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Abstract: The CO2 emissions from marine fisheries have a significant impact on marine ecology,
despite generally being overlooked in studies on global climate change. Few studies have estimated
the carbon emissions from marine fisheries while taking into account all pertinent sectors. This study
evaluated marine fisheries’ CO2 emissions based on three sectors: marine fishing, mariculture, and
the marine aquatic product processing industry. Kernel density estimation and the spatial Durbin
model were used to investigate the spatial and temporal characteristics and the key socioeconomic
drivers of the CO2 emissions from marine fisheries in 11 coastal provinces of China from 2005 to 2020.
The results are as follows: (1) marine fishing is the sector that produces the most CO2 emissions;
trawling operations generate more CO2 than all other modes of operation combined; (2) China’s
marine fisheries’ CO2 emissions show a rising, then declining, trend, with significant differences
in coastal provinces; (3) the development of the marine fishery economy and trade have a positive
driving effect on CO2 emissions, the expansion of the tertiary industry does not decrease CO2, the
technical advancement and income growth of fishermen are negatively related to carbon emissions,
and the effect of environmental regulation has failed to pass the significance test; (4) the carbon
emissions of marine fisheries have significant spatial spillover effects.

Keywords: marine fisheries; CO2 emissions; Kernel density estimation; spatial Durbin model; spatial
spillover effect

1. Introduction

Climate change poses several unpredictable challenges to marine ecosystems; ac-
cording to the World Meteorological Organization’s State of the Global Climate 2021
report, the Earth’s greenhouse gases have reached an all-time high, and four key climate
change indicators—greenhouse gas concentration, sea level rise, ocean heat, and ocean
acidification—have all hit new records. Climate change has become a major challenge
to human development and has been dubbed “the largest market failure the world has
ever seen”. Maintaining the increase in global temperature within 1.5 ◦C and lowering
global greenhouse gas emissions have become crucial concerns for all nations, putting
high-carbon countries such as China under enormous pressure [1,2]. In broad industry
decarbonization studies, marine fisheries’ carbon emissions are often excluded from global
GHG assessments. The fact is, however, that the ocean can no longer receive any more
CO2 [3]. Global marine fisheries’ carbon emissions have irreversible direct effects on the
marine ecosystem [4], including ocean acidification [5,6], sea level rise [7], and biodiversity
loss [8–11], while also jeopardizing food security, human health, and other socioeconomic
concerns [12–15]. This also poses a greater challenge to the allocation of marine resources
among countries and regions, as sudden increases or decreases in catches may trigger
conflicts between areas [16,17]. In summary, CO2 can damage natural systems by altering
ocean-derived resources, which in turn affects human well-being and economic order [18].
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Large amounts of CO2 are produced not only by the marine fishing sector, but also
the mariculture and marine aquatic product processing industries. China’s coastal areas
have long been engaged in high-energy marine activities. China is responsible for 15% of
all marine fishing activities worldwide and has the largest mariculture sector in the world.
Additionally, China is the largest importer and exporter of fishery goods. China imports
fishery products not only for local consumption, but also as raw materials to be processed
and re-exported. Consequently, the mariculture and marine product processing industries
contribute substantial carbon emissions as well.

As the international framework for climate policy emphasizes the concept of “shared
but differentiated duties,” and China is a big producer and emitter of carbon from marine
fisheries, it must aggressively begin to lower emissions in this sector [19]. China has always
participated in and contributed to the global response to climate change, and several
sectors are exerting substantial efforts to promote carbon reduction goals [20,21]. However,
the marine fishery industry has not yet been incorporated into China’s main emission
reduction inventory and carbon trading programs. In addition, there are no universal
accounting standards for carbon emissions from marine fisheries, nor is there any systematic
research on CO2 emission sources, drivers, or trends. Consequently, the trajectory of carbon
emissions from China’s marine fishery fuels must be rigorously monitored, and an in-depth
study on the influencing elements must be conducted to investigate a development path of
decarbonization for marine fisheries in China.

The contributions of this paper are as follows. We first propose a CO2 accounting
paradigm that can more effectively address substantial measurement errors and the in-
sufficient sectoral coverage of marine fisheries in prior research. Following that, kernel
density analysis is used to clarify the dynamic evolution of CO2. Subsequently, on the basis
of coastal province panel data, a spatial Durbin model (SDM) is used to analyze the key
factors affecting changes in carbon emissions from marine fisheries in China and to explore
whether there is a spatial spillover effect. The findings provide crucial inspiration and a
scientific foundation for designing policies to effectively restrict China’s marine fisheries’
CO2 emissions increase.

