Exploring New Tools for Risk Classification among Adults with Several Degrees of Obesity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aronne, L.J.; Nelinson, D.S.; Lillo, J.L. Obesity as a disease state: A new paradigm for diagnosis and treatment. Clin. Cornerstone 2009, 9, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Haslam, D.W.; Sharma, A.M.; Le Roux, C.W. Controversies in Obesity; Springer: London, UK; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Halpern, B.; Mancini, M.C.; de Melo, M.E.; Lamounier, R.N.; Moreira, R.O.; Carra, M.K.; Kyle, T.K.; Cercato, C.; Boguszewski, C.L. Proposal of an obesity classification based on weight history: An official document by the Brazilian Society of Endocrinology and Metabolism (SBEM) and the Brazilian Society for the Study of Obesity and Metabolic Syndrome (ABESO). Arch. Endocrinol. Metab. 2022, 66, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Kahan, S. Overweight and Obesity Management Strategies. Am. J. Manag. Care 2016, 22, 186–196. [Google Scholar]
- Le Roux, C.W.; Alruwaili, H. Treating obesity as a disease. Acad. Lett. 2021, 1–6. [Google Scholar] [CrossRef]
- Scorsatto, M.; Rosa, G.; Pimentel, A.D.C.; Luiz, R.R.; De Oliveira, G.M.M. Is it possible to easily identify metabolically healthy obese women? Arq. Bras. Cardiol. 2018, 111, 733–737. [Google Scholar] [CrossRef]
- Scarsella, C.; Després, J.-P. Tratamiento de la obesidad: Necesidad de centrar la atención en los pacientes de alto riesgo caracterizados por la obesidad abdominal. Cad. Saude Publica 2003, 19 (Suppl. 1), S7–S19. [Google Scholar] [CrossRef][Green Version]
- World Obesity. Available online: https://data.worldobesity.org/publications/?cat=2 (accessed on 2 March 2023).
- de Castro Pimentel, A.; Scorsatto, M.; de Oliveira, G.M.M.; Rosa, G.; Luiz, R.R. Characterization of metabolically healthy obese Brazilians and cardiovascular risk prediction. Nutrition 2015, 31, 827–833. [Google Scholar] [CrossRef]
- Ortega, F.B.; Lavie, C.J.; Blair, S.N. Obesity and cardiovascular disease. Circ. Res. 2016, 118, 1752–1770. [Google Scholar] [CrossRef][Green Version]
- Dippe, T., Jr.; Cerci, R.J. Obesity: A Risk Marker or an Independent Risk Factor for Coronary Artery Disease? Int. J. Cardiovasc. Sci. 2020, 33, 55–56. [Google Scholar] [CrossRef]
- Kang, G.D.; Guo, L.; Guo, Z.R.; Hu, X.S.; Wu, M.; Yang, H.T. Continuous metabolic syndrome risk score for predicting cardiovascular disease in the Chinese population. Asia Pac. J. Clin. Nutr. 2012, 21, 88–96. [Google Scholar] [CrossRef]
- Wijndaele, K.; Beunen, G.; Duvigneaud, N.; Matton, L.; Duquet, W.; Thomis, M.; Lefevre, J.; Philippaerts, R.M. A continuous metabolic syndrome risk score: Utility for epidemiological analyses. Diabetes Care 2006, 29, 2329. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Deboer, M.D.; Gurka, M.J. Clinical utility of metabolic syndrome severity scores: Considerations for practitioners. Diabetes Metab. Syndr. Obes. 2017, 10, 65–72. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bim, R.H.; Westphal, G.; Thon, R.A.; Pereira, I.A.S.; Castilho, M.M.; Oltramari, K.; Martins, F.M.; Júnior, N.N. Revista Brasileira de Obesidade, Nutrição e Emagrecimento prevalência de fatores de risco cardiometabólico em adultos com obesidade. RBONE—Rev. Bras. De Obes. Nutr. E Emagrecimento 2022, 2, 1270–1282. [Google Scholar]
