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Abstract: According to the World Health Organization, the two major public health threats in the
twenty-first century are antibiotic-resistant bacteria and antibiotic-resistant genes. The reason for
the global prevalence and the constant increase of antibiotic-resistant bacteria is owed to the steady
rise in overall antimicrobial consumption in several medical, domestic, agricultural, industrial, and
veterinary applications, with consequent environmental release. These antibiotic residues may
directly contaminate terrestrial and aquatic environments in which antibiotic-resistance genes are
also present. Reports suggest that metal contamination is one of the main drivers of antimicrobial
resistance (AMR). Moreover, the abundance of antibiotic-resistance genes is directly connected to the
predominance of metal concentrations in the environment. In addition, microplastics have become
a threat as emerging contaminants because of their ubiquitous presence, bio-inertness, toughness,
danger to aquatic life, and human health implications. In the environment, microplastics and AMR are
interconnected through biofilms, where genetic information (e.g., ARGs) is horizontally transferred
between bacteria. From this perspective, we tried to summarize what is currently known on this
topic and to propose a more effective One Health policy to tackle these threats.

Keywords: microplastics; One Health; antimicrobial resistance; xenobiotic contaminants; environmental
threatening; global health safety

1. Introduction
1.1. State of the Art

The biological and physicochemical properties of the environment have been adversely
affected by rising energy and freshwater demand, and intensive agriculture and farming are
tightly intertwined with population growth, urbanization, and industrialization. Hence, the
environment itself has become more susceptible to phenomena such as antibiotic resistance
(AMR), an acquired trait that makes microorganisms able to survive, grow, and reproduce
even in the presence of significant concentrations of antibiotics [1,2]. According to a report
by Ram and Kumar from the World Health Organization, in our century, the two most
important issues in public health are antibiotic-resistant genes (ARGs) and, consequently,
antibiotic-resistant pathogenic bacteria (ARB) [3]. The reason for the global prevalence
and the constant increase of ARB is owed to the steady rise in overall consumption (and
consequent environmental release) of antibiotics in several medical, domestic, agricultural,
industrial, and veterinary applications; the implication of ARB is today a substantial dread
in managing human- or animal-related severe illnesses [4,5]. The outdoor environments
can be easily polluted by several kinds of antibiotic residues derived from civil wastewa-
ter, manure, hospital waste, or even from pharmaceutical industry pollution. Moreover,
their residues in soils are also enhanced by many agricultural practices, such as the use
of manure and sewage sludge [6]. Such antibiotic misuse has dramatically influenced
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the environmental microbial ecology, and the abundance of ARB and ARG in different
environments, such as in urban wastewater, freshwater sediments, municipal solid-waste
leachate, husbandry sludge, freshwater/drinking water and groundwater [3,7–11].

Urban discharge into inland waters and the prevalence and diversity of ARB have
been significantly correlated, as shown in several studies [12,13]. A positive correlation has
indeed been demonstrated between the concentration of some antibiotics and their corre-
sponding ARGs in inland waters, including wastewater treatment plants (WWTPs) [14].
It has also been reported that in WWTPs, the effluent displayed more ARB in percentage
than the influent due to various factors, such as enhanced antimicrobial activity, water
treatment conditions, chemical properties of antimicrobial agents, and bacterial genome
dynamics, including gene transfer [3,15]. The overall data showed that WWTPs are not
efficient in removing antibiotics, making them potential spots for gene transfer. The reasons
why WWTP may increase the number of ARB in the effluent include the general bioavail-
ability of antibiotics [7], the high bacterial density in the biofilms [16], and their augmented
nutritional status.

1.1.1. Metal Contamination and ARG Spread

The presence and distribution of ARGs are also significantly correlated with other
anthropogenic pollutants [14]. These include heavy metal ions, organometallic molecules,
disinfectants, surfactants, biocides, and chemical solvents [17,18]. In addition, AMR is
further spread by co-selection mechanisms that favor the dispersal of mobile genetic
elements [19–22].

Boundless discharge of heavy metals into the environment can induce serious losses
and dangers in microbial communities, organisms, and humans. Heavy metals, both from
natural and anthropogenic sources [23,24], steadily bioaccumulate in living organisms,
moving through the food chain from the bottom to the top trophic level. Unlike antibiotics,
they persist for a very long time due to their non-degradability, and then, when they
reach threshold concentrations, they start exerting toxicity. Metal elements involved in the
biological organism’s formation and growth, such as Fe, Cu, and Zn, become toxic only if
present in high concentrations; toxicity at lower concentrations can instead be exhibited by
heavy metals, such as Hg, Pb, and Cd. Under certain circumstances, they could also form
metallic complexes, boosting the toxicological implications of their presence [25–27].

