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Abstract: This study aims to verify if the beating sound of a singing bowl synchronizes and activates
brain waves during listening. The singing bowl used in this experiment produce beats at a frequency
of 6.68 Hz, while it decays exponentially and lasts for about 50 s. Brain waves were measured for
5 min in the F3 and F4 regions of seventeen participants (eight males and nine females, average age
25.2) who heard the beating singing bowl sounds. The experimental results showed that the increases
(up to ~251%) in the spectral magnitudes of the brain waves were dominant at the beat frequency
compared to those of any other clinical brain wave frequency bands. The observed synchronized
activation of the brain waves at the beating sound frequency supports that the singing bowl sound
may effectively facilitate meditation and relaxation, considering that the beat frequency belongs to
the theta wave region which increases in the relaxed meditation state.
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1. Introduction

A singing bowl is a bowl-shaped percussion instrument [1]. The singing bowl has a
peculiar feature in that it sounds as well as creates a beat, lasting for a long time after it
has been played [2]. The singing bowl sound has often been used to reduce the degree
of tension, anxiety, and depression [3]. The singing bowl sound is known to facilitate
physiological and psychological responses, such as stabilizing blood pressure and heart
rate [2,4]. Although the singing bowl sound is reported to give positive effects in meditation
or alternative medicine, the mechanism of its psychoacoustic effects remains unclear [3,4].

It is presumed that the singing bowl sound may play a critical role in the beneficial
responses of the brain through its strong beat. If the brain waves are activated and synchro-
nized at the beat frequencies located in theta waves, the brain is likely shifted to a relaxed
meditation state [1]. Meditation effects that evoke psychophysiological changes may result
in increases in the theta waves [5–9]. However, no systematic study on such synchronized
activation has been reported. The present study aims to examine if the singing bowl beating
sound gives rise to a significant increase in the brain waves (electroencephalogram, EEG)
being dominant at the beating frequency.

2. Materials and Methods

A total of seventeen participants (male: 8, female: 9, average age: 25.2 ± 3.5) par-
ticipated in this study. They were healthy adults without hearing disabilities, cognitive
difficulties or neurological damage. Participants were voluntarily recruited from the Uni-
versity in Jeju, Korea. EEG was performed on participants who voluntarily consented after
hearing an explanation about the purpose of the study, the experimental method, the right
to voluntarily participate in the study as a research subject, and the right to withdraw
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consent to participate. The experiment was conducted under the approval of Jeju National
University Hospital Institutional Review Board (IRB) (JEJUNUH 2018-10-010).

In this experiment, the changes in the spectral magnitude of the brain waves were
monitored while the participants heard the singing bowl sound. The singing bowl sound
was recorded to measure its beating spectral property. The experimental setup, tools and
procedure are shown in Figure 1.
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Figure 1. Experimental setup and method: (a) schematic illustration of the experimental space
and method, (b) singing bowl, (c) mallet, (d) EEG measurement device with a wet electrode and
(e) experimental procedure.

2.1. Singing Bowl Sound

The singing bowl used in this study is 260 mm in diameter and 115 mm in depth, a
product of Best Himalaya, Nepal (Figure 1a,b). It was played with a cylindrical mallet of
192 mm in height and 48 mm in diameter (Figure 1c). Each percussion produces a sound
modulated with a strong beat that lasts for about 50 s. Figure 1a illustrates a schematic
overview of the experimental tools and space, including the relative location between the
singing bowl and the subject.

2.2. Acoustic Apparatus for Recording and Acoustic Analysis

The singing bowl sound was recorded using a mobile sound analysis system (Noise-
Book, 4820MHS II, Head Acoustics). The frequency characteristics of the recorded sound
were analyzed using FFT in MATLAB. In order to determine the spectral properties of
the low frequency beating phenomenon of the singing bowl sound, we first reconstructed
the envelope of the recorded sound signal using a Hilbert transform. The frequency spec-
trum of the envelope was then plotted in the frequency range of 0~50 Hz employed in
clinical EEG.