2. Literature Review

The oceans, as climate integrators, have absorbed 28% of the global CO2 emissions
since 1750, offsetting most of the atmospheric warming [3]. Based on historical catches
and fuel usage, Mariani, G. et al. [22] estimate that marine fisheries have released at least
730 million tons of CO2 into the atmosphere since 1950. Ferrer, E. [23] points out that the
global emissions of marine fishing have increased by 28% (an average of 21% per ton of
catch) from 1990 to 2011, but production has barely increased in parallel. Parker, R. [24]
calculated the total global CO2 emissions from the industrial fishing sector in his Ph.D.
thesis using a database of fuel and energy usage including 1126 records of global catches.
According to the study, fishing activities consumed 40 billion liters of fuel in 2011 and
released 168 million tons of CO2 equivalent into the environment [25]. Greer, K. et al. [26]
studied the global CO2 emissions from marine fisheries using the Global Marine Fishing
Effort Database, which provides the CO2 emissions and carbon intensity (CO2 emission
per unit catch) of global marine fisheries from 1950 to 2016 and found that CO2 industrial
fisheries released 39 million tons of CO2 in 1950, with this figure increasing to 159 million
tons in 2016, much lower values than those found by Parker. The reason for this discrepancy
is mainly that both studies included a significant number of unreported data and utilized
different approaches for handling missing values. However, both Greer’s and Parker’s
efforts reveal that China’s marine fisheries produce the highest CO2 emissions.

China’s marine fisheries have the highest carbon intensity and overall volume, ac-
counting for almost one-third of global CO2 emissions from marine fisheries and exceeding
those of all European and American fisheries combined [27]. Furthermore, China’s marine
fisheries are extremely vulnerable to climate change. Robert noted in his analysis of marine
fisheries in 147 countries, via measuring their climate change vulnerability index, that
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China ranked 8th and possessed high vulnerability. Nearly all of the top 10 most vulnerable
countries had a low carbon emission intensity, but only China showed both high carbon
intensity and high vulnerability [28]. Studies conducted by Chinese scientists mostly focus
on estimating energy consumption from fishing vessel operations. In 2007 and 2008, the
CO2 emissions from fossil fuel combustion by marine fishing vessels in China totaled
20.1311 and 24.706 million tons, respectively [29,30]. In a more recent study, Wu, J. and Li,
B. [31] calculated that CO2 emissions were primarily caused by indirect emissions, which is
perhaps a debatable result. Regardless of the research cited above, China has long been the
largest source of carbon emissions in the world’s marine fisheries; this also indicates that
China has a great deal of room to cut emissions [32].

From the perspective of influencing factors, CO2 emissions from marine fisheries
are directly tied to fuel consumption, and fuel consumption by fishing vessels has been
demonstrated to be an appropriate indicator for measuring CO2 emissions from fishing
activities [33–35]. Fuel is needed to propel the vessel, handle the catch on board and
freeze it, and provide electricity for the fishermen on board [36]. Other upstream fishing
processes, such as vessel construction and maintenance, gear manufacturing, and bait
supply, as well as downstream post-landing activities such as processing, packing, and
transportation, all consume energy and produce emissions [37]. Concomitantly, fishing
vessel fuel continues to be the most significant source of carbon emissions in the seafood
supply chain, accounting for approximately 96% of the overall process carbon footprint [38].
Meanwhile, fuel accounts for the second highest expense after labor.

Carbon emissions from marine fisheries are also a result of a variety of economic deci-
sions. In the context of fuel subsidies and growing fuel prices, academics are increasingly
focusing on the control of fishery activities [39–41]. Offsetting fuel costs is the primary
goal of many governments around the world when implementing fishery subsidies, and
government intervention in this area is also very strong in developed countries [42]. By
evaluating the association between energy use and catch rates, quotas, and oil prices, Schau,
E. et al. [43] discovered a long-term negative correlation between fish fuel consumption and
annual catch rates as well as oil prices. Furthermore, the different marine fishery operation
modes of fishing vessels produce varying amounts of carbon emissions, with trawling
being the most carbon-intensive [44,45].

In summary, marine fisheries contribute various sources of emissions, and the CO2
emissions from this system comprise not only the use of fossil fuels by marine fishing boats,
but also those from other industrial operations. However, research on marine fisheries is
currently in the early stages, and the pertinent study findings are still ambiguous. Studies
on carbon emissions from marine fisheries are mostly concentrated on the subject of
capture fisheries, with the mariculture and marine product processing sectors receiving less
attention. In terms of study methodologies, the majority of earlier analyses of the variables
impacting CO2 in marine fisheries have focused on energy use, economic development,
and industrial size, which may present independent variable multiple linear problems.
In comparison with previous studies, this paper develops a more detailed method for
calculating the CO2 produced by marine fisheries by considering all sectors and uses a
spatial econometric model to systematically examine the driving effects of geographic,
social, economic, and policy factors on CO2.