Natural microbial communities have adapted their morphological structures and
physiological and biochemical properties to develop and improve tolerance to heavy
metals through evolutionary mechanisms. These mechanisms were reported from studies
in the environment and rely on intracellular bioaccumulation, extracellular sequestration,
redox reaction of heavy metals, bio-precipitation, and efflux pump systems [24].

Interestingly, a huge number of reports suggest that metal contamination is one of
the main drivers of resistance against almost all antibiotics currently used in medical prac-
tices, provoking the transfer of ARGs and multidrug resistance among bacteria through
selection and co-selection pressures [24,28–31], and through point mutations or changes
at the genetic level and expression [32]. In many circumstances, the abundance of AMR
genes is directly connected to the predominance of heavy metal concentrations in the
environment [33,34]. Stepanauskas et al. [30] showed that nickel (Ni) and cadmium (Cd)
predominant contamination increased bacterial resistance to ampicillin or chloramphenicol.
Likewise, the combined co-selection of resistance to tetracycline, ampicillin, and chloram-
phenicol was related to the selection of copper (Cu) resistance due to agricultural soils
contaminated with Cu [35].

Research has also shown that bacterial selection generally occurs through co-resistance,
cross-resistance, and co-regulation [19]. The mechanism of co-resistance refers to the
fact that several antigenic determinants, which are equally resistant to different toxic
components, are localized in the same transposable genetic element. Cross-resistance
means that the same removable genetic element brings the same antigenic determinant
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that can generate resistance to both antibiotics and heavy metals. Co-regulation grants a
coordinated backlash to several toxic compound expositions [36].

Metallic nanoparticles (NPs-metals and metal oxides) have bactericidal synergistic
effects with antibiotics [37,38]. Because of their high reactiveness and targeting action
of microbial cells, NP-based antibacterial products have been widely employed in med-
ical, food, and cosmetic contexts, as well as in wastewater treatments (e.g., membrane
filtering methods) with the purpose of controlling infections. After many years, this huge
chronic bacterial exposure to NP reagents has also raised the risk of microbes becoming
increasingly tolerant. Hence, it is becoming more evident that resistance in bacteria could
be promoted by the constant presence of NP sub-lethal or sub-inhibitory levels. Recent
studies have shown that progressively growing concentrations of Cu and silver NPs can
be tolerated by bacteria [39–42]. Indeed, NPs can enhance the horizontal gene transfer
(HGT) of ARGs, thus fostering conjugation and transformation processes between bacteria
in multiple environments (e.g., laboratory cultures [43,44], natural environments [45,46],
and anthropological systems [47]). The same plasmid could harbor genes encoding silver
resistance and antibiotic resistance, and integrons may also ease ARG co-selection. More-
over, bacteria seem to upregulate efflux pumps to expel metal ions together with antibiotics,
acquiring cross-resistance. Ultimately, Zhang et al. [48] uncovered nanoalumina- and ZnO-
NP-induced mutations in the gyrA and soxR genes, conferring resistance to ciprofloxacin
and chloramphenicol in Escherichia coli. This means that NPs could also promote AR by
fostering mutations [37,49].

1.1.2. Microplastic Contamination and ARG Spread

In many natural ecosystems, the phenomenon of ARG spread can be amplified by the
presence of other pollutants, such as microplastics, in the inhabitant microbiota [19].

Microplastics (MPs: any plastic fragment smaller than 5 mm in size) have become
a threat as an emerging contaminant, reaching 359 million tons worldwide in 2018 [50].
To reduce their impact on the environment, several public actions have been executed,
including the UE initiative to ban the use of microplastics in European toiletries (UNEP40).
The main reasons for global concern are the durability and general inertness of their chemical
bonds, their pervasive presence in all the environments, and danger to biotic life, most likely
including human health [3]. Moreover, complete plastic mineralization requires hundreds
to thousands of years, meaning a long-term life and contaminant presence [3,51]. Finally,
microplastic surfaces can adsorb and bond not only pollutants such as heavy metals, thus
fostering cross-resistance [24], but also viruses, microorganisms, and complex molecules [51].
WWTPs have not been designed to remove microplastics, and from a median-sized plant
(average treatment capacity of 5 × 107 m3/year), a daily discharge of up to 2 million
plastic microparticles is estimated [52]. Most of the studies have explored the effects of
microplastics’ presence on the communities’ response for the performance of the plant,
such as on the removal of nitrogen toxic compounds in activated sludges [53–55], while
fewer are available on the interactions between antibiotics and microbes inside the biofilms
attached to microplastics in the plant [55]. Accordingly, Pham et al. [55] determined that
microplastics from polyethylene (PE) and polystyrene (PS) could enhance the proliferation
of sulfonamide-enriched biofilms in domestic WWTP-activated sludge samples.

