–81] and 6 (11.5%) studies used INLA as
their estimation technique [30,34,53,56,66,67].

Different statistical software was used for modelling in the reviewed studies. Of
these, 31 (59.6%) used WinBUGs, followed by 11 studies which used R software (21.1%). A
total of 30 (57.7%) studies used the Bayesian spatial Poisson regression model, 16 (30.7%)
used Bernoulli/Binominal modelling, and 6 (11.5%) used Negative Binomial modelling.
Different types of covariates were included in the reviewed studies. From a total of
52 studies, 21 (41.1%) studies included demographic variables, 19 (37.2%) studies included
socio-economic variables, and 16 (30.7%) studies included climatology/environmental
variables in their model development. Of the 52 studies, 24 (46.1%) reported model
diagnostics in their study. The majority of the studies (44, 84.6%) reported their data in a
choropleth map [30–42,44–53,55–59,62–65,67–71,73–80], and only 5 (9.6%) studies provided
script codes as a Supplementary File [41,50,51,71,72]. A total of 28 (53.8%) studies reported
that burn-in, thinning, and iteration were used in their Bayesian modelling. Of a total
of 52 studies, only 2 studies reported the reason for the use of their specified adjacency
matrix [63,65] (Table 1).

Table 1. Summary of characteristics of included studies.

Characteristics Frequency Percentage (%)

Study category (n = 52)

Infectious diseases 26 50.0

Chronic diseases 10 19.2

Maternal and child health outcome 8 15.3

Nutrition 3 5.7

Others * 5 9.6

Data source

Survey 24 46.1

Hospital records/Administrative 20 38.4

Registry 7 13.4

Others ** 1 0.03

Study design (n = 52)

Ecological 42 80.7

Cross-sectional 10 19.2

Spatial unit (n = 52)

District 9 17.3

County 7 13.1

Region 6 11.5
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Table 1. Cont.

Characteristics Frequency Percentage (%)

Province 6 11.5

Postcode 4 7.6

SLAs 3 5.7

LGA 2 3.8

Municipalities 2 3.8

Others *** 13 25.0

Temporal unit

Year 42 80.7

Month 9 17.3

Week 1 0

Estimation technique (n = 52)

MCMC 46 88.4

INLA 6 11.5

Software used for analysis

WinBuGs 31 59.6

R 11 21.1

ArcGIS 8 15.3

Geoda 2 0.03

Types of distribution for outcome variable

Poisson 30 57.7

Negative Binomial/ZIP 6 11.6

Binomial/Bernoulli 16 30.7

Model comparison

DIC 50 96.2

WAIC 2 3.8

Effect measures reported

RR 31 59.6

Mean 12 23.0

OR 9 17.4

Types of spatial unit

Area 42 80.7

Point 10 19.3

Spatial structure

ICAR/CAR/MCAR 39 75.0

GMRF 3 5.7

Not reported 10 19.2

Spatial modes used

Bayesian spatial Poisson regression 30 57.7

Negative Binomial model 6 11.5

Binomial/Bernoulli model 16 30.7

Covariates
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Table 1. Cont.

Characteristics Frequency Percentage (%)

Demographic 21 41.1

Socio-economic 19 37.2

Climatology/Environmental 16 30.7

Clinical 3 5.7

Others **** 7 13.4

Model diagnostic reported

Yes 24 46.1

No 28 53.8

Map reported

Yes 44 84.6

No 8 15.3

Script provided

Yes 5 9.6

No 47 90.4

Burn-in, thinning, and iteration reported

Yes 28 53.8

No 24 46.2

Reasons of uses of specified prior distribution
provided

Yes 7 13.4

No 45 85.6

Reasons for use of specified adjacency matrix
provided

Yes 2 3.8

No 50 96.2
Others *: nontuberculous mycobacteria (NTM), pertussis infection, Clostridium difficile, injury, suicide; others **:
TuBerculose WEB; others ***: prefecture, sub-district, cluster, enumeration area, sub-county, SA3, census division,
state; others ****: social vulnerability, distance, drinking water.

3.4. Prior Distribution Selection, Sensitivity Analysis, and Adjacency Matrices

Of the 52 studies, 19 (36.5%) assigned flat prior distribution for the intercept [31,38–
40,43,44,50,51,57,60,69–74,77,80,81] and 17 (32.6%) studies did not report any prior distri-
bution for the intercept [30,33,34,36,47,53,56,58,59,61,63–66,68,75,79]. For the regression
coefficients, 36 (69.2%) studies used normal distribution for prior distribution and 11 (21.1%)
articles did not report the types of prior distribution used for the regression coefficient.
For the spatial structured and unstructured random component of the model, 48 (92.3%)
studies reported prior distribution of the precision term. Of these, 31 (59.6%) studies
reported the specific shape and scale parameter value of inverse gamma distribution for
their models. From this review, only 8 (15.3%) studies [41,42,51,54,55,63,71,78] conducted
sensitivity analysis for hyperprior distribution of the precision term. Different types of
adjacency matrices were identified in this review. A total of 39 (75%) articles used Queen
contiguity adjacency matrix for smoothing spatially structured random effects in their
modelling. Eight articles in the included studies did not report the types of adjacency
matrices used in their modelling (Table 2).
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Table 2. Summary of prior, sensitivity analysis, and adjacency selection in the included studies.