3. Methodology and Data
3.1. Calculation Framework and Data

Accounting for carbon emissions is crucial for carbon reduction activities, and only
by quantifying the carbon emission levels of all stakeholders can collaborative carbon
reduction measures be implemented in coastal provinces and diverse marine fisheries
sectors. The framework for measuring CO2 emissions from marine fisheries is as follows:

1. CO2 emissions from the marine fishing sector mainly come from the consumption of
diesel fuel by capture fishing vessels;
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2. CO2 emissions from the mariculture sector come from two sources: first, the consump-
tion of diesel fuel by mariculture fishing vessels, and second, the consumption of
electricity by oxygen supply and electric pumps in mariculture ponds and industrial
farming;

3. CO2 emissions from the marine aquatic product processing sector mainly come from
the electricity consumed by cold storage and processing. The formula is as follows:

TC f ishery= Cm f+Cmc+Cmp (1)

Cm f= ∑(Ediesel_m f
itp · f ·r·c·o·44/12) (2)

Ediesel_m f
ipt = ∑6

j=1(Epower_m f
it ·δm f

p ) (3)

Cmc= ∑(Ediesel_mc
it ·δmc· f ·r·c·o·44/12)+∑(Eelectric_mc

it ·θi) (4)

Cmp= ∑(Eelectric_cold_store
it ·θi)+∑(Eelectric_process

it ·θi) (5)

Table 1 shows the meaning of the symbols in Equations (1)–(5). The methods for the
calculation of CO2 emissions from the marine aquatic product processing industry were
obtained from reference [46].The coefficients used to calculate the carbon emissions of fish-
ing vessels are from the “2006 IPCC Guidelines for National Greenhouse Gas Inventories”;
δ

m f
j was derived from the “Reference Standard for Measurement of Oil Consumption for

China’s Motor Fishing Vessel Oil Price Subsidy”; θi was obtained from the “CO2 Emission
Accounting Methodology and Data Verification Table” issued by the Climate Department
of the Chinese Ministry of Ecology and Environment. Other original data for this article
were obtained from the China Fishery Statistical Yearbook, Statistical Yearbook of Import
and Export Trade of Aquatic Products in China, China Marine Economy Yearbook, and the
China Energy Yearbook. The interpolation method and GDP growth rate inversion method
were mostly used to supplement missing data.

Figure 1 shows the comparison between the share of gross marine fisheries product to
coastal GDP and the share of marine fisheries CO2 to total CO2 in coastal provinces. The
average value for the contribution of the marine fishery economy to the coastal GDP is
0.84% and holds a decreasing trend. However, the average ratio of CO2 emissions from
marine fisheries to total emissions is 1.53%, which is significantly higher than the economic
share. That suggests that China’s marine fisheries sector is in extensive growth, and the
negative externalities are highly apparent. Marine fisheries do not produce a significant
amount of CO2 when compared to industrial activity. However, given that diesel engines
will continue to be the primary source of propulsion for fishing boats for a prolonged
period, as well as the high cost and resistance of improved fuel, these make the decoupling
of carbon emissions a challenge. The CO2 issue may possibly pose a significant obstacle to
the economic growth of marine fisheries in China; thus, a thorough investigation of CO2
variations and drivers of marine fisheries CO2 is required.

3.2. Variable Description

Carbon emissions are a byproduct of general economic activity; hence, carbon emis-
sions from marine fisheries’ fuel consumption are a result of various economic decisions.
Measuring, monitoring, managing, and mitigating carbon emissions from fisheries neces-
sitate a deeper understanding of the drivers of carbon emissions and the socioeconomic
uncertainties encountered in the carbon reduction process in order to manage carbon emis-
sions from an economy at the macro level. The independent variables selected for this
paper are shown in Table 2.
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Table 1. The meaning of the symbols in the formula.

Symbol Meaning Symbol Meaning

TC f ishery
Total carbon emissions of marine
fisheries i Coastal provinces of China

Cm f Carbon emissions from marine fishing t Study period from 2005 to 2020

Cmc Carbon emissions from mariculture r Net calorific value of diesel fuel

Cmp
Carbon emissions from marine aquatic
products processing f Conversion factor of diesel fuel to standard

coal

Ediesel_m f
ijt

Total energy (diesel) consumed by
marine fishing θi

Coefficient of electric power conversion to
CO2 of each province

Epower_m f
it

Total power of marine fishing vessels o Oxidation rate of diesel combustion

Ediesel_mc
it

Total energy (diesel) consumed by
mariculture fishing vessels c Carbon content per unit calorific value of

diesel fuel

Eelectric_process
it

Electricity consumption during seafood
processing δmc Energy consumption coefficient of marine

aquaculture fishing vessel operation

Eelectric_cold_store
it

Electricity consumption during seafood
freezing δ

m f
j

Energy consumption coefficient of different
operation modes of marine fishing vessels