From the WWTPs, microplastics can easily reach the outflowing canal and be dis-
persed in the receiving water body [56], including the river water column [57] and its
sediments [58–60]; from there, they are going to reach marine water, beaches, and be
dispersed into indoor air [61], different types of soil [62–64], and river and coastal sed-
iments [65,66], fauna biota (mussels and fish) [67], and even in human blood, where
polyethylene terephthalate, polyethylene, polymers of styrene and methyl-methacrylate
were identified for the first time [68].

Urban and agricultural soils, and consequently vegetables and livestock, are especially
assumed to be vulnerable to microplastic contamination: potential incoming pathways
are littering (including debris from plastic mulch and greenhouse plastic covering), street
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runoff (including tire wear, atmospheric deposition, plastic mulching), irrigation with
freshwater or wastewater, use of organic fertilizers derived from bio-waste, sewage sludge,
or manure [69–71].

Ecosystems and their health can be clearly undermined by microplastics through
several mechanisms: microplastics may induce changes in organism population balance,
and any deleterious effect on a single species could indeed have overlooked consequences
in the ecosystem. Indeed, microalgae populations can both be harmed if microplastics
hinder the absorption of essential nutrients, and benefit if these reduce populations of
primary consumers [72]. Conversely, in the clam Atactodea striata, energy uptake is affected
and consequently influences energy transfer in the food web [73]. Likewise, the taxonomic
abundance, richness, and diversity of the benthic fauna were found to have been increased
by plastic debris, leading to a significant change in the community structure [74]. In
the same way, microbial communities colonizing microplastics, the plastisphere, present
different functional properties, compositions, and structures, with a potential ecological
impact on the overall ecosystem biogeochemistry [75,76]. In this context, the microbiota
on the microplastic surfaces could have different ecological functionalities; the ultimate
consequence of such a shift is still partially unknown and context-dependent since they
vary among different environments [77].

Bacteria can use the microplastic surface as a substrate for biofilm formation—where
microbial cells are highly concentrated and embedded in extracellular polymers—sustaining
their dispersal to new regions [78]. In this context, cells are facilitated in nutrient or metabo-
lite exchanges, syntrophic behavior, cellular communication, self-protection, and stress
resistance through enhanced HGT [79]. The high resistance and usually low density of MPs
provide ideal conditions for the long-distance collection, transportation, and dispersion of
related mobile genetic elements of microorganisms. Pathogens can invade new locations
via MP dispersal. Moreover, natural and non-pathogenic microorganisms increase the
chance of acquiring and rapidly spreading AR, which has ultimate adverse effects on
several human activities, such as aquaculture resources [77].

Some studies have highlighted the spread of pathogenic bacteria coupled with ARGs
through microplastics [80]. For example, Pseudomonas, Aeromonas spp., Vibrio spp., and
E. coli, known to be opportunistic fish and human pathogens, were found in microplastic
biofilms gaining ARGs [51,55]. Moreover, the transfer frequency of plasmids harboring
ARGs from E. coli to other bacteria in vitro increases when bacteria are associated with MPs.
In this context, the spread of ARBs has been found to be associated with MPs in marine
ecosystems [77]. In marine aquacultures, there has been an increase in the ARB number on
MP surfaces to an order of 100–5000 times more than in the surrounding water, thus also
compromising food safety [81]. Moreover, the development rate and chlorophyll content
of cyanobacteria Anabaena will be considerably lower after the adsorption of macrolide
antibiotics on MP [82]. Similarly, the combined presence of tetracycline and polystyrene
could worsen the damage caused by oxidation of juvenile Ctenopharyngodon idella and
intestines and gill tissue injuries [83]. Again, clams could bioaccumulate in the blood
increased levels of antibiotics, such as oxytetracycline or florfenicol, if co-exposed with
MPs, which further undermined food safety [84]. Similar results have been demonstrated
in other environments, such as agricultural soils. Indeed, Wu et al. [85] investigated AR
in samples of Chinese soils with long-term exposure to plastic mulch applications and
found they had a higher abundance of ARGs, and thousands of mobile genetics elements
(MGEs-14 integrons, 28 insertions, and 2993 plasmids).