Id

Prior Distribution
Sensitivity
Analysis
for Hyperpriors

Adjacency

Intercept Regression
Coefficient

Spatially Structured
Random Effect (Precision)

Spatially Unstructured
Random Effect (Precision) Yes No Queen

Contiguity

Distance-
Based
Matrix

Rook
Contiguity

Not
Reported

1 Diffuse
Highly dispersed
normal prior
distributions

Non-informative gamma Non-informative gamma 3 3

2 Flat Normal Non-informative gamma
(0.001, 0.001)

Non-informative gamma
(0.001, 0.001) 3 3

3 Flat Normal Gamma Beta 3 3

4 Dflat norm (0,0.000001 ) non-informative gamma
(0.001, 0.001)

Non-informative gamma
(0.001, 0.001) 3 3

5 Flat Normal Non-informative gamma
(0.05, 0.0005)

Non-informative gamma
(0.05, 0.0005) 3 3

6 NA Normal Non-informative gamma Non-informative gamma 3 3

7 Uniform Normal Inverse gamma (1, 0.01) Inverse gamma (1, 0.01) 3 3

8 Uniform Gaussian Inverse gamma (1, 0.01) Inverse gamma (1, 0.01) 3 3

9 Normal Normal Inverse gamma (1, 0.01) Inverse gamma (1, 0.01) 3 3

10 NA NA NA NA 3 3

11 Flat

Normal with
mean = 0 and
1/variance =
1 × 10−4

Inverse gamma (0.5, 0.005) Inverse gamma (0.5, 0.005) 3 3

12 Normal Normal Inverse gamma (0.5, 0.0005) Inverse gamma (0.5, 0.0005) 3 3

13 NA NA NA NA 3 3

14 NA NA NA NA 3 3

15 Uninformative Normal
(0, 1000)

Weakly informative
hyperpriors uniform (0,
0.001)

Weakly informative
hyperpriors uniform (0,
0.001)

3 3

16 Flat Normal
(0, 0.0001)

Noninformative
gamma (0.1, 0.1)

Noninformative
gamma (0.1, 0.1) 3 3

17 Flat Normal Noninformative
gamma (0.01, 0.01)

Noninformative
gamma (0.01, 0.01) 3

18 Normal (0,
100) Normal Gamma (0.01, 0.01) Gamma (0.01, 0.01) 3 3
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Table 2. Cont.

Id

Prior Distribution
Sensitivity
Analysis
for Hyperpriors

Adjacency

Intercept Regression
Coefficient

Spatially Structured
Random Effect (Precision)

Spatially Unstructured
Random Effect (Precision) Yes No Queen

Contiguity

Distance-
Based
Matrix

Rook
Contiguity

Not
Reported

19
Flat with
bounds −1
and +1

Normal
(0, 0.000001)

Non-informative
gamma (0.001, 0.001)

Non-informative
gamma (0.001, 0.001) 3 3

20 Uninformed Uninformed Uninformed Uninformed 3 3

21 Diffuse Normal
(0, 0.0001) Gamma (0.001, 0.001) Gamma (0.001, 0.001) 3 3

22 NA NA Gamma Gamma 3

23 NA NA Gamma (0.01, 0.01) Gamma (0.01, 0.01) 3 3

23 NA NA Inverse gamma Inverse gamma 3 3

24 Flat Uniform Inverse gamma Inverse gamma 3 3

25 NA Normal (0, 1000) Uniform prior on (0, 1000) Uniform prior on (0, 1000) 3 3

26 NA Informative
Gaussian Informative Gaussian Informative Gaussian 3 3

27 NA NA Gamma Gamma 3 3

28 Dflat() Normal Inverse gamma
(0.5, 0.0005) Inverse gamma (0.5, 0.0005) 3 3

29 NA NA Normal Inverse gamma 3 3

30 NA Normal Inverse gamma Inverse gamma 3

31 NA NA Non-informative gamma Non-informative gamma 3 3

32 Improper
uniform

Vague normal
prior Improper uniform Normal distribution 3 3

33 NA Normal Gamma Gamma 3 3

34 Flat Weakly
informative

Inverse gamma
(0.0001, 0.0001)

Inverse gamma
(0.0001, 0.0001) 3 3

35 Flat Normal Gamma (0.5, 0.0005) Gamma (0.5, 0.0005) 3 3

36 NA Normal Gamma Gamma 3 3

37 Normal Normal Inverse gamma Inverse gamma 3 3

38 Normal Normal Inverse gamma Inverse gamma 3 3

39 NA Normal Uniform prior
(0, 0.001) Uniform (0, 0.001) 3 3

40 Dflat() Normal Gamma (0.5, 0.0005) Gamma (0.01, 0.01) 3 3
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Table 2. Cont.