- Geloneze, B.; Vasques, A.C.J.; Stabe, C.F.C.; Pareja, J.C.; de Lima Rosado, L.E.F.P.; De Queiroz, E.C.; Tambascia, M.A. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS). Arq. Bras. De Endocrinol. Metabol. 2009, 53, 281–287. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Diniz, M.D.F.H.S.; Beleigoli, A.M.R.; Schmidt, M.I.; Duncan, B.B.; Ribeiro, A.L.P.; Vidigal, P.G.; Benseñor, I.M.; Lotufo, P.A.; Santos, I.S.; Griep, R.H.; et al. Homeostasis model assessment of insulin resistance (HOMA-IR) and metabolic syndrome at baseline of a multicentric Brazilian cohort: ELSA-Brasil study. Cad. Saude Publica 2020, 36. [Google Scholar] [CrossRef]
- Vasques, A.C.J.; Rosado, L.E.F.P.L.; Alfenas, R.d.C.G.; Geloneze, B. Análise crítica do uso dos índices do Homeostasis Model Assessment (HOMA) na avaliação da resistência à insulina e capacidade funcional das células-beta pancreáticas. Arq. Bras. De Endocrinol. Metabol. 2008, 52, 32–39. [Google Scholar] [CrossRef][Green Version]
- Lim, J.; Kim, J.; Koo, S.H.; Kwon, G.C. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007-2010 Korean national health and nutrition examination survey. PLoS ONE 2019, 14, e0212963. [Google Scholar] [CrossRef]
- Er, L.-K.; Wu, S.; Chou, H.-H.; Hsu, L.-A.; Teng, M.-S.; Sun, Y.-C.; Ko, Y.-L. Triglyceride glucose-body mass index is a simple and clinically useful surrogate marker for insulin resistance in nondiabetic individuals. PLoS ONE 2016, 11, e0149731. [Google Scholar] [CrossRef]
- Choudhary, M.K.; Eräranta, A.; Koskela, J.; Tikkakoski, A.J.; Nevalainen, P.I.; Kähönen, M.; Mustonen, J.; Pörsti, I. Atherogenic index of plasma is related to arterial stiffness but not to blood pressure in normotensive and never-treated hypertensive subjects. Blood Press 2019, 28, 157–167. [Google Scholar] [CrossRef][Green Version]
- Gurka, M.J.; Golden, S.H.; Musani, S.K.; Sims, M.; Vishnu, A.; Guo, Y.; Cardel, M.; Pearson, T.A.; DeBoer, M.D. Independent associations between a metabolic syndrome severity score and future diabetes by sex and race: The Atherosclerosis Risk in Communities Study and Jackson Heart Study. Diabetologia 2017, 60, 1261–1270. [Google Scholar] [CrossRef][Green Version]
- World Health Organization. WHO|Waist Circumference and Waist–Hip Ratio. Report of a WHO Expert Consultation. Geneva, 8–11 December 2008. 2011, pp. 8–11. Available online: http://www.who.int (accessed on 5 March 2023).
- Malachias, M.V.B.; Plavnik, F.L.; Machado, C.A.; Malta, D.; Scala, L.C.N.; Fuchs, S. 7a Diretriz Brasileira de Hipertensão Arterial: Capítulo 1-Conceituação, Epidemiologia e Prevenção Primária. Arq. Bras. Cardiol. 2016, 107, 1–6. Available online: http://www.gnresearch.org/doi/10.5935/abc.20160151 (accessed on 5 March 2023). [CrossRef] [PubMed]
- Faludi, A.A.; Izar, M.C.D.O.; Saraiva, J.F.K.; Chacra, A.P.M.; Bianco, H.T.; Afiune, A.; Bertolami, A.; Pereira, A.C.; Lottenberg, A.M.; Sposito, A.C.; et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose–2017. Arq. Bras. De Cardiol. 2017, 109 (Suppl. S1), 1–76. [Google Scholar] [CrossRef] [PubMed]
- Field, A. Discovering Statistics Using SPSS Statistics; SAGE Publications: Thousand Oaks, CA, USA, 2009; Volume 66, p. 822. Available online: http://www.amazon.com/Discovering-Statistics-using-IBM-SPSS/dp/1446249182 (accessed on 25 March 2023).