2.3. Brain Wave Measurements

Brain waves were recorded at the F3 and F4 positions of the international standard
10–20 system on the left and right sides of the dorsolateral prefrontal cortex (DLPFC),
known to be sensitive to brain activity during meditation [5,8,10–14]. The EEG signals
were acquired using an EEG measurement instrument (LXE1104, Laxtha, Republic Korea)
via wet electrodes (Figure 1d). The measured EEG signals were stored on a PC in digital
form with the sampling rate of 256 Hz. The participants in this study comprised 17 healthy
adults with normal hearing, as confirmed by a hearing test conducted using an Audiometer
(120 Audiometer, Beltone, Chicago, IL, USA). In addition, verbal confirmation was received
to ensure that the participants had no history of any auditory disorders or diseases.
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Figure 1e presents a flow chart of the entire experiment which took about 700 s. The
participants laid down on a comfortable bed-chair. After the electrodes were attached, they
closed their eyes for approximately 5 min in a relaxed position. When a stable EEG was
observed, the EEG was recorded for 50 s. After that, the singing bowl was played 6 times
for 5 min at intervals of 50 s, and at the same time, the brain waves were recorded. After
the sixth round of playing the percussion instrument, an additional EEG was measured for
50 s without listening to the singing bowl sound. All experiments were conducted with the
participants who had their eyes closed.

2.4. EEG Analysis

The measured time history of the brain waves was converted into the spectral magni-
tude or power of each clinical frequency band of EEG via FFT. The clinical frequency bands
are divided into the five spectral regions: delta (0~4 Hz), theta (4~8 Hz), alpha (8~13 Hz),
beta (13~30 Hz) and gamma (30~50 Hz). The spectral powers of the brain waves were
compared before and after listening to the singing bowl sound to examine changes in the
brain waves of the participants. In order to test the temporal response of the brain waves to
the singing bowl sound, temporal variations in the changes in magnitude of each spectral
band of EEG were monitored at a time interval of 50 s. The spectral band powers of each
subject were normalized to the total spectral power (0~50 Hz) to eliminate the variability in
the degree of subject-to-subject EEG activity.

3. Results

The measured time history of the singing bowl sounds (top) and brain waves (middle)
are presented in Figure 2. The three bottom panels magnify the brain waves recorded
at the characteristic temporal locations (beginning, halfway and end) of the experiment,
illustrating that the magnitudes of the brain waves increase with time and are significantly
larger at the end of the experiment than those at the beginning. The increase was apparent
in the low frequency components, as seen in the magnified figures. These types of changes
in EEG are known to be common in psychological relaxation or meditation [5].
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3.1. Temporal and Spectral Characteristics of the Singing Bowl Sound

Figure 3 shows a typical measured waveform of the singing bowl sound. It gradually
diminishes in amplitude for more than 40 s after hitting the percussion instrument and
persists for approximately 50 s (Figure 3a). A part of the waveform (marked by ‘A’) was
expanded in the time axis to reveal a low frequency variation of the sound, which is called
a beat (Figure 3b). It was observed that the beat repeated at an interval of approximately
0.15 s.
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and (e) the time–frequency representation of the envelope calculated with a window length of 4 s at a
time interval of 0.5 s.

Figure 3c is the frequency spectrum of the singing bowl sound. The fundamental
frequency (marked ‘B’) that determines the pitch of the singing bowl sound was found
to be 482.61 Hz. This frequency corresponds to a B4 note in the musical scale. As seen
in Figure 3c, the singing bowl sound contains not only the fundamental frequency but
also additional spectral components. The spectral components were observed at 773.15 Hz,
1102.56 Hz, 1464.81 Hz and 1870.86 Hz, corresponding to the musical scales near G5, C#6,
F#6 and A#6, respectively. The number and magnitude of these spectral components
determine the tonal property of the singing bowl sound. In addition, as seen in box ‘B’ in
Figure 3c, an additional frequency component (relatively small but significant) appears
near the fundamental frequency (482.61 Hz). The minute frequency difference of 6.68 Hz
between them causes the beating phenomenon.

In order to calculate the frequency spectrum of the beat, we reconstructed its time
domain signal using a Hilbert transform, plotted in Figure 3b as the envelope of the singing
bowl sound. The envelope, or in other words, the beat signal, represents the rhythm in the
music at which the pitched singing bowl sound changes slowly with time. Figure 3d is the
frequency spectrum of the beat rhythm plotted in the frequency range of 0~50 Hz, used in
clinical brain waves. As shown in Figure 3d, the strongest beat was observed to occur at
6.68 Hz, while a pair of minor beats appeared at the either side from about 1 Hz to 15 Hz.
Note that the frequency of the strongest beat is located in the theta wave band (4~8 Hz),



Int. J. Environ. Res. Public Health 2023, 20, 6180 5 of 13

well observed in meditation. Figure 3e is the time–frequency representation of the beat
signal, showing the temporal variations in the multiple beat frequencies. The spectrogram
was calculated using a short time FFT with a window length of 4 s and a time resolution of
0.5 s. As expected, it is clearly seen that the strongest beat is shown at 6.68 Hz. Its loudness
was at a maximum at the beginning of playing the singing bowl (t = 0) and started to
decrease rapidly from 10 s to 30 s. Minor multiple beats are seen at the frequencies near
10 Hz, 13.3 Hz, 16.2 Hz and 36 Hz, disappearing within 10~20 s.