Id

Prior Distribution
Sensitivity
Analysis
for Hyperpriors

Adjacency

Intercept Regression
Coefficient

Spatially Structured
Random Effect (Precision)

Spatially Unstructured
Random Effect (Precision) Yes No Queen

Contiguity

Distance-
Based
Matrix

Rook
Contiguity

Not
Reported

41 Flat Normal Weekly informative gamma Weekly informative gamma 3 3

42 Non-
informative Normal Gamma (0.01, 0.01) Gamma (0.01, 0.01) 3 3

43 Non-
informative Normal Gamma (0.5, 0.0005) Gamma (0.5, 0.0005) 3 3

44 NA NA
Vague prior
distribution gamma
(0.5, 0.0005)

Vague prior
distribution Gamma
(0.5, 0.0005)

3 3

45 Uniform Normal Gamma (0.5, 0.0005) Gamm (0.5, 0.005) 3 3

46 Flat Non-informative
normal

Non-informative
gamma (0.5, 0.5)

Non-informative
gamma (0.5, 0.5) 3 3

47 Flat Normal Non-informative
gamma (0.001, 0.001)

Non-informative
gamma (0.001, 0.001) 3 3

48 Flat Normal Non-informative
gamma (0.01, 0.01)

Non-informative
gamma (0.01, 0.01) 3 3

49 Flat Normal Non-informative
gamma (0.001, 0.001)

Non-informative
gamma (0.001, 0.001) 3 3

50 Flat Normal Non-informative
gamma (0.01, 0.01)

Non-informative
gamma (0.01, 0.01) 3 3

51 Flat Normal Non-informative
gamma (0.01, 0.01)

Non-informative
gamma (0.01, 0.01) 3 3

52 NA NA NA NA 3 3

Total 8 44 41 2 1 8
% 15.3% 88.4% 75.0% 3.8% 1.9% 15.3%



Int. J. Environ. Res. Public Health 2023, 20, 6277 12 of 24

3.5. Modifiable Area Unit Problem (MAUP)

For this systematic review, the countries of the included articles had different spatial
scales available for the analysis as described in Table 3. From a total of 52 articles, only
6 (11.5%) [55,63,66,70,73,79] studies reported the reasons for use of the specified spatial
scale for analysis. The studies conducted by Chou et al. [70] mentioned that they used
postcodes for spatial analysis because it was the only available spatial scale in the dataset.
A study conducted by Li et al. [63] stated that they used the SA3 spatial scale because the
objective of the study was spatial mapping at the regional level in Australia. The studies
conducted by Qi et al. [73] noted that they used LGA because the LGA boundaries provide
a more stable population than SLA boundaries (Table 3).

Table 3. The spatial scales used, available spatial scales, and reasons for using the spatial scale.

Article Country of Study Spatial Scale Used
for This Study

Available Spatial Scale in the
Country

Reasons for Using
Spatial Scale

Adeyemi et al.,
2019 [67]

Burkina Faso and
Mozambique

Region for Burkina
Faso Province for
Mozambique

Region, province, and
department (Burkina Faso) and
province, district, and pesto
(Mozambique)

Not mentioned

Akter et al., 2021 [40] Australia Statistical Local
Area (SLA)

Postcode, SA1, SA2, SA3, SA4,
and LGA Not mentioned

Alam et al., 2019 [74] Bangladesh District Division, district, thanas,
and union Not mentioned

Alene et al., 2021 [50] China Province Province(level 1),
prefecture(level 2) Not mentioned

Amsalu et al., 2019 [51] China Province Province(level 1),
prefecture(level 2) Not mentioned

Aragonés et al.,
2013 [53] Spain Province

Autonomous community(level
1), province(level 2), and
municipality(level 3)

Not mentioned

Aswi et al., 2020 [41] Indonesia Province Province, district, sub-district,
and village Not mentioned

Aswi et al., 2020 [45] Indonesia Province Province, district, sub-district,
and village Not mentioned

Baker et al., 2017 [54] Australia SLA Postcode, SA1, SA2, SA3, SA4,
and LGA Not mentioned

Blain et al., 2013 [75] England County

Chou et al., 2014 [70] Australia Postcode SA1, SA2, SA3, SA4, SLA,
and LGA

Postcodes are widely
used by researchers
in Australia because
they are readily
available in datasets;
others not found

Cramb et al., 2015 [55] Australia SLAs Postcode, SA1, SA2, SA3, SA4,
and LGA

To overcome
limitations of
changing
geographical
boundaries

Danwang et al.,
2021 [30] Cameroon Region

Region(level 1),
department(level 2), and
arrondissement(level 3)

Not mentioned

Darikwa et al.,
2020 [56] South Africa District Province, district, and

municipality Not mentioned
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Table 3. Cont.