- de Paulo, O.J.E.; Foss-Freitas, M.C.; Junior, R.M.M.; Vencio, S. Diretrizes da Sociedade Brasileira de Diabetes 2017–2018; Dados Internacionais de Catalogação na Publicação (CIP): Câmara Brasileira do Livro, Brasil, 2017. [Google Scholar] [CrossRef]
- McAuley, K.A.; Williams, S.M.; Mann, J.I.; Walker, R.J.; Lewis-Barned, N.J.; Temple, L.A.; Duncan, A.W. Diagnosing insulin resistance in the general population. Diabetes Care 2001, 24, 460–464. [Google Scholar] [CrossRef][Green Version]
- Loria, A.; Arroyo, P.; Fernández, V.; Laviada, H. Strategy to establish a cut-off point for hyperinsulinemia. Rev. Invest. Clin. 2010, 62, 276–278. [Google Scholar]
- Won, K.-B.; Heo, R.; Park, H.-B.; Lee, B.K.; Lin, F.Y.; Hadamitzky, M.; Kim, Y.-J.; Sung, J.M.; Conte, E.; Andreini, D.; et al. Atherogenic index of plasma and the risk of rapid progression of coronary atherosclerosis beyond traditional risk factors. Atherosclerosis 2021, 324, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Bo, M.S.; Cheah, W.L.; Lwin, S.; Nwe, T.M.; Win, T.T.; Aung, M. Understanding the Relationship between Atherogenic Index of Plasma and Cardiovascular Disease Risk Factors among Staff of an University in Malaysia. J. Nutr. Metab. 2015, 2018, 7027624. [Google Scholar] [CrossRef]
- Cai, G.; Shi, G.; Xue, S.; Lu, W. The atherogenic index of plasma is a strong and independent predictor for coronary artery disease in the Chinese Han population. Medicine 2017, 96, e8058. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, L.; Zhou, H.; Ma, Q.; Zhou, X.; Lei, T.; Hu, J.; Xu, W.; Yi, N.; Lei, S. Atherogenic index of plasma is a novel and better biomarker associated with obesity: A population-based cross-sectional study in China. Lipids Health Dis. 2018, 17, 37. [Google Scholar] [CrossRef][Green Version]
- Eickemberg, M.; Amorim, L.D.A.F.; Almeida, M.D.C.C.D.; De Aquino, E.M.L.; Fonseca, M.D.J.M.D.; Santos, I.D.S.; Chor, D.; Diniz, M.D.F.S.; Barreto, S.; De Matos, S.M.A. Indicators of abdominal adiposity and carotid intima-media thickness: Results from the longitudinal study of adult health (ELSA-Brazil). Arq. Bras. Cardiol. 2019, 112, 220–227. [Google Scholar] [CrossRef]
- Valerio, G.; Licenziati, M.R.; Tortorelli, P.; Calandriello, L.F.; Alicante, P.; Scalfi, L. Lower Performance in the Six-Minute Walk Test in Obese Youth With Cardiometabolic Risk Clustering. Front. Endocrinol. 2018, 9, 701. [Google Scholar] [CrossRef]