1.1.3. Relationship between Heavy Metals, Microplastics and Antibiotic Resistance

Several studies demonstrated both the ubiquity and the negative potential of pollutants
such as heavy metals, MPs, and antibiotics on ecosystem safety. Furthermore, since MPs
are hydrophobic and represent large attractable areas, hydrophobic pollutants are easily
adsorbed on their surfaces, with the consequence of their bioavailability and chemical
properties being modified [86,87]. To date, the concentrations of heavy metals and organic
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pollutants found on the surface of MPs are 106 times higher than the ones present in the close
vicinity [19], and this yields combined toxic effects for the surrounding environment: recent
studies showed how chemicals, attached, or embedded on MP biofilms, are released because
of the natural weathering process. These chemicals include heavy metals, antibiotics, and
other xenobiotics. MPs can therefore act as potential carriers of pollution and multidrug
resistance in humans [88]. Indeed, there are more metal resistance and multidrug resistance
gene types in bacteria isolated from MPs than in free-living strains [89].

The bad implications are related to human health, since these contaminated particles
reach humans through ingestion of environmental products. Indeed, humans may feed
from seafood such as crustaceans [90], bivalves [91], fish [92], or sea salt [93], which may
contain MPs and transmit AR pathogens and metal-driven multi-resistances [24]. Around
80% of fish actually displayed MPs in their stomach [94]; this can cause necrosis of tissues
injuries/inflammations or cell necrosis in humans that ingested them [95] or potential
cytotoxic complications and oxidative stress on the brain, on epithelial cells, and on the
placenta [96–98]. In addition, the heavy metals adsorbed on MPs could produce oxygen
radicals and damage human cell metabolism [99,100].

1.2. The AMR Burden: Global Data on Human Health

Although in countries such as the UK and Canada, antibiotic use has been falling
since its peak in 2014 (e.g., from 2015 to 2019, in the UK the use has dropped from 19.4
to 17.9 defined daily doses (DDDs) per 1000 inhabitants per day), both hospital and
community settings showed again increases in use (+3.5% over the last 5-years in the
UK, +30% as antimicrobial purchasing by hospitals and +10% of human consumption in
Canada) [101,102].

Moreover, to understand the burden of AMR and multidrug resistance pathogens, to
foresee the future of human health, and to establish informed surveillance plans, several
countries all over the world have launched reports on AMR-related deaths in humans,
highlighting dreadful data. In a recent and important paper, Murray et al. overviewed
4.95 million deaths related to bacterial AMR in 204 countries and territories in 2019, of
which 1.27 million deaths can be directly attributable to bacterial AMR. ARB caused
929,000 deaths, while 3.57 million deaths were due to AMR-indirect causes. The main ARB
species were Acinetobacter baumannii, E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa,
Staphylococcus aureus, and Streptococcus pneumoniae. Furthermore, all-age mortality rates for
AMR were highest in some low- and middle-income countries, such as sub-Saharan Africa,
raising the problem of AMR as a troublesome issue for some of the poorest countries in the
world [103].

Between 2014 and 2019, Canada and the UK recorded an increment in the incidence
of bloodstream infection with key-bacterial species such as E. coli, K. pneumoniae, and
Enterococcus spp. In addition, a doubled rate of healthcare-associated vancomycin-resistant
Enterococcus has been recorded, and a 140% increase in the rate of community-associated
methicillin-resistant S. aureus, leading to an estimated 178 new antibiotic-resistant infec-
tions per day. The major concern is that around 20% of patients diagnosed with these
antimicrobial-resistant bloodstream infections died within 30 days of diagnosis [101,102].