Article Country of Study Spatial Scale Used
for This Study

Available Spatial Scale in the
Country

Reasons for Using
Spatial Scale

Desjardins et al.,
2020 [76] Colombia Municipality Department, municipality Not mentioned

Dhewantara et al.,
2019 [77] Indonesia County Province, district, sub-district,

and village Not mentioned

Donkor et al., 2021 [31] Ghana Region Region, district, and
municipality Not mentioned

Feng et al., 2015 [78] Canada County Province, census division, and
census sub-division Not mentioned

Gelaw et al., 2019 [46] Ethiopia District Region, zone, district, and kebele Not mentioned

Hanandita et al.,
2016 [32] Indonesia County Province, district, sub-district,

and village Not mentioned

Hu et al., 2012 [42] Australia LGA Postcode, SA1, SA2, SA3, SA4,
and SLA Not mentioned

Huang et al., 2017 [79] Australia Postcode SA1, SA2, SA3, SA4, LGA, and
SLA

Since postcode is the
most readily
available spatial unit
in the dataset and
other spatial units
were not available

Ibeji et al., 2022 [33] Nigeria State State(level 1), local government
area(level 2), and district(level 3) Not mentioned

Jurgens et al., 2013 [57] Switzerland Cantons Cantons, district, and postcode Not mentioned

Kandhasamy et al.,
2017 [47] India State State, union territories,

and district Not mentioned

Kigozi et al., 2020 [34] Uganda County Region, district, county, and
sub-country Not mentioned

Lal et al., 2020 [58] Australia Postcode SA1, SA2, SA3, SA4, LGA,
and SLA Not mentioned

Law, 2016 [71] Canada Census division Province, census division, and
census sub-division Not mentioned

Li et al., 2020 [63] Australia SA3 Postcode, SA1, SA2, SA4, LGA,
and SLA

Since the objective of
the study was
mapping at
regional-level
estimate

Lubinda et al., 2021 [35] Zambia Province Province and district Not mentioned

Lome-Hurtado et al.,
2021 [64] Mexico Municipalities Estado and municipality Not mentioned

Lome-Hurtado et al.,
2021 [65] Mexico Municipalities Estado and municipality Not mentioned

Ngwira, 2022 [68] Malawi District Region, district, and traditional
authority area Not mentioned

Ntirampeb et al.,
2018 [72] Namibia Region Region and constituency Not mentioned

Odhiambo et al.,
2020 [69] Kenya Sub-county County, sub-county Not mentioned

Ogunsakin et al.,
2022 [59] South Africa Region Province, district, and

municipality Not mentioned
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Table 3. Cont.

Article Country of Study Spatial Scale Used
for This Study

Available Spatial Scale in the
Country

Reasons for Using
Spatial Scale

Okango et al., 2015 [48] Kenya County County, sub-county Not mentioned

Okango et al., 2016 [49] Kenya County County, sub-county Not mentioned

Okunlola et al.,
2021 [36] Nigeria Enumeration Area

(Cluster)
State(level 1), local government
area(level 2), and district(level-3) Not mentioned

Qi et al., 2014 [73] Australia LGA Postcode, SA1, SA2, SA3, SA4,
and SLA

Each LGA contains
one or more SLAs
and LGA boundaries
are more stable
compared with SLA
boundaries

Raei et al.,2018 [60] Iran Province Province and district Not mentioned

Reid et al., 2012 [37] Bangladesh District Division, district, thanas, and
union Not mentioned

Roza et al., 2012 [52] Brazil County Region, federal unit, and
municipality Not mentioned

Saijo et al., 2018 [61] Japan Prefecture Region, prefecture, and
municipality Not mentioned

Sharafi et al., 2018 [62] Iran District Province and district Not mentioned

Thiam et al., 2019 [80] Senegal Region Region, department, and
arrondissement Not mentioned

Tsheten el al, 2020 [43] Bhutan Sub-district District, block Not mentioned

Wangdi et al., 2017 [81] Bhutan District District, block Not mentioned

Wangdi et al., 2018 [44] Timor-Leste District Department and municipality Not mentioned

Wangdi et al., 2022 [38] Brazil Region Region, federal unit, and
municipality Not mentioned

Wangdi et al., 2020 [39] Bhutan District District, block Not mentioned

Xu et al., 2015 [66] Australia Postcode SA1, SA2, SA3, SA4, LGA,
and SLA

Since the only
available spatial unit
in the dataset is
postcode

3.6. Key Considerations in Applying Bayesian Spatial and Spatio-Temporal Conditional
Autoregressive Models and Methodological Gaps

Bayesian modelling requires researchers to be mindful of several methodological
factors, such as appropriate prior selection, adjacency/neighbourhood matrices, and the
areal unit of analysis. Neglecting these factors can significantly affect the results and the
interpretation of data. Therefore, it is crucial for researchers to carefully consider these
factors in their model development.