- de Carvalho, C.A.; Fonseca, P.C.D.A.; Barbosa, J.B.; Machado, S.P.; Santos, A.M.D.; Da Moura Silva, A.A. The association between cardiovascular risk factors and anthropometric obesity indicators in university students in São Luís in the state of Maranhão, Brazil. Cienc. E Saude Coletiva 2015, 20, 479–490. [Google Scholar] [CrossRef][Green Version]
- Junqueira, A.S.M.; Filho, L.J.M.R.; Junqueira, C.D.L.C. Evaluation of the degree of vascular inflammation in patients with metabolic syndrome. Arq. Bras. Cardiol. 2009, 93, 360–366. [Google Scholar] [CrossRef][Green Version]
- Westphal, G.; Baruki, S.B.S.; de Mori, T.A.; Montebello, M.I.D.L.; Pazzianotto-Forti, E.M. Effects of Individualized Functional Training on the Physical Fitness of Women with Obesity. Lect. Educ. Física Y Deportes 2020, 25, 61–75. [Google Scholar] [CrossRef]
- Gurka, M.J.; Lilly, C.L.; Oliver, M.N.; Deboer, M.D. An Examination of Sex and Racial/Ethnic Differences in the Metabolic Syndrome among Adults: A Confirmatory Factor Analysis and a Resulting Continuous Severity Score. Metabolism 2014, 63, 218–225. [Google Scholar] [CrossRef][Green Version]
- Gurka, M.J.; Filipp, S.L.; Musani, S.K.; Sims, M.; De Boer, M.D. Use of BMI as Marker of Adiposity in a Metabolic Syndrome Severity Score: Derivation and Validation in Predicting Long- term Disease Outcomes. Metabolism 2018, 83, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Okosun, I.S.; Boltri, J.M.; Lyn, R.; Davis-Smith, M. Continuous Metabolic Syndrome Risk Score, Body Mass Index Percentile, and Leisure Time Physical Activity in American Children. J. Clin. Hypertens. 2010, 12, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Skinner, A.C.; Perrin, E.M.; Moss, L.A.; Skelton, J.A. Cardiometabolic Risks and Severity of Obesity in Children and Young Adults. N. Engl. J. Med. 2015, 373, 1307–1317. [Google Scholar] [CrossRef]
- Drozdz, D.; Alvarez-Pitti, J.; Wójcik, M.; Borghi, C.; Gabbianelli, R.; Mazur, A.; Herceg-Čavrak, V.; Lopez-Valcarcel, B.G.; Brzeziński, M.; Lurbe, E.; et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021, 13, 4176. [Google Scholar] [CrossRef]