3.2. Synchronized Activation of Brain Waves at the Beat Frequency

Seven spectral bands were considered in the study, including the five clinical frequency
bands (delta: 0~4 Hz, theta: 4~8 Hz, alpha: 8~13 Hz, beta: 13~30 Hz and gamma: 30~50 Hz),
the entire frequency range (0~50 Hz) and the beat frequency (6.68 Hz). The mean and
standard error of the spectral magnitude of the brain waves recorded for the 17 individuals
are analyzed at the temporal middle of each 50 sec singing bowl sound (t = 25, 75, 125,
175, 225, 275, 325 and 375 s). The initial monitoring time, ti = 25 s, represents the temporal
middle of the 50 s with no sound, and the final time, tf = 375 s, is that after the last (sixth)
singing bowl sound. The spectral magnitude of the brain waves measured in F4 was
observed to be similar or slightly larger than those measured in F3. However, there was
no statistically significant difference observed between the measurement locations (F3
and F4) in all frequency bands. The ranges of the minimum (p = 0.075) to the maximum
(p = 0.973) p values are shown to be large enough to state that the location effects may not
be significant. Data collected at each monitoring time were checked for statistical normality
using the Shapiro–Wilk test.

The spectral magnitudes of each frequency band of brain waves are different to one
another in their initial value. This makes it difficult to compare their temporal changes
to one another. To remove the effect of the initial value difference, the magnitude of each
frequency band needs to be normalized to the initial value. In addition, the magnitude of
the measured brain waves varies from subject to subject. The spectral power of a particular
clinical frequency band is often expressed as a ratio (in %) to the total power of the overall
frequency range (0~50 Hz) to compensate for the differences in participants.

Figure 4 shows the temporal changes in the spectral power of the measured brain
waves, plotted every 50 s for which the singing bowl was repeatedly played. The mean and
standard error of the spectral magnitude of the brain waves recorded for the 17 individuals
were analyzed at the temporal middle of each 50 sec singing bowl sound (t = 25, 75, 125,
175, 225, 275, 325 and 375 s). The initial monitoring time, ti = 25 s, represents the temporal
middle of the 50 s with no sound before, and the final time, tf = 375 s, is that after the last
(sixth) singing bowl sound. In order to more effectively compare the temporal changes in
the magnitude of each frequency band of the brain wave, we averaged the values measured
from the two locations of F3 and F4. This unification was justified by the statistical finding
that the spectral magnitudes of every frequency band were not different between the
two locations for the entire experimental duration, as the maximum and the minimum
p values show in Appendix A Figure A1.
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A new parameter of the spectral magnitude of brain waves was introduced to ef-
fectively remove the effects of not only the initial value difference but also the subject
dependence. Let M(fb, t) be the spectral magnitude of a frequency band of the brain wave
at time t. The new parameter A(fb, t), introduced in the present study and defined in
Equation (1), is the magnitude of a frequency band of the brain wave normalized to its
initial value and to the magnitude of the overall frequency range.

A(fb, t)(in %) =
< M(fb, t)/M(fb, ti) >

< M(overall, t)/(M(overall, ti) >
∗ 100 (1)

where fb represents the frequency band, t is the time variable and ti stands for the initial
time, which is 25 s in the present study, as illustrated in Figure 4. The numerator of
the right-hand side of Equation (1) represents the temporal history of the magnitude of
each frequency band relative to its initial value, while the denominator is the temporal
magnitude of the overall frequency band relative to its initial value. A(fb, t) stands for the
rate of change in the spectral magnitude of each frequency band normalized to that of the
whole frequency range (0~50 Hz).
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Figure 4 shows A(fb, t) in %, i.e., the rate of change in the spectral magnitude of each
frequency band ((a) delta: 0~4 Hz, (b) theta: 4~8 Hz, (c) alpha: 8~13 Hz, (d) beta: 13~30 Hz,
(e) gamma: 30~50 Hz, (f) beat: 6.68 Hz), normalized to that of the whole frequency range
(0~50 Hz) and averaged with the data measured at the two locations of F3 and F4 for the 17
participants. The temporal changes were plotted at every 50 s for the time from ti = 25 s to
tf = 375 s, and the error bar represents the standard error. The data are provided in Table 1,
together with the p values resulting from the statistical test on each temporal change from
the initial value at t = ti. The p value (at t = tf) after the experiment is presented Figure 4,
and, if it is not the minimum value, the minimum is also provided at its time location.