The findings of this systematic review indicate that only a limited number of articles
included information about the choice of prior selection, adjacency/neighbourhood matri-
ces, and areal unit of analysis in their Bayesian spatial and spatio-temporal modelling. The
justifications for the selection of prior distributions, neighbourhood structures, and spatial
unit used in mapping studies were found to be diverse and varied.

Among a total of 52 articles, only 8 (15.39%) of them [41,42,51,54,55,63,71,78] conducted
sensitivity analysis for the precision term of spatial structured and unstructured random
effect and justified their prior distribution selection. Aswi et al. [41] reasoned that they
selected prior distribution when Bayesian inference was robust and not sensitive to the
choice of prior, as summarized in Table 4. From a total of 52 studies, only 2 [63,65] reported



Int. J. Environ. Res. Public Health 2023, 20, 6277 15 of 24

the reason of selection of adjacency matrix. Lome-Hurtado et al. [65] selected Queen
contiguity because the use of a distance-based model was stated to be more complex and
created unrealistic spatial dependence. Studies performed by Li et al. [63] used the Queen
method of adjacency given that there were a number of areas with multiple neighbours, as
well as stating that the use of a distance-based method would introduce model complexity
and was unrealistic.

Table 4. Summary of purpose of using specified prior distribution, adjacency matrices, modifiable
area unit problem and modelling gaps identified.

Item Number % Reference

I Reasons of use of specified prior distribution and sensitivity analysis

3 Non-informative prior distribution was used to minimise the risk of substantive
influence on the estimates produced

8 15.3
[40,41,50,53,
54,62,70,77]

3 The values of the hyperpriors distribution are selected in a way so that our Bayesian
inferences are robust and not sensitive to these choices’ different priors

3 Sensitivity analysis using assigned parameters of variance component done to yield a
robust finding of the posterior estimate

3 Weakly specified hyperpriors used following a normal and inverse gamma
distribution, respectively, for structured and unstructured random effect and our final
choice made based on goodness of fit, computation time and plausibility of estimates

3 Sensitivity analysis of different assigned priors were done to see the effect of different
priors on posterior estimation using DIC and models with the smallest DIC were reported
and discussed.

3 Non-informative priors were used to minimize the risk of major influence of
estimates.

3 Sensitivity analyses for investigating the choice of priors were carried out. The
hyperprior distribution of the variance components is set to be vague to obtain most of the
information from the data. The prior for the precision of the random effects (σ2) is often
specified as a gamma distribution with scale and shape parameters both equal to 0.001. To
investigate the influence of the hyperprior specifications gamma priors like gamma
(0.001,0.001) and gamma (0.05,0.0005) and Uni (0,100) were done. The resulting posterior
inference remains robust is selected.

3 For the structured and unstructured random effect precision gamma (0.5,0.0005) was
specified and hyperprior is vague allows the model to get the most information from the
data. Gamma (0.001,0.001) was tested for precision and the estimate remains robust and
selected.

3 Articles did not report the reason for using specified prior distribution and not done
sensitivity analysis. 44 84.6

II Reasons of use of specified adjacency matrices

3 More complex specifications of the adjacency matrix, for instance using a
distance-based measure introduce model complexity, unrealistic spatial dependence, and
do not necessarily lead to better inference 2 3.8 [62,64]
3 Using Queens method of adjacency for smoothing relative risk have a little impact on
modelling results and it’s not common to face irregular shape.

3 Articles the did not mentioned reasons for use of specified adjacency matrices in their
model. 50 96.1

III Reasons of use of specified spatial scale (modifiable area unit problem)
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Table 4. Cont.

Item Number % Reference

3 Each LGA contains one or more SLAs and LGA boundaries are more stable
compared with SLA boundaries.

6 11.5
[54,62,69,70,

72,78]

3 Since the only available spatial unit in the dataset is postcode due to that postcode
used as a spatial scale for this study.

3 Since the objective of the study was mapping at regional level estimate we used large
spatial scale due to this LGA used as spatial scale for this study

3 Since postcode is the readily available spatial unit in the dataset due to that postcode
used as a spatial scale for this study.