- Millar, S.R.; Perry, I.J.; Phillips, C.M. Assessing cardiometabolic risk in middle-aged adults using body mass index and waist–height ratio: Are two indices better than one? A cross-sectional study. Diabetol. Metab. Syndr. 2015, 7, 73. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Greenberg, J.A. Obesity and early mortality in the United States. Obesity 2013, 21, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, C.M.; Flint, A.J.; de Gonzalez, A.B.; Bernstein, L.; Brotzman, M.; MacInnis, R.J.; Moore, S.C.; Robien, K.; Rosenberg, P.S.; Singh, P.N.; et al. Association between Class III Obesity (BMI of 40–59 kg/m2) and Mortality: A Pooled Analysis of 20 Prospective Studies. PLoS Med. 2014, 11, e1001673. [Google Scholar] [CrossRef] [PubMed]
Antrometric and Body Composition Parameters | Obesity Class I (n = 76) | Obesity Class II (n = 141) | Obesity Class III (n = 160) | Super Obesity (n = 27) | p-Value |
---|---|---|---|---|---|
Age (years) | 41.66 ± 8.75 | 39.50 ± 9.10 | 38.27 ± 8.77 | 37.15 ± 8.32 | 0.028 * |
Height (m) | 162.92 ± 8.03 | 163.97 ± 8.69 | 165.04 ± 8.11 | 165.85 ± 10.64 | 0.23 |
Body Mass (kg) | 88.38 ± 9.86 a.b.c | 100.20 ± 11.27 a.d.e | 119.14 ± 15.53 b.d.f | 156.03 ± 25.99 c.e.f | <0.001 * |
Body Mass Index (kg/m2) | 33.16 ± 1.28 a.b.c | 37.32 ± 1.48 a.d.e | 43.70 ± 2.65 b.d.f | 56.88 ± 6.60 c.e.f | <0.001 * |
Lean Body Mass (kg) | 37.21 ± 13.96 b.c | 39.29 ± 15.82 d.e | 47.20 ± 2.65 b.d.f | 59.29 ± 22.31 c.e.f | <0.001 * |
Skeletal Muscle Mass (kg) | 29.91 ± 6.98 b.c | 31.21 ± 6.14 e | 32.93 ± 5.82 b.f | 39.18 ± 6.99 c.e.f | <0.001 * |
Body fat (%) | 45.62 ± 5.28 b | 48.60 ± 5.17 | 53.86 ± 31.70 b | 55.67 ± 2.54 | 0.009 * |
Absolute Body Fat (kg) | 51.17 ± 12.98 a.b.c | 60.91 ± 13.31 a.d.e | 71.93 ± 15.97 b.d.f. | 96.74 ± 19.28 c.e.f | <0.001 * |
Lean Mass/Body Fat Ratio (kg) | 0.82 ± 0.43 | 0.71 ± 0.37 | 0.71 ± 0.29 | 0.64 ± 0.24 | 0.052 |
Neck Circumference (cm) | 37.91 ± 3.91 b.c | 39.01 ± 4.06 e | 40.73 ± 4.33 b.f | 43.46 ± 4.92 c.e.f | <0.001 * |
Waist Circumference (cm) | 96.27 ± 7.56 a.b.c | 103.86 ± 9.78 a.d.e | 114.24 ± 10.05 b.d.f | 130.67 ± 16.72 c.e.f | <0.001 * |
Abdomen Circumference (cm) | 105.40 ± 7.62 a.b.c | 114.62 ± 10.52 a.d.e | 126.81 ± 10.83 b.d.f | 147.63 ± 15.32 c.e.f | <0.001 * |
Hip Circumference (cm) | 117.03 ± 10.56 a.b.c | 124.37 ± 12.75 a.d.e | 131.80 ± 11.06 b.d.f | 148.41 ± 16.21 c.e.f | <0.001 * |
Waist/Height Ratio (cm) | 0.59 ± 0.04 a.b.c | 0.63 ± 0.05 a.d.e | 0.69 ± 0.05 b.d.f | 0.79 ± 0.09 c.e.f | <0.001 * |
Hemodynamic/Health Related Physical Fitness Variables | |||||
Systolic Blood Pressure (mmHg) | 123.25 ± 14.70 c | 127.32 ± 14.52 | 127.41 ± 13.78 | 132.25 ± 11.79 c | 0.027 * |
Diastolic Blood Pressure (mmHg) | 79.67 ± 12.08 | 81.65 ± 12.54 | 82.43 ± 10.27 | 84.85 ± 12.49 | 0.178 |