Table 1. Temporal variations (in %) in the spectral band brain wave magnitudes relative to their
initial values (0~50 s), normalized to those of the overall frequency band and averaged the data
measured at the two positions (F3, F4) of the participants (n = 17) who heard the strongly beating
singing bowl sounds repeated six times at every 50 s for t = 50~350 s. (†: maximum change).

Time (s)

Delta Wave Theta Wave Beat
Frequency Alpha Wave Beta Wave Gamma Wave

Changes
in EEG

(%)
p

Changes
in EEG

(%)
p

Changes
in EEG

(%)
p

Changes
in EEG

(%)
p

Changes
in EEG

(%)
p

Changes
in EEG

(%)
p

Before
exp. 0~50 100 - 100 - 100 - 100 - 100 - 100 -

Experiment

50~100 93.52 0.014 103.16 0.176 163.90 0.006 103.69 0.137 98.48 0.248 87.99 0.000
100~150 100.09 0.985 108.57 0.015 144.40 0.160 97.69 0.411 97.54 0.280 85.18 0.000
150~200 100.37 0.933 106.85 0.037 227.66 0.006 97.57 0.533 99.16 0.579 85.53 0.000
200~250 102.71 0.641 108.09 0.031 199.67 0.032 95.47 0.275 98.78 0.586 84.10 0.000
250~300 109.62 0.220 116.16 0.003 251.98 † 0.021 87.40 0.003 95.19 0.067 85.65 0.006
300~350 117.95 0.029 114.34 0.004 182.19 0.001 89.07 0.010 95.09 0.062 81.86 † 0.000

After
exp. 350~400 135.18 † 0.001 117.07 † 0.002 157.06 0.049 85.28 † 0.005 93.75 † 0.012 90.41 0.047

As expected, the rate of change increased the most at the beat frequency with time
(Figure 4f). Among the clinical frequency bands, the increase rate was the largest in the
delta wave (135.18%, p = 0.001), followed by the theta wave (117.07%, p = 0.002). In
those two waves located in the low frequency range, the rate of change in the spectral
magnitude increased with time, whereas they decreased with time in the high frequency
range including alpha, beta and gamma waves. The tendency of the changes maintained
during the silent time after the last singing bowl sound, except for the gamma wave and
the beat frequency. This trend implies that the largest changes were observed after the last
singing bowl sound rather than when the participants heard the last singing bowl sound.
This is why the p value was at a minimum at t = 375 s rather than at t = 325 s (Figure 4a–d).
At the beat frequency, however, the largest increase in the spectral magnitude was observed
at the time when the participants heard the fifth singing bowl sound, just before the final
one. This can be understood as an extension of the preceding repeated pattern of the (large
and rapid) jump and (small and slow) fall, and it is expected to have a spectral magnitude
larger than the previous maximum if the participants hear an additional (seventh) singing
bowl sound after the last one.

Figure 5 compares the maximum rate of the relative changes in the spectral magnitude
of each spectral band (A(fb,t) in %), together with the frequency spectrum of the beat of the
singing bowl sound. The rate of the increase is predominant at the beat frequency, which
reaches 251.98% (p = 0.021) of its initial value at the time (t = 275 s) approaching the end
of the experiment. This implies that the brain waves are most effectively synchronized
at the beat frequency and activated by the singing bowl sound. Among the five clinical
EEG frequency bands, the delta wave increased the most to 135.18% (p = 0.001) of its initial
state, followed by the theta wave with a rise of 117.07% (p = 0.002). In contrast, the other
three spectral bands decreased after the experiment. The gamma wave was down to 81.86%
(p = 0.000), the alpha wave was down to 85.28% (p = 0.005) and the beta wave was down to
93.75% (p = 0.012) of their initial states.
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Figure 5. Comparison of the maximum rate of the relative change in spectral magnitude of each
spectral band (A(fb,t) in %), together with the frequency spectrum of the beat of the singing bowl
sound. The rate of increase is predominant at the beat frequency, which reaches 251.98% (p = 0.021) of
its initial value at the time (t = 275 s) approaching the end of the experiment. This implies that the
brain waves are most effectively synchronized at the beat frequency and activated by the singing
bowl sound. Among the five clinical EEG frequency bands, the delta wave increased the most to
135.18% (p = 0.001) of its initial state, followed by the theta wave, with a rise of 117.07% (p = 0.002). In
contrast, the other three spectral bands decreased after the experiment. The gamma wave was down
to 81.86% (p = 0.000), the alpha wave was down to 85.28% (p = 0.005) and the beta wave was down to
93.75% (p = 0.012) of its initial state.