3 To overcoming limitations of changing geographical boundaries for this study LGA
used as spatial scale.

3 Since postcode are readily available in the dataset postcode used as a spatial scale for
this study.

3 Articles do not reason out of use of specified spatial scale (modifiable area unit
problem) 46 88.4

IV Methodological gaps

3 The result of this study is analysed at the district level, which is the level at which
primary health is provided in South Africa. Aggregation of the results has the effect of
introducing ecological fallacy and large geographical units of analysis may mask some
information of interest. Results and efficiency may be improved by having smaller units of
analysis

8 15.3

[55]

3 We used covariates at the municipality level, but this potentially masks important
variations within municipalities, and to obtain more reliable results on the role of covariates
as individual risk factors for overall LBW risk, it would be better to analyse birth records at
the small-scale level and individual level (MAUP)

[64]

3 Having daily or weekly data would have been preferable to examine climatic
influences of dengue case as this study used monthly cases of dengue [40]

3 The impact of using different smoothing priors has not been done in this study and
needs to be further investigated. [39]

3 Further studies are required to quantify the of extent the spatial differences in risk
represent differences in health behaviour or in disease risks [74]

3 For Further study, precise estimate at local level is recommended for internal policy
making and implementation [73]

3 First, while the level of analysis was by province/region (large geographic area), it
might be desirable to examine even smaller geographical units, such as districts and cities. [50]

3 Explores approaches that allow the data to inform on the appropriate spatial weights
to be specified is recommended. [70]

3 Articles did not report the methodological gaps 44 44.6

Of the 52 studies, 6 (11.53%) reported the reason for the choice of the spatial scale used
for mapping [55,63,70,71,73,79]. These studies justified their choice of spatial scale based on
data availability, study objectives, and location stability. Of the 52 studies, only 8 identified
methodological gaps and future research directions [40,41,51,56,65,71,74,75]. The study
conducted by Darikwa et al. [56] justified that large geographical units of analysis may
mask some information of interest. The efficiency may be improved by using smaller
units of analysis. Another study conducted by Akter et al. [40] noted that the impact of
using different smoothing priors on inference was not investigated in their study and
recommended investigation for future research (Table 4).
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3.7. Assessment of Quality

The risk of bias tool for assessment was adapted from quality assessment tool for
modelling studies from Fone et al. (2003) and Harris et al. (2016) [28,29]. The tool has
three broad criteria: the screening questions, the validity of the model questions, and the
overall result and study conclusion questions. The screening criteria include two questions
(Does the paper clearly address aims and objectives? and Is the setting and population
clearly defined?). The validity of the model includes four questions (Is the model structure
clearly described and appropriate for the research question? Are the modelling methods
appropriate for the research question? Are the parameters, ranges and data source specified?
and Is the quality of data considered?). The overall result and study conclusions comprise
two questions (Have the results been clearly and completely presented? Additionally, are
the results appropriately interpreted and discussed in context?). The studies included in
this review were evaluated using the above-listed eight questions with possible answers
ranging from zero to two (0, none; 1, poor; 2, good) and a maximum score of sixteen. Each
reviewed study was categorized as either very high quality (score > 13), high quality (score
11–13), medium quality (score of 8–10), or low quality (score < 8). The median quality score
for this review was 12, with the minimum score being 8 and the maximum score being 16
(Table S2).

4. Discussion

This systematic review aimed to examine the utilization of Bayesian spatial and spatio-
temporal conditional autoregressive models in health and health-related research, with
a specific focus on the selection of spatial adjacencies, areal units, and the justification of
priors used in the studies. A total of 52 articles were included in this review, all of which
utilized Bayesian spatial and spatio-temporal conditional autoregressive modelling and
reported information on adjacency matrices, areal units, and priors in their investigation of
health and health-related outcomes.

The majority of the conditional autoregressive (CAR) models in this systematic review
were applied to infectious diseases, with chronic diseases being the second most common
focus. Infectious diseases are a significant global cause of morbidity and mortality, including
the current Coronavirus-2 pandemic [82,83], with 50% of the reviewed papers relating
to infectious diseases. Due to their mode of transmission, infectious diseases have the
potential to spread to nearby areas and populations, particularly respiratory communicable
diseases like SARS, COVID-19, Ebola, and measles [49,84–86]. The Bayesian modelling
framework is well suited for incorporating prior information from previous disease strains,
and it aligns with Tobler’s first law of geography, which suggests that “everything is
related to everything else, but near things are more related than distant things” and
emphasizes spatial dependence [87]. Hence, CAR models are highly relevant to the analysis
of infectious diseases.

Of the 52 studies, 31 (59.6%) reported relative risk as the effect measure, followed
by the mean coefficient of 12 (23.0%). A considerable number of the studies included in
the analysis reported smoothed relative risk as the preferred measure of effect size. This
preference can be attributed to the fact that many of the studies utilized an ecological study
design, for which relative risk is considered an appropriate measure of effect size.