Eelectric_mc
it

Power consumption of oxygen supply
and electric pump during mariculture
ponds and industrial farming.

p
Operation mode of marine fishing vessels:
trawling, purse seining, gill netting, spread
netting, fishing gear, and others
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It is worth emphasizing that the explained variable is denoted by lnPCO2, since
the idea of per capita carbon emissions is more representative of socioeconomic features
and equity [47]. The “environmental regulation” (lnPOL) variable was selected from the
system of controlling the total number and power of marine fishing vessels in China.
China has been implementing this approach since 1987, in response to the poor ecological
effects of offshore fishing. However, 35 years have since passed, and the number and
power of fishing vessels remain uncontrollably high. This article employs an econometric
approach to investigate whether the policy has contributed to the development of the
marine environment.

https://www.ceads.net.cn
https://www.ceads.net.cn
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Table 2. Explanation of variables.

Variable Name Calculation Process

Dependent variable Carbon emissions per capita of marine
fisheries (lnPCO2)

Total carbon emissions from marine fisheries
divided by marine fishery population

Independent variable

Marine fishery economic development
(lnGMFP) Gross marine fishery product

Marine fishery industry structure
optimization (lnINDUS)

Marine fishery tertiary industry divided by
secondary industry

Marine fishery technology innovation
(lnTECH)

Internal expenditure of R&D funds for marine
fishery science and technology promotion

Increase in fishermen’s income (lnPCI) Fishermen’s net income per capita

Deepening of seafood trade (lnIMEX) Total import and export of marine fishery

Environmental regulation (lnPOL) Proportion of “ reduced vessels and reduced
power” fishing vessels to total fishing vessels

3.3. Model Settings
3.3.1. Kernel Density Estimation

In order to formulate effective emission strategies for different coastal provinces,
we need to sufficiently investigate the dynamic evolutionary characteristics of marine
fisheries’ CO2 emissions. The Kernel density estimation method was used to estimate the
dynamic evolution trend. As a nonparametric estimation method, it is able to describe
the distribution location, distribution pattern, polarization trend, and ductility of random
variables with continuous density curves, and then estimate the probability density of
random variables under a limited sample [48,49]. In this paper, the more commonly used
Gaussian kernel function is adopted for estimation [50,51], and the expression is as follows:

f̂h(x)=
1
n ∑n

i=1 Kn(x− xi)=
1

nh ∑n
i=1 K

(
x− xi

h

)
(6)

k(x)=
1√
2π

exp
(
− x2

2

)
(7)

where f (x) is the density function, xi denotes the independent identically distributed
observations, k(·) represents the Gaussian kernel function, and h is the bandwidth.

3.3.2. Spatial Econometric Model

Considering that carbon dioxide will spread to surrounding areas with natural factors,
such as atmospheric conditions, as well as socioeconomic factors, such as industrial struc-
ture, market trade, and technology spillovers, there will be a certain “convergence” effect
on the carbon emission levels of neighboring provinces. The spatial effect of carbon emis-
sions will be investigated in this article utilizing spatial econometric approaches. A spatial
autocorrelation test should be performed prior to building the spatial econometric model.
In this paper, Moran’s I is used to examine the spatial correlation of carbon emissions from
marine fisheries among provinces with the following equation:

Moran′s I =
∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)
∑n

i=1(xi − x)2 (8)
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where xi is the observed value of per capita carbon emissions from marine fisheries in each
province, and wij is the spatial weight. In this paper, the spatial weight matrix is adopted
as the spatial geo-economic weight matrix, the formula for which is as follows:

Wij=


∣∣∣Yi−Yj

∣∣∣
d2

ij
if i 6= j

0 if i = j
(9)

Yi, Yj denote the difference in GDP per capita of region i relative to region j, and
the distance dij between the two provinces is obtained from the latitude and longitude
coordinates of the geographic centers of provinces i and j.