4. Discussion

The singing bowl used in this study produces a sound that lasts for more than 50 s after
playing it once and has a strong beat at the frequency of 6.68 Hz. When the participants
were listening to the singing bowl sound, the spectral magnitudes of their brain waves
were shown to increase with time at low frequencies (≤8 Hz, delta and theta waves),
whereas they decreased with time at high frequencies (>8 Hz, alpha, beta and gamma
waves) (Figure 4). Among the five clinical spectral bands, the rate of increase was the
highest for the delta wave (135.18%, p = 0.001), followed by the theta wave (117.07%,
p = 0.002). Under the present experimental conditions, where the participants heard six
repeating singing bowl sounds for 300 s, the largest rate of increase (251.98%, p = 0.021) was
observed at the beat frequency of the singing bowl sound (Table 1). This result suggests
that, when the participants were listening to the singing bowl sound, their brain waves
were activated and effectively synchronized at the beat frequency.

The beat frequency of the singing bowl sound used in this study belongs to the theta
wave spectral band. Numerous studies have observed psychophysiological changes due
to the effects of meditation as an increase in theta waves [5–9,15–22]. The present finding
that the brain wave is synchronized and activated at the beat frequency located in the theta
wave may serve as an academic basis that a singing bowl sound can be used in meditation.
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In future studies, it would be of interest to consider beat frequencies located in the other
clinical spectral bands.

In the present study, in order to observe the response of brain waves to the singing
bowl sound, the temporal changes in EEG signals relative to those of the initial resting
state were observed. The normalized parameter A(fb,t) defined by Equation (1) is expected
to effectively remove subject-dependent effects. A conventional approach of comparing
the experimental group to the control may be unnecessary or inappropriate to study the
individual response to singing bowl sounds. This study monitors brain waves for the
limited time of 400 s from 50 s before the first singing bowl sound to 50 s after the last (sixth)
singing bowl sound. As shown in Figure 4a–d, the changes in brain waves were extended
even in silence after the last singing bowl sound. As discussed in Section 3.2 regarding the
brain wave activity at the beat frequency (Figure 4f), it is interesting to test what would
happen if the participants heard an additional (seventh) singing bowl sound. It is of interest
to see if the pattern of (large and rapid) jumps and (small and slow) falls would repeat
and if the spectral magnitude would increase compared to the present maximum value
observed at the fifth singing bowl sound. A future study is suggested to include temporal
information when the maximum rate of the increase in brain waves is achieved.

In previous studies on meditation and brain waves, delta waves were observed
to increase in the prefrontal cortex [23], as measured at the same location used in the
present study. Tei et al. (2009) compared the activity of delta waves using low-resolution
electromagnetic tomography (LORETA), where people either meditated (Qigong) or just
rested with their eyes closed (control group) [24]. In the frontal lobe of the subjects who
meditated, the delta waves were significantly different and stronger than those of the control
group. In the present study, delta waves were shown to slightly decrease immediately after
the first singing bowl sound, followed by a continuous increase to the highest increase
rate (135.18%) among the five clinical brain waves. It is of interest to note that, even after
the experiment ended up, the delta waves continued to increase at an enhanced rate. The
participants laid down on a bed-chair and had their eyes closed, listening to the singing
bowl sound. Such relaxed conditions may easily make the participants feel sleepy and five
minutes would be sufficient for some of the participants to fall asleep. In fact, a few of them
were found to snore in their sleep. Once they went into stage 1 sleep, delta waves were
expected to keep increasing with time. Even after listening to the last singing bowl sound
for 50 s, the participants kept laying down on the bed chair and, with no singing bowl
sounds, additional EEG signals were measured for 50 s, which were expected to contain
more delta waves.