SPO2 (%) | 96.71 ± 3.36 | 96.51 ± 12.54 | 96.04 ± 2.35 | 92.26 ± 1.77 | 0.197 |
HR (bpm) | 77.80 ± 8.89 b | 80.76 ± 12.87 | 84.06 ± 11.26 b | 84.89 ± 12.66 | 0.001 * |
Six Minutes’ Walk Test (m) | 505.33 ± 86.25 c | 496.02 ± 73.95 e | 485.63 ± 70.27 f | 431.83 ± 81.54 c.e.f | <0.001 * |
Plank Strength Test (s) | 28.88 ± 26.85 | 27.96 ± 24.54 | 25.31 ± 22.81 | 17.05 ± 14.55 | 0.116 |
Dynamic Lower Limb Muscular Endurance (n rep.) | 15.72 ± 4.54 | 15.16 ± 4.69 | 14.40 ± 3.78 | 13.78 ± 4.29 | 0.064 |
Flexibility (cm) | 22.79 ± 8.14 b.c | 19.62 ± 9.86 d | 14.67 ± 7.77 b.d | 15.14 ± 10.27 c | <0.001 * |
Biochemical Parameters | |||||
Glycemia (mg/dL) | 95.25 ± 12.16 b | 101.73 ± 30.87 | 111.96 ± 50.52 b | 106.70 ± 31.43 | 0.010 * |
Insulin (mU/L) | 18.68 ± 9.15 c | 23.02 ± 11.39 | 22.35 ± 10.99 | 28.52 ± 14.89 c | 0.001 * |
Homa IR | 4.45 ± 2.46 b.c | 5.73 ± 3.13 | 6.22 ± 4.42 b | 7.25 ± 3.60 c | 0.001 * |
Homa β | 67.34 ± 32.87 c | 81.68 ± 44.17 | 74.49 ± 38.71 f | 99.86 ± 58.88 c.f | 0.002 * |
US-CRP (mg/L) | 4.02 ± 3.44 b.c | 5.81 ± 5.35 | 7.52 ± 6.50 b | 8.45 ± 5.43 c | <0.001 * |
Total cholesterol (mg/dL) | 192.74 ± 40.01 | 190 ± 36.17 | 196.22 ± 38.30 | 179.78 ± 38.65 | 0.161 |
HDL-c (mg/dL) | 49.92 ± 12.25 | 46.73 ± 11.99 | 46.74 ± 12.36 | 48.78 ± 15.78 | 0.236 |
LDL-c (mg/dL) | 117.08 ± 36.94 | 113.84 ± 30.74 | 119.05 ± 31.51 | 107.47 ± 30.33 | 0.259 |
VLDL-c (mg/dL) | 23.99 ± 11.34 | 27.88 ± 15.19 | 28.68 ± 15.79 | 23.16 ± 8.41 | 0.051 |
Non-HDL Cholesterol (mg/dL) | 140.34 ± 39.93 | 141.78 ± 36.03 | 149.40 ± 36.76 | 135.93 ± 37.63 | 0.12 |
Triglycerides (mg/dL) | 127.53 ± 65.03 | 145.55 ± 84.86 | 158.25 ± 106.17 | 126.15 ± 74.53 | 0.061 |
Glycated Hemoglobin (%) | 5.52 ± 0.54 | 5.66 ± 0.98 | 5.79 ± 1.44 | 5.50 ± 0.79 | 0.288 |
Indices Derived From Biochemical/Anthropometric Parameters | |||||
AIP (mg/dL) | 0.37 ± 0.26 | 0.45 ± 0.27 | 0.47 ± 0.29 | 0.38 ± 0.28 | 0.067 |
MetS-Z BMI | 0.38 ± 0.55 | 0.86 ± 0.79 | 1.35 ± 1.24 | 1.67 ± 0.66 | 0.059 |
Percentile BMI | 63.35 ± 18.91 a.b.c | 75.34 ± 15.43 a.d.e | 83.70 ± 13.35 b.d.f | 92.52 ± 6.84 c.e.f | <0.001 * |
MetS-Z WC | 0.17 ± 0.60 a.b.c | 0.60 ± 0.83 a.d | 1.03 ± 1.17 b.d | 1.10 ± 0.67 c | <0.001 * |
Percentile WC | 55.43 ± 21.08 a.b.c | 67.39 ± 18.57 a.d.e | 75.83 ± 17.73 b.d | 82.30 ± 13.05 c.e | <0.001 * |
TYG (mg/dL) | 8.59 ± 0.53 b | 8.74 ± 0.58 | 8.87 ± 0.71 b | 8.65 ± 0.57 | 0.011 * |
TYG-BMI | 284.92 ± 21.22 a.b.c | 326.44 ± 25.10 a.d.e | 387.97 ± 42.01 b.d.f | 493.35 ± 75.64 c.e.f | <0.001 * |