These data also parallel those of O’Neill’s report, where 10 million people per year
were expected to die because of AMR by 2050 [104]; and this report did not even consider
how broad the effect of the COVID-19 pandemic on antibiotic consumption and misuse can
be, and therefore AMR spread. Similarly, the Centers for Disease Control and Prevention
(CDC) Antibiotic Resistant Threats in the United States 2019 found that 2.8 million resistant
infections are responsible for 35,900 deaths annually, with only Clostridioides difficile infec-
tion killing 12,800 people [105]. Cassini et al. [106] assessed approximately 30,000 deaths
and 796,000 disability-adjusted life years caused by AMR in the EU in 2015. Not sur-
prisingly, the Organization for Economic Co-operation and Development (OECD) Health
Committee, together with the European Centre for Disease Prevention and Control, pro-
jected that in the EU and USA, resistant infections are responsible for about 60,000 deaths a
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year [105]. Further investigations at the regional level considering patient demographics
and healthcare interactions are now being performed to identify better areas of intervention
and to develop a more efficient understanding of the AMR scale.

1.3. A One Health Approach?

The challenges posed by the above-mentioned stressors concurrently engage human,
animal, and environmental health. They are all indeed susceptible to such threats, and their
related issues could benefit from a transdisciplinary approach [3].

The One Health approach is a concept of “designing and implementing programs,
policies, legislation, and research in which multiple sectors communicate and work together
to achieve better public health outcomes”. One Health offers a different and multidisci-
plinary viewpoint, trying to blend data on animal, human, and environmental health. One
Health recognizes the interconnection of ecosystem health. The key point of the One Health
approach is the continuous dialogue between experts, scientists, and professionals to find
potential global health solutions [60,107].

Pathogenic ARB dispersal could be managed at multiple levels: improvement of an-
timicrobial prescriptions; antibiotic policies and legislations, as well as infection prevention
and control; integrated surveillance, together with antimicrobial handling, sanitation, and
animal husbandry [107], to wastewater treatment or mitigation measures for MPs since
they contribute to the rise of AMR.

The management of MPs needs a targeted One Health approach because they can affect
multiple ecological compartments, leading to potential ecosystem impacts that ultimately
threaten public health [108]. The “access to food for all” (food certainty) would face
the threat of MP, with the consequent worsening of human nutritional deficiencies and
diseases in some countries [109]. Only a multidisciplinary approach has the potential to be
efficacious as a tool for assessing such effects and mitigating them with the intervention of
multiple partners with broad expertise.

2. Discussion/Pitfalls

Data obtained from national and international reports show that the burden of AMR
and the number of infections caused by pathogens resistant to one or more key antibiotics
continue to rise globally. Resistance to multiple agents leads to increased use of last-
resort antibiotics, thus enhancing the vicious circle of AMR. Research suggests that explicit
awareness and understanding are essential for the distribution and frequency of AMR
related to pollutants such as MPs and heavy metals. The microbiological activity involved
in some environmental contexts and samples (e.g., agricultural system-irrigation water,
compost, manure), as well as correlations between the prevalence of ARB and MPs or
metals, is still a huge scientific room to explore.

MPs, heavy metals, antibiotics, resistance genes, and other pollutants ubiquitously
present in the environment, and their latent aversive consequences on the biological commu-
nity are alarming environmental challenges. Heavy metals promote selection or co-selection
for ARGs. Metallic NPs have exhibited antimicrobial activity against different microorgan-
isms and Gram-negative and Gram-positive bacteria but also the spreading of AR, at the
point that their mechanisms of action are still questioned and remain poorly understood.
Since the usage of metallic NPs showed great potential, it is essential to shed light on the
genetic mechanisms behind the rise of resistance [37].

Most of the studies covered the investigation of the distribution, abundance, concen-
tration, and toxicological implications of pollutant takeover by organisms. MPs soak up
heavy metals and antibiotics, inducing elements and resistance gene transfer and switching
the plastisphere as potentially toxic for the surrounding organisms. In this context, the
influence of MP biofilms on the spread of ARGs and multi-resistance genes is still too
vague. Additionally, little research has taken into account a study about the way to effi-
ciently reduce persistent pollutants such as MPs, heavy metals, antibiotics, and resistance
genes in the environment. Moreover, the possibility that the MP surface acts as a binding
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material for heavy metal ions occurring in the soil system, with unexpected consequences
in antibiotic resistance mediated by the heavy metal efflux pump, also deserves focused
studies. Likewise, it is still not fully clear how biofilm forms on MPs (e.g., processes and
mechanisms behind it). Elucidations on microbe succession and on the different factors
affecting biofilm formation on MPs particles, such as the environmental conditions and
the age of microplastic particles, are required [110,111]. In addition, how and how much
MPs impact the functionality of environmental microbiota is very unclear. Even though
the effects of MPs and their involvement in troublesome worldwide issues have been
assessed, there is also a need to recognize the lack of scientific maturity in the field [112],
which requires growing collaborative efforts from different sectors to address mitigation
measures [113,114]. Thus, since MPs are abundant and ubiquity, the risks of their dispersal
need to be carefully studied, considering the biotic and abiotic effects on the ecosystem
that potentially lead to unrecoverable global changes. Up to now, MP-related research has
rarely focused on the ecosystems’ functionality, their abiotic effects, or on the chemical
changes in the matrices (sediments, soil aggregates, humus). The ecological significance of
their presence in the environment is completely obscure. For instance, the accumulation
of MP particles could affect the thermal conductivity or water loss in soils and sediments
properties, influencing both the micro- and macrobiota. The risks related to pathogen
presence and human or fish exposure, as well as MP-associated pathogens’ capability to
cause infectious diseases, are still underestimated, and in-depth risk studies are warranted.