A reduction in alpha waves is known to be a common phenomenon in the entire range
of relaxation therapy [25]. Numerous prior studies have reported a decrease in the alpha
waves in yoga or transcendental meditation [7,8,18,21,26,27]. Various studies have also
reported a decrease in alpha waves by approximately 50% due to an increase in theta waves
in the first stage of sleep [25,28]. In the present study, the spectral magnitudes of alpha
waves were smaller than those at rest before the experiment, and decreased steadily as the
participants started to hear the singing bowl sound, reaching 85.28% of the initial states at
the end of the experiment. The observed continuous decrease with time in alpha waves is
attributed to the effect of the singing bowl sound that may induce the participants to relax
or meditate.

It appears that beta waves did not change over time with significance (Figures 4 and 5),
but they were found to decrease by 6.25% (p = 0.012) at the end of the experiment. A number
of studies have shown a decrease in beta waves during meditation [29–31]. In particular,
beta wave decreases were reported to be associated with a relaxation response or Zen
meditation [29–31]. A meditation process was not considered in the present experiment,
but the participants lay down on a chair-bed and were listening to the singing bowl sound.
The observed decrease in beta waves is speculated to result from the relaxed resting states
into which the participants gradually slipped during the experimental period.
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The gamma wave activity during meditation is controversial. Some studies have
shown a decrease in gamma waves during meditation [23], while the other studies reported
an increase in gamma waves [32–34]. The present study shows that the gamma waves
continuously decreased by up to about 12~18% when the participants were listening to the
singing bowl sound. However, gamma waves were observed to rise again, approaching
the initial state, as the participants stopped hearing the sound. It should be noted that
the present study employed a singing bowl sound whose beat frequency is located in the
theta wave region and, in future studies, it would be of interest to look at the gamma
wave response to a singing bowl sound whose beat frequency is located in the gamma
wave region.

The present study was based on brain waves measured at limited locations (F3 and F4).
The measurement locations of F3 and F4 are known to be sensitive to brain activity during
meditation [5,8,10,12–14,35–37], and they are reasonable locations for the singing bowl
meditation of the present study. Further studies with measurements at various positions
are required to expand and generalize the observed synchronized activation of the brain
waves. In addition, the present results were obtained from a relatively small number of
participants (n = 17). Fortunately, Shapiro–Wilk tests confirmed the normal distributions of
the measured data, which ensured the reliability of the statistical tests performed in the
present study.

The beat of the singing bowl sound is determined by the size, material and structure of
the instrument. The various singing bowls used in meditation are classified in accordance
with the fundamental frequencies of their sounds as musical key tones. The fundamental
frequency of the singing bowl used in the present experiment was approximately 480 Hz,
which musically corresponds to B4. As shown in Figure 3c, the singing bowl sound used in
this study was composed of multiple harmonic components at 773.15 (G5), 1102.56 (C#6),
1464.81 (F#6) and 1870.86 Hz (A#6). The tonal property of the singing bowl is not affected
by the manner of playing and the sound volume. Nevertheless, the sound intensity and
tonal properties are important psycho-acoustical parameters [38] which are expected to
affect the brain waves independently. In the present experiment, an arbitrary single singing
bowl was chosen, and the playing method and the sound intensity were not precisely
controlled. A follow-up study is suggested to explore the interesting aspects of how the
synchronized activation of the brain waves is related to playing techniques and the intensity
of the beating sound for singing bowls with various key tones.

5. Conclusions

The beat frequency of the singing bowl sound used in this study was determined
to belong to the theta wave region, which is known to increase during meditation. In
this experiment, the brain waves of the participants who heard the singing bowl sound
were observed to be activated in a few minutes with its strong beat rhythm. This study
presents experimental evidence that the singing bowl sound likely activates brain waves
that are effectively synchronized with the beating rhythm. The present findings under-
pin that the strongly beating singing bowl sound facilitates meditation, relaxation and
psychological stability.
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Figure A1. Temporal variations in the magnitudes of each spectral band of the EEG signals meas-
ured at F3 and F4 of the 17 participants plotted at every 50 s: (a) delta (0~4 Hz), (b) theta (4~8 Hz), 
(c) alpha (8~13 Hz), (d) beta (13~30 Hz), (e) gamma (30~50 Hz), (f) beat (6.68 Hz), and (g) overall 
(0~50 Hz). Note that the ranges of p values are presented for the statistical test between the meas-
urement locations (F3 and F4), and the error bars represent the standard errors. 
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