TYG-WC | 828.17 ± 94.33 a.b.c | 909.97 ± 117.98 a.d.e | 1015.51 ± 137.87 b.d.f | 1133.68 ± 179.47 c.e.f | <0.001 * |
Antrometric and Body Composition Parameters | Young Adults (n = 197) | Middle Age Adults (n = 207) | p-Value |
---|---|---|---|
Age (years) | 31.84 ± 5.26 | 46.32 ± 5.17 | <0.001 * |
Height (m) | 166.16 ± 7.36 | 162.57 ± 9.12 | <0.001 * |
Body Mass (kg) | 114.90 ± 22.65 | 103.78 ± 20.57 | <0.001 * |
Body Mass Index (kg/m2) | 41.61 ± 6.98 | 39.19 ± 5.79 | <0.001 * |
Lean Body Mass (kg) | 45.19 ± 17.70 | 41.63 ± 17.20 | 0.041 * |
Skeletal Muscle Mass (kg) | 32.68 ± 6.30 | 31.69 ± 6.84 | 0.131 |
Body fat (%) | 52.38 ± 28.83 | 48.89 ± 5.57 | 0.088 |
Absolute Body Fat (kg) | 69.71 ± 20.22 | 62.15 ± 16.06 | <0.001 * |
Lean Mass/Body Fat Ratio (kg) | 0.71 ± 0.33 | 0.73 ± 0.36 | 0.613 |
Neck Circumference (cm) | 39.88 ± 4.34 | 39.42 ± 4.46 | 0.296 |
Waist Circumference (cm) | 109.79 ± 13.46 | 106.94 ± 13.42 | 0.034 * |
Abdomen Circumference (cm) | 122.42 ± 14.55 | 117.53 ± 15.44 | 0.001 * |
Hip Circumference (cm) | 129.92 ± 13.87 | 125.92 ± 14.45 | 0.019 * |
Waist/Height Ratio (cm) | 0.66 ± 0.07 | 0.65 ± 0.07 | 0.679 |
Hemodynamic/Health Related Physical Fitness Variables | |||
Systolic Blood Pressure (mmHg) | 124.46 ± 12.41 | 129.26 ± 15.43 | 0.001 * |
Diastolic Blood Pressure (mmHg) | 80.89 ± 10.36 | 82.65 ± 12.66 | 0.128 |
SPO2 (%) | 96.55 ± 2.13 | 96.15 ± 2.75 | 0.102 |
HR (bpm) | 82.87 ± 12.36 | 80.75 ± 11.41 | 0.075 |
Six Minutes’ Walk Test (m) | 495.51 ± 77.21 | 483.51 ± 76.81 | 0.118 |
Plank Strength Test (s) | 24.91 ± 21.61 | 27.72 ± 25.84 | 0.237 |
Dynamic Lower Limb Muscular Endurance (n rep.) | 14.61 ± 4.16 | 15.12 ± 4.45 | 0.239 |
Flexibility (cm) | 18.46 ± 8.82 | 17.47 ± 9.77 | 0.289 |
Biochemical Parameters | |||
Glycemia (mg/dL) | 99.86 ± 27.56 | 109.67 ± 45.89 | 0.010 * |
Insulin (mU/L) | 23.31 ± 11.03 | 21.34 ± 11.50 | 0.081 |
Homa IR | 5.79 ± 3.38 | 5.77 ± 3.97 | 0.966 |
Homa β | 88.22 ± 41.80 | 71.75 ± 41.33 | 0.006 * |
US-CRP (mg/L) | 6.58 ± 6.1 | 6.08 ± 5.33 | 0.376 |
Total cholesterol (mg/dL) | 184.65 ± 35.05 | 199.56 ± 39.37 | <0.001 * |
HDL-c (mg/dL) | 45.53 ± 12.22 | 49.31 ± 12.47 | 0.002 * |
LDL-c (mg/dL) | 110.99 ± 29.17 | 120.93 ± 34.33 | 0.002 * |
VLDL-c (mg/dL) | 26.20 ± 14.03 | 28.04 ± 14.96 | 0.202 |
Non-HDL Cholesterol (mg/dL) | 138.40 ± 34.11 | 149.58 ± 39.43 | 0.003 * |
Triglycerides (mg/dL) | 143.02 ± 98.22 | 148.62 ± 83.27 | 0.536 |