Similarly, the large-scale effects of the accumulation of MPs in several environments
have not been sufficiently studied. More research must be financed to support mesocosm
studies, long-term experiments, and in-field trials. Although HGT has been shown to
increase with MPs [77,115], the MPs’ role in the evolution and dissemination of antibi-
otic resistance genes in both environmental and pathogen bacteria remains unknown. A
further assessment of the indirect effects of MPs in terms of associations and interactions
between microplastics and ARGs, especially on the marine environment and sea food safety,
is needed.

In addition, it is important to finance more studies on MPs-associated bacteria whole
genomes and their metabolic potential [116,117]. Hence, since only a small portion of
environmental bacteria could be cultivated in laboratories, culture-based methods based
on bacteria isolation on a culture media, to which antibiotic sensitivity testing is followed,
have limited usage in studying antibiotic resistance [118–120]. This detection limit can be
easily overcome with methods that use total genomic DNA extracted from a given sample,
such as quantitative polymerase chain reaction (qPCR) analysis or shotgun metagenomics,
which give a general outline of the total bacteria and their associated genes inside the
investigated sample [121]. In particular, with tools such as next-generation sequencing
technology or whole-genome sequencing (WGS), genotyping pathogens has become very
easy [122]. WGS analyses are indeed very efficient in displaying the total metabolic poten-
tiality of microorganisms in order to better understand the basis of antibiotic resistance
genetics [123,124]. Despite this, WGS findings on microorganisms related to MP are lacking
to a large extent.

3. Conclusions

MPs, antibiotics, and other xenobiotics, such as heavy metals and NPs, are a threat to
ecosystems, even due to their chemical properties or to their environmental concentration.
These environmental contaminants may stick to the surface of MPs and aggravate the
health of the organisms that ingest them. Because of the accumulation of heavy metals
at critical concentrations in the environment, bacterial antibiotic resistance may be co-
selected while also triggered by co-resistance or cross-resistance. This makes MPs upcoming
spots for the co-selection of metal-driven multidrug-resistant pathogens. Additionally, the
microbial community in the plastisphere showed a faster HGT rate than the free-living
microorganisms, highlighting another cause for environmental and human concerns.
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The ultimate consequences for human and animal health are largely to be under-
stood. Their single or correlated effects could affect the microbiota species composition and
functionality, shift the physical properties of habitats, modify the nutrient fluxes, and ulti-
mately, the overall ecosystem functions. These accumulative changes may bring to a minor
ecosystem resilience, with very serious effects on the Earth’s natural systems. The lack of
knowledge regarding it requires new approaches to promoting and assessing interventions.

The One Health approach could truly create a flow of information between different
fields, as environmental, animal, and human health stand in interdependency. The inte-
gration of professional figures, even with very different backgrounds, such as biologists,
chemists, engineers, health professionals, economists, and policymakers, could help assess
direct and indirect adverse effects and propose solutions that can mitigate these threats for
the next generation.

Putting this into a scientific perspective, future research directions should focus on
(1) the improvement of the MPs monitoring system, innovation, and standardization of
research methods; (2) the investigation of the MPs’ long-term implications on the ecology
of the environment, and their related acute and chronic toxicity effects; (3) the upgrading of
the methods used for heavy metals, antibiotics, pollutant removal, and treatment (e.g., by
exploiting submerged plants to absorb MPs in waters); (4) on the study of MPs degradation
processes, that are still scarcely investigated; and (5) on the assessment and quantification
of the frequency of AR-HGT on MP biofilms and on the comparison of these results with
natural AR-HGT, both in-vitro studies and in natural environmental matrices.
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