Out of the 52 studies reviewed, 42 (80.7%) employed an ecological study design.
This indicates that ecological study design is the most commonly utilized approach for
disease mapping at a more refined geographic level, as it can aid planners and decision-
makers in allocating resources effectively [12]. Unlike other study designs, ecological study
design can be easily generated from various sources of data and reports, ranging from
individual/patient-level data to group-level data at any geographic level. Of the studies
reviewed, the primary data sources included DHS survey datasets for 24 (46.1%) studies
and hospital/administrative dataset survey data for 20 (38.4%) studies. This may be due
to the fact that survey datasets frequently include location data that contain longitude
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and latitude measurements for each enumeration area and provide geographic-related
covariates within the survey dataset [87].

Out of the 52 studies reviewed, 46 (88.5%) used Markov Chain Monte Carlo (MCMC)
for model fitting and inference in their Bayesian spatial and spatio-temporal modelling.
The main reason that most scholars use MCMC is that it provides a flexible framework for
sampling from complex probability distributions without dealing with the intractability
of complex equations (e.g., conditional risks between adjacent regions). It is particularly
useful when the posterior distribution of a model’s parameters is difficult or impossible to
calculate analytically [88]. Only six (11.5%) studies employed Integrated Nested Laplace
Approximation (INLA) for model fitting and inference [30,34,39,53,56,67]. Unlike MCMC
techniques, INLA performs Bayesian analyses using numerical integration and is not very
flexible in modifying complex models and addressing challenges. The current literature
suggests that INLA has a lower computational burden than MCMC [89]. The commonly
used spatial models in this review were Bayesian hierarchical models with structured and
unstructured random effects in the modelling component [90]. Unlike MCMC, INLA can
perform Bayesian studies without requiring posterior sampling techniques.

The number of publications related to Bayesian spatial and spatio-temporal conditional
autoregressive models showed an upward trend from 2012 to 2020, but it decreased in
2021 and 2022 (articles up to September 2022 were considered for this review). This decline
could be related to the impact of COVID-19 through potentially difficulties of accessing
data due to disruptions to the healthcare systems in many parts of the world. In addition,
other newly evolving methodologies (e.g., machine learning) may become more common,
and result in a reduction of statistical methodology [91].

A total of 26 countries had published articles on Bayesian spatial and spatio-temporal
modelling in this review. Australia had 11 published articles, which is a substantial
proportion of the total. The reasons for this could be the availability of good quality
spatial maps and data in Australia and freely available datasets for mapping and geospatial
analysis. Australia is also a very large country and diverse geographically [13] and policy
makers have a significant interest in the relationships between social and SES status and
health outcomes [92].

Out of 52 studies, 50 (96.2%) used DIC as a criterion to compare model goodness-of-fit,
while only 2 studies used WAIC. Both DIC and WAIC employ the model likelihood function
and model complexity term to compare models. The majority of studies in this review used
DIC, possibly because it can be easily calculated from the samples generated by a Markov
Chain Monte Carlo simulation [93].

The Poisson-based modelling approach was used in the majority of studies, specifically
30 out of 52 (57.7%). This due to the fact that Poisson distribution is specifically designed to
model count data, which represents the number of occurrences of an event within a fixed
unit of time and space. On the other hand, 16 studies (30.7%) used the Binomial/Bernoulli
modelling approach. This can be attributed to the fact that the Poisson model is commonly
used for count or discrete data with non-negative integers that are aggregated at the area
level [94].

The included studies in this review used different types of covariates, like demographic
socio-economic, climatology, environmental and clinical variables. Of 52 studies, 21 (41.1%)
included demographic covariates such as sex, age, and race, and 19 (37.2%) of them
included socio-economic variables, such as wealth index. Age, sex, and other demographic,
and socio-economic variables are determinants of a multitude of health-related and other
outcomes. The impact of these listed variables and other common risk factors are estimated
using models.

Of the studies, 19 (36.5%) assigned flat prior distribution for the intercept [31,38–40,43,
44,50,51,57,60,69–74,77,80,81], with 17 (32.69%) studies not reporting the prior distribution
for the intercept [30,33,34,36,47,53,56,58,59,61,63–66,68,75,79]. For regression coefficients,
36 (69.23%) studies used normal distribution for prior distribution, and 11 (21.1%) articles
did not report what types of prior distribution were used for the regression coefficient. For
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the spatial structured and unstructured random component of the model, 48 (92.3%) studies
reported prior distribution of a precision term. Of these, 31 (59.6%) studies reported the
spatial scale used for mapping and the distribution for parameters. Many of the included
studies in this review used non-informative priors, which may be due to prior information
not being available and allowing data to influence the posterior distribution [95].