Anselin, L. [52] proposed two spatial autocorrelation models in 1988, the spatial lag
model (SLM) and the spatial error model (SEM). The SLM model focuses on whether there
is a diffusion of each variable in the same region, and the SEM model mainly studies the
effect of the error of the dependent variable in the neighboring region on the regional
observations. In 2009, Lesage, J. et al. [53] constructed a spatial Durbin model (SDM) based
on Anselin’s study. The transformation among models is shown in Figure 2. In particular,
the SDM contains both dependent and explanatory variable lagged terms, which could
help reduce bias due to omitted variables in the empirical analysis.
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The spatial error model (SEM), spatial lag model (SLM), and spatial Durbin model
(SDM) are established in this paper, Equations (10)–(12). The optimal models were deter-
mined based on the LR, LM, and WALD tests.

lnPCO2it= β1lnGMFPit+β2lnINDUSit+β3lnTECHit+β4lnENERGYit+β5lnIMEXit+β6lnPOLit+µi+γt+εit
εit= λWiεt+ξit

(10)

lnPCO2it= ρWiyt + β1lnGMFPit+β2lnINDUSit+β3lnTECHit+β4lnENERGYit+β5lnIMEXit+β6lnPOLit
+µi+γt+εit

(11)

lnPCO2it= ρWiyt+β1lnGMFPit+β2lnINDUSit+β3lnTECHit+β4lnENERGYit+
β5lnIMEXit+β6lnPOLit+WiXtδ+µi+γt+εit

(12)

In this formula, lnPCO2it is the dependent variable, c is the constant term, β1,2···6
denotes the parameter to be estimated for the independent variable, ρ is the spatial autore-
gressive coefficient, and ξit is the idiosyncratic component, which can also be considered as
the interference. δ is the spatial lag coefficient of the explanatory variables, µi, γt denote
spatial and time effects, and εit is the residual term. WiXt represents the spatial spillover
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effect; that is, the influence of the independent variable of the neighboring region on the
dependent variable of the local region.

4. Results and Discussion
4.1. Spatial and Temporal Characteristics of CO2 Emissions from Marine Fisheries
4.1.1. CO2 Levels and Time-Varying Characteristics

The total CO2 emissions in 2020 amounted to 38.81 million tons, which is 29% greater
than the amount produced in 2005, and the carbon emissions from marine fisheries reached
a peak in 2015, followed by a slight decline. The average amount of CO2 emissions in the
study period was 36.47 million tons, which is higher than the value given by reference [24]
but lower than [26]. The cumulative carbon emissions from marine fisheries in the three
studied sectors from 2005 to 2020 are visualized in Figure 3. The marine fishing sector was
found to be the main contributor of carbon emissions, accounting for 72% of total emissions,
which is contrary to results in the literature [31]. Meanwhile, the share of CO2 emissions
from the mariculture and marine aquatic product processing sectors is growing. In 2020,
compared to 2005, mariculture increased by 141.23%, with the largest increase seen in the
provinces of Guangdong, and Tianjin was the only province with a downward trend. The
marine aquatic product processing sector is also continuously growing, with an increase of
45.34%. The largest CO2 emissions and increase were seen in Shandong Province, followed
by Liaoning and other provinces with relatively small changes.
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Figure 4 shows the CO2 emissions of the marine fishing industry under different
operation modes. Trawling produced the largest amount of CO2, accounting for 52.37% of
emissions from the marine fishing industry, which is also consistent with the studies of [43].
Trawling and gillnet use have a significant negative ecological impact on marine fisheries.
Trawling has a low goal catch rate, destroys biodiversity, and mobilizes centuries’ worth
of carbon emissions from the seafloor, which contribute to climate change. Since China
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entered the 13th Five-Year Plan, on the one hand China’s marine fisheries have begun to
pay attention to green development, and on the other hand trawling has mainly been used
to catch benthic organisms such as shrimp and crab, and seawater shrimp and crab farming
have gradually replaced marine fishing as the main source of seawater products, so there
was a downward trend after 2015. Gillnetting accounts for approximately 26.37% of the
total CO2 produced by the marine fishing industry, with an overall increasing trend, with
61.28% in 2016 compared to 2005, followed by a decreasing trend year by year.
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Figure 5 presents the kernel density of total carbon emissions from marine fisheries
for 2005–2020. From the position of the curve, the center of the kernel density curve shifts
first to the right and then to the left, indicating a gradual increase in marine fisheries’ CO2
emissions over the study period, followed by a decrease. In respect to the extension of
the curve, the curves exhibit an obvious skewed distribution and multimodal distribution,
which is indicative of the uneven development of carbon emissions from marine fisheries
and an apparent polarization feature. Additionally, the kernel density corresponding to
the first wave peak is higher than the subsequent waves, indicating that the proportion of
provinces with fewer carbon emissions was greater than the proportion of provinces with
higher emission levels during this period. The Kernel density curve changed from being
“Sharp and narrow” to being “Flat and wide,” suggesting that the general gap between
coastal provinces tended to narrow from 2005 to 2013. After that, it gradually widened.

