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Abstract: China has experienced rapid industrial land growth over last three decades, which has
brought about diverse social and environmental issues. Hence, it is extremely significant to mon-
itor industrial land and intra-structure dynamics for industrial land management and industry
transformation, but it is still a challenging task to effectively distinguish the internal structure of
industrial land at a fine scale. In this study, we proposed a new framework for sensing the industrial
land and intra-structure across the urban agglomeration around Hangzhou Bay (UAHB) during
2010–2015 through data on points of interest (POIs) and Google Earth (GE) images. The industrial
intra-structure was identified via an analysis of industrial POI text information by employing natural
language processing and four different machine learning algorithms, and the industrial parcels were
photo-interpreted based on Google Earth. Moreover, the spatial pattern of the industrial land and
intra-structure was characterized using kernel density estimation. The classification results showed
that among the four models, the support vector machine (SVM) achieved the best predictive ability
with an overall accuracy of 84.5%. It was found that the UAHB contains a huge amount of industrial
land: the total area of industrial land rose from 112,766.9 ha in 2010 to 132,124.2 ha in 2015. Scores of
industrial clusters have occurred in the urban-rural fringes and the coastal zone. The intra-structure
was mostly traditional labor-intensive industry, and each city had formed own industrial character-
istics. New industries such as the electronic information industry are highly encouraged to build
in the core city of Hangzhou and the subcore city of Ningbo. Furthermore, the industrial renewal
projects were also found particularly in the core area of each city in the UAHB. The integration of
POIs and GE images enabled us to map industrial land use at high spatial resolution on a large scale.
Our findings can provide a detailed industrial spatial layout and enable us to better understand the
process of urban industrial dynamics, thus highlighting the implications for sustainable industrial
land management and policy making at the urban-agglomeration level.

Keywords: industrial land; industrial intra-structure; urban agglomeration; points of interest;
Google Earth

1. Introduction

Since the implementation of the Open Door Policy in 1978, China has witnessed un-
precedented rates of urbanization and industrialization. Despite the huge economic benefits
brought about by this rapid urbanization and industrialization, severe problems have arisen
such as the loss of high-quality cultivated land [1,2], environmental pollution [3–5], and
ecological degradation [6]. Industrial land use is one of the most dominant urban land-use
categories in most Chinese cities. However, due to inefficient supervision and management,
the industrial land utilization in China is of low efficiency, and the proportion of industrial
land to built-up land is apparently much larger compared with that of developed countries.
It was reported that the industrial land accounted for over 20% of the total built-up land in
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Zhejiang [7], a fast-growing province in eastern China, whereas the proportions in those
famous industrial megacities such as Chicago and Detroit are maintained at a level of
5–10% [8].

Faced with the continuous demand for high-quality urban development and sustain-
able industrial upgrading, a series of policies and plans were implemented that were aimed
at optimizing the industrial structure. For instance, in 2008, the State Council of China
formally announced that it would scientifically plan industrial land and promote industrial
land-use efficiency, especially in the development zones. Manufacturing of China (2025),
which was proposed in 2015, was the first action agenda to execute the Manufacturing
Power Strategy. The agenda highlighted the inevitable necessity of developing advance
industries and cultivating competitive industrial clusters. In summary, the industrial land
development toward sustainability and high quality has become an essential part and
inevitable course for China.

In this context, metropolises in China have experienced a profound transformation
from traditional industries to modern financial and business services [9]. Manufacturing
industries has been requested to move toward the urban fringes due to intensive urban
land use [10]. Meanwhile, these industries are also undergoing structural optimization
based on the comprehensive consideration of economic benefits, technology innovation,
and environmental friendliness of the industries. The abovementioned industrial transfor-
mation has led to the drastic changes in the industrial land and its intra-structure from the
spatial perspective. Monitoring the spatial distribution of industrial land and identifying
the industrial intra-structure