Of the studies reviewed, only 8 (15.38%) studies [41,42,51,54,55,63,71,78] conducted
sensitivity analysis for hyperprior distribution of precision, indicating a low rate of such
analysis. The majority of studies did not include sensitivity analysis for the hyperprior
distribution of precision component. Conducting sensitivity analysis for hyperprior distri-
bution identifies influential hyperpriors and assesses the robustness of the conclusions [96].
Conducting sensitivity analysis for hyperprior distribution can inform researchers about
how the choice of parameters materially affects their results. Depaoli et al. [97] emphasized
the significance of prior distributions and sensitivity analysis in Bayesian methods and
disease mapping. One potential reason why scholars do not conduct sensitivity analysis
might be due to a lack of statistical skills or an insufficient understanding of the importance
of sensitivity analysis.

Different types of adjacency matrices were used in our reviewed studies. A total of
41 (75%) of the articles used Queen contiguity adjacency matrix, 2 studies used distance-
based neighbourhood matrix, and 1 study used Rook contiguity in their modelling for
smoothing spatially structured random effects. Eight articles did not report what types of
adjacency matrices were used in their modelling. Studies by Duncan et al. [19] noted that
the specification of spatial weight matrix has a significant effect on model fit and parameter
estimation, and studies by Earnest et al. [13] note that the types of neighbours specified
had considerable difference in smoothing of the CAR model. This paper suggested that
using a covariate as a measure of neighbourhood improves the performance of the CAR
model, but it then becomes impossible to use this covariate as a risk factor, so it is important
to understand the goal of the analysis. Earnest also suggested for future researchers that
including spatial smoothing based on additional covariates may improve CAR model
performance in disease-mapping studies.

Modifiable Area Unit Problem (MAUP) is the main source of bias in spatial and
spatio-temporal modelling. MUAP affects the result when individual-level variables are
aggregated at the area level. From the 52 articles, only 6 (11.5%) [55,63,66,70,73,79] studies
reported reasons for using the respective spatial scale. This is likely due to most health
data/surveys only collecting the postcode of patients, not the actual address, which would
allow for more granular modelling.

The number of spatial units in the reviewed article ranged from a minimum of 10 and
a maximum of 1235. The average spatial scale was 169 and the median was 64. The
sample size in each study also varied and ranged from a minimum of 705 to a maximum of
4.05 million.

From a total of 52 studies, only 8 studies discuss methodological gaps and future
research directions [40,41,51,56,65,71,74,75]. The studies conducted by Darikwa et al. [56]
noted that large geographical units of analysis may mask some information of interest and
be heterogeneous in outcomes and risk factors, and efficiency may be improved by having
smaller units of analysis. Another study, conducted by Akter et al. [40], noted that the
impact of using different smoothing priors on inference was not investigated in their study,
and recommended this for future research.

Of the studies, 44 (84.6%) reported the maps for displaying estimates geographically.
Visualization of estimates geographically is a useful tool for policy and planning purposes,
particularly to assist decision-making for allocation of health resources.

Of the 52 studies, only 8 studies discuss methodological gaps and future research
directions [40,41,51,56,65,71,74,75].
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4.1. Strengths and Limitations of the Review

The strength of this systematic review is that we followed the PRIMA guidelines in
terms of high-quality reporting and a quality checklist for assessment of bias. A compre-
hensive total of seven electronic databases, with the help of a professional librarian, were
searched to retrieve studies. Two authors (ZTT and GAT) searched and extracted the data
of all the included studies independently using Covidence software. The limitations of
this review are that there was significant variation in study methodology and included
covariates, which precluded us undertaking meta-analysis, and that only studies published
in English language were included. Finally, publication bias cannot be entirely avoided.

4.2. Implications of the Study and Its Contributions

This systematic review focusses on quantifying the problem which can lead to ad-
dressing the limitations and variability in Bayesian spatial and spatio-temporal modelling
in health and health-related research. We have found a need for consistent guidelines on
sensitivity analysis for choice of priors, reporting the rationale for selection of spatial units,
and a clear specification of choice of neighbourhood adjacency, to better standardize and
compare future publications.

5. Conclusions

This review highlights existing variation and limitations in the specification areal unit,
adjacency matrix, and priors on Bayesian spatial and spatio-temporal models used in health
research. We found that studies often fail:

3 To report the rationale for the choice of areal units.
3 To perform sensitivity analyses on priors.
3 To evaluate the choice of neighbourhood adjacency.

These issues are important because they can potentially affect the validity and relia-
bility of findings in health research. For example, the choice of areal units can influence
the measurement of exposures and outcomes and their relationship, and the choice of
neighbourhood adjacency can affect the spatial autocorrelation structure of the data, affect-
ing the level of smoothing undertaken by the model. Similarly, the choice of priors can
have a significant impact on the posterior distribution of model parameters, and sensitivity
analyses can help to assess the robustness of findings to different prior specifications. A
framework and heightened awareness from researchers is required for the design, analysis,
and reporting of disease-mapping studies to ensure that findings are valid, reliable, and
generalizable.
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