4.1.2. Spatial Variability Characteristics

Marine fisheries’ CO2 emissions were classified into five classes based on the natural
breakpoint method to explore the spatial pattern characteristics of China (Figure 6). It can
be seen that the CO2 emissions are unevenly distributed throughout the provinces in terms
of regional distribution, there is some spatial variation, and the economically developed
provinces present worse patterns than less developed ones. In 2005, China’s marine fisheries
remained at the level of the unilateral pursuit of economic expansion, which led to a high
number of energy-intensive fishing boats releasing significant quantities of greenhouse
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gases. Carbon emissions decreased in Hebei and Guangxi in 2012, but continued to grow
in other regions; however, until 2020 Zhejiang Province had the greatest CO2 emissions
from 2005 to 2020 due to the consistently highest inshore fishing intensity and productivity.
The main operation methods of Zhejiang’s marine fishing industry are carbon-intensive
trawling and gillnetting, and trawlers remained popular, all of which contribute to the
long-term high carbon status of marine fisheries.
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4.2. Test Results
4.2.1. Autocorrelation Test Results

Figure 7 depicts the global autocorrelation coefficients, and it can be seen that the
p-values for the vast majority of years are positive and pass the 0.05 significance level test,
indicating a positive spatial correlation of carbon emissions among coastal provinces.
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4.2.2. The LM, LR, and WALD Tests

After passing the autocorrelation test, the LM test was used to determine whether an
OLS model or a spatial econometric model should be used. According to the results of the
LM test, the p-values are all significant at the 1% level, so the OLS model should be rejected
and the spatial econometric model should be chosen; we assumed that the SDM in the
spatial econometric model was the optimal model for the validation and analysis of spatial
effects, and then we utilized the LR test to evaluate if the SDM could degenerate into the
SEM or SLM. The results of the LR test are shown in Table 3. We can reject the original
hypothesis, since the test findings are significant at the 1% level, which indicates that the
SDM will not degenerate into the SEM or SLM. Therefore, the SDM was finally chosen to
study the spatial effects of carbon emissions from marine fisheries in China.

Table 3. The LM, LR, and WALD test results.

Test Method Statistics p-Value

LM test

Spatial error

Moran’s I 2.09 0.037

Robust LM 16.217 0.000

Spatial lag

Robust LM 22.666 0.000

LR test

SAR nested within SDM

LR chi2(6) 19.92 0.0029

SEM nested within SDM

LR chi2(6) 15.99 0.0138

WALD test
SAR chi2(6) 21.13 0.0017

SEM chi2(6) 16.46 0.0115
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4.3. Estimation Results
4.3.1. Spatial Measurement Results

This study used the spatial fixed effect model to test the impact of socioeconomic
variables on carbon emissions from marine fisheries. Considering that the SDM can be
expanded into a province fixed effect (Column 1 in Table 4), time fixed effect (Column 2
in Table 4), and double fixed effect (Column 3 in Table 4), the regression was conducted
separately, and the double fixed effect with the largest R-squared was selected as the
final model.

Table 4. Estimated results and robustness tests.

lnPCO2 (1) (2) (3)
Robustness Tests

(4) WDD
ij (5) WGDP

ij (6) Winsorize

lnGMFP 0.115 ** −0.123 *** 0.121 ** 0.131 ** 0.0358 0.116 **
(0.0528) (0.0206) (0.0497) (0.0548) (0.0267) (0.0505)

lnINDUS 0.138 ** 0.121 0.128 * 0.124 * 0.0598 0.123 *
(0.0657) (0.104) (0.0656) (0.0683) (0.0787) (0.0670)

lnPIC −0.351 *** 0.289 * −0.430 *** −0.463 *** −0.469 *** −0.423 ***
(0.109) (0.155) (0.114) (0.117) (0.116) (0.120)

lnTECH −0.0335 *** 0.0514 *** −0.0261 ** −0.0246 ** −0.0418 *** −0.0250 **
(0.0116) (0.0140) (0.0124) (0.0120) (0.0130) (0.0125)

lnPOL −0.103 −0.998 *** −0.0240 −0.641 * −0.0244 −0.0298
(0.328) (0.361) (0.330) (0.332) (0.329) (0.336)

lnIMEX 0.0653 * 0.0636 ** 0.108 *** 0.0612 0.0731 ** 0.103 ***
(0.0355) (0.0319) (0.0355) (0.0396) (0.0347) (0.0360)

W × lnGMFP −0.0185 −0.394 *** −0.0131 0.206 −0.172 *** −0.0261
(0.121) (0.103) (0.138) (0.131) (0.0649) (0.143)

W × lnINDUS 0.323 *** 0.195 0.256 * 0.193 0.133 0.266 *
(0.0979) (0.199) (0.147) (0.166) (0.194) (0.149)

W × lnENERGY 0.533 *** 2.864 *** −0.0919 0.137 −0.272 −0.0227
(0.183) (0.314) (0.324) (0.286) (0.392) (0.344)