Glycated Hemoglobin (%) | 5.40 ± 0.74 | 5.92 ± 1.34 | <0.001 * |
Indices Derived From Biochemical/Anthropometric Parameters | |||
AIP (mg/dL) | 3.58 ± 3.28 | 3.34 ± 2.48 | 0.41 |
MetS-Z BMI | 0.97 ± 0.86 | 1.06 ± 1.17 | 0.267 |
Percentile BMI | 77.34 ± 17.53 | 77.73 ± 16.71 | 0.818 |
MetS-Z WC | 0.65 ± 0.82 | 0.78 ± 1.12 | 0.168 |
Percentile WC | 68.82 ± 19.99 | 70.10 ± 20.19 | 0.524 |
TYG (mg/dL) | 4.68 ± 0.32 | 4.76 ± 0.31 | 0.012 * |
TYG-BMI | 361.83 ± 70.31 | 346.85 ± 59.86 | 0.021 * |
TYG-WC | 955.34 ± 154.02 | 947.52 ± 152.18 | 0.608 |
Single Parameter | Men (n = 85) | Women (n = 319) |
---|---|---|
Glycated Hemoglobin (%) | 34.1 | 31.3 |
Non-HDL Cholesterol (mg/dL) | 36.5 | 26.3 |
HDL-c (mg/dL) | 40 | 45.1 |
LDL-c (mg/dL) | 41.2 | 25.7 |
Insulin (mU/L) * | 45.8 | 32.9 |
Triglycerides (mg/dL) | 51.7 | 28.5 |
Total cholesterol (mg/dL) | 52.9 | 49.5 |
Diastolic Blood Pressure (mmHg) | 54.1 | 47.6 |
Glycemia (mg/dL) | 57.6 | 36.9 |
Systolic Blood Pressure (mmHg) | 77.6 | 59.8 |
Insulin (mU/L) ** | 84.7 | 83.1 |
US-CRP (mg/L) | 89.4 | 89.9 |
Waist Circumference (cm) | 90.6 | 95.9 |
Index or ratios | Man (n = 85) | Women (n = 319) |
Homa IR | 89.4 | 86.2 |
Homa β | 95.3 | 94.4 |
MetS-Z BMI | 95.3 | 92.1 |
AIP (mg/dL) | 100 | 92.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westphal-Nardo, G.; Chaput, J.-P.; Faúndez-Casanova, C.; Fernandes, C.A.M.; de Andrade Gonçalves, E.C.; Utrila, R.T.; Oltramari, K.; Grizzo, F.M.F.; Nardo-Junior, N. Exploring New Tools for Risk Classification among Adults with Several Degrees of Obesity. Int. J. Environ. Res. Public Health 2023, 20, 6263. https://doi.org/10.3390/ijerph20136263
Westphal-Nardo G, Chaput J-P, Faúndez-Casanova C, Fernandes CAM, de Andrade Gonçalves EC, Utrila RT, Oltramari K, Grizzo FMF, Nardo-Junior N. Exploring New Tools for Risk Classification among Adults with Several Degrees of Obesity. International Journal of Environmental Research and Public Health. 2023; 20(13):6263. https://doi.org/10.3390/ijerph20136263
Chicago/Turabian StyleWestphal-Nardo, Greice, Jean-Philippe Chaput, César Faúndez-Casanova, Carlos Alexandre Molena Fernandes, Eliane Cristina de Andrade Gonçalves, Raquel Tomiazzi Utrila, Karine Oltramari, Felipe Merchan Ferraz Grizzo, and Nelson Nardo-Junior. 2023. "Exploring New Tools for Risk Classification among Adults with Several Degrees of Obesity" International Journal of Environmental Research and Public Health 20, no. 13: 6263. https://doi.org/10.3390/ijerph20136263