W × lnTECH −0.00504 −0.0246 −0.00506 0.0268 −0.0193 −0.00440
(0.0206) (0.0349) (0.0343) (0.0319) (0.0368) (0.0347)

W × lnPOL 0.206 −2.170 *** 0.126 −2.087 *** 0.834 0.123
(0.506) (0.746) (0.605) (0.711) (0.697) (0.616)

W × lnimex 0.129 −0.301 *** 0.366 *** 0.168 * 0.361 *** 0.346 ***
(0.0925) (0.111) (0.100) (0.0859) (0.119) (0.101)

ρ −0.353 *** −0.00680 −0.536 *** −0.516 *** −0.420 *** −0.526 ***
(0.109) (0.106) (0.107) (0.104) (0.133) (0.107)

Province effect Yes No Yes Yes Yes Yes
Year effect No Yes Yes Yes Yes Yes
R-squared 0.209 0.302 0.539 0.2218 0.035 0.536

Note: Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

The regression coefficients of lnGMFP and lnIMEX were all significantly positive,
which indicates that the growth of the marine fishery economy and the expansion of
seafood trade would increase CO2 emissions. The demand for economic growth and export
earnings motivates fishery enterprises to scale up production; furthermore, the expansion
of the fishery industry could lead to changes in the life activities and production of fish
and other marine animals, resulting in a continuous increase in CO2. In contrast to the
majority of studies, the coefficient for the optimization of industrial structures is also
significantly positive at the 10% level, revealing that the increase in the tertiary sector of



Int. J. Environ. Res. Public Health 2023, 20, 883 13 of 17

the marine fishery industry does not reduce CO2 emissions and that the general marine
fishery industry in China remains resource-intensive.

Technological innovation and an increase in the net income of fishermen can signifi-
cantly reduce CO2 emissions. Increased internal spending on R&D has fostered scientific
fishing and farming developments, as well as the emergence and application of low-carbon
and environmentally friendly technologies. As opposed to most econometric estimates, the
coefficient of the fishermen’s net income variable is negative, which could be explained by
the decreasing proportion of household income in the net income of Chinese fishermen
and the gradual increase in net property income, which reduces the incidence of carbon
emission production activities. It is noteworthy that lnPOL failed the statistical significance
test, suggesting that China’s “ fishing vessels reduction and power reduction” policy has
had no significant impact on the environment.

4.3.2. Robustness Tests

In considering the fact that the regression results are sensitive to the selection of
spatial weights, this paper verifies the robustness of the conclusions using the two other
spatial weight matrices. One is the economic spatial weight matrix, where the non-diagonal
elements of the matrix are the inverse of the absolute value of the difference between the
real GDP per capita of the two regions, and the diagonal elements are zero, for which the
formula is:

WGDP
ij =


1∣∣∣Yi−Yj

∣∣∣ if i 6= j

0 if i = j
(13)

The other is the spatial geographic distance weight matrix, which is constructed based
on the geographic distance between regions with the following equation:

WDD
ij =

{ 1
d2

ij
if i 6= j

0 if i = j
(14)

It should be noted that the spatial weight matrices included in the empirical analysis
are all row-standardized to eliminate the effect of measurement units. When the aforemen-
tioned two spatial weight matrices are replaced, the findings suggest that spatial correlation
still exists between provinces (as shown in columns 4 and 5 of Table 4), and both of them
pass the LM, LR, and WALD tests at a 1% level, although the R-squared is relatively small.

Another commonly used robustness test is Winsorizing: in a Winsorized estimator,
the extreme values are instead replaced by certain percentiles [54,55]; we subject all the
variables to a top and bottom 1% tail shrinkage. As can be observed in column 6 of Table 4,
the only difference between the robustness test and the baseline regression findings is the
magnitude of the coefficients; the directions of effect and significance are identical.

4.3.3. Spatial Spillover Effect Analysis

The spatial econometric model can show the spatial correlation characteristics among
regions, but the regression results of the SDM do not fully reflect the effect of the explanatory
variables on the explained variables, and changes in the independent variables not only
affect the dependent variables in the region (spatial feedback effect) but also may affect the
dependent variables in other regions (spatial spillover effect). Lesage and Pace [46] used
partial differencing to specifically decompose the effects of the explanatory variables on the
explained variables into direct effects, indirect effects, and total effects. The decomposition
results of the respective variables in this paper are shown in Table 5, and the “Indirect”
column indicates the spillover effect.
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Table 5. Decomposition results.

lnPCO2 Direct Effect Indirect Effect
(Spillover Effect) Total Effect

lnGMFP 0.000396 ** −0.000905 ** −0.000509
(0.000201) (0.000387) (0.000391)

lnINDUS 0.0628 0.229 *** 0.292 ***
(0.0692) (0.0850) (0.0720)

lnPIC −0.439 *** 0.832 *** 0.393 ***
(0.117) (0.180) (0.137)

lnTECH −0.0316 *** −0.00217 −0.0338 **
(0.0122) (0.0185) (0.0165)

lnPOL −0.0813 0.0841 0.00277
(0.367) (0.472) (0.485)

lnIMEX 0.0792 ** 0.0204 0.0996
(0.0396) (0.0865) (0.0890)

Note: Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

The spatially lagged regression coefficient of lnGMFP is notably negative at the 5%
level, showing that the growth of the marine fishery economy exacerbates local carbon emis-
sions but decreases carbon emissions in neighboring provinces through spatial spillover
effects. This is primarily due to the agglomeration and polarization effects of China’s
fishery economy. The more economically developed the provinces are, the higher level of
market demand and the greater factor returns; consequently, the production factors become
more concentrated in economically developed areas, thereby reducing fishing activities in
less economically developed regions.

The coefficient of industrial structure optimization is positive at the 1% level, suggest-
ing that industrial restructuring would boost carbon emissions in neighboring provinces.
China’s marine aquatic product processing industry has not yet transitioned to a technology-
intensive stage, and material and human capital inputs and resource losses are still in-
creasing continuously. Thus, provinces have not been able to effectively collaborate on the
division of labor and industrial synergy, which at this point would only result in imitation
behavior, thus leading to an increase in CO2 in neighboring provinces.

The estimation result of lnPIC expresses that increased income for fishermen decreases
local carbon emissions while increasing emissions in neighboring regions. High-income
areas have a diminishing marginal propensity to pollute, whereas governments in low-
income areas are more likely to develop the economy at the expense of the environment;
income disparity affects people’s expectations, resulting in labor outflow from low-income
areas, thereby impeding the improvement in labor quality in low-income areas. Meanwhile,
an increase in low-quality labor would inhibit technological progress and weaken the
incentive for industrial structure development in underdeveloped coastal provinces, thus
further perpetuating high-carbon fishing production activities.

5. Conclusions

The purpose of this study was to examine the carbon emissions of China’s marine
fishery industry, a sector that accounts for a relatively small share of the entire industry
yet has a far-reaching influence on the marine environment. Kernel density estimation, the
spatial autoregressive test, SDM estimation, SDM results decomposition, the replacement
of the spatial weight matrix, and removal of extreme values are the panel econometric
techniques that were used in this study. Based on the results of the empirical analysis,
the following conclusions were obtained: (1) the marine fishing industry is the biggest
source of CO2 emissions, contributing approximately 72% of total emissions, and trawling
is the most CO2-emitting marine fishing practice; (2) according to kernel density estimation,
the total CO2 emissions from marine fisheries in China’s coastal regions are uneven and
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the gap is gradually widening; (3) from empirical evidence, the SDM concludes that the
economic scale is enlarging, which includes an increase in gross marine fishery production,
the expansion of the tertiary sector, and the import and export of seafood, all of which
contribute to a rise in CO2 emissions; China’s long-standing strategy of “ fishing vessels
reduction and power reduction “ has had no discernible impact, according to our research;
and (4) additionally, there is a significant spillover effect of carbon emissions from ma-
rine fisheries among coastal provinces in China; marine fishery economic development
aggravated local CO2 emissions while reducing them in neighboring provinces; income for
fishermen lessens local carbon CO2 emissions while increasing them in neighboring areas;
industrial restructuring also increases carbon spillover.

6. Policy Implications and Future Research

The following are the sustainable development policy implications of this research.
Firstly, the contribution of mariculture and marine aquatic product processing is gradually
increasing; therefore, the energy-intensive production activities in these two sectors should
be restrained, and governments are urged to take action. Additionally, when adopting
marine strategies, the Chinese government should take into consideration the effectiveness
of the policy environment. Furthermore, they should encourage and promote breakthrough
environmental technology, since this plays an essential role in this field. The industrial
structure is an important factor affecting marine fishery emissions. We found that the
enhancement of the tertiary industry simultaneously aggravates local CO2 emissions and
the environmental degradation of neighboring regions by spatial spillover effects. To
achieve an ecologically friendly and low-carbon service industry growth model, it is vital
the internal structure of the tertiary sector is optimized. Finally, the fishery administration
should coordinate interprovincial interaction in emission reduction, build a diversified
production factor exchange mechanism, and speed up the promotion of carbon reduction
through the division of labor among neighboring provinces to prevent pollution migration.

The spatial econometric model measurement findings may only offer a partial view. A
more disaggregated sectoral examination, more comprehensive socioeconomic factors, and
how responsibilities are distributed among the coastal provinces need to be followed up
with further examination. Furthermore, fisheries’ carbon sinks in the assessment framework
should be considered in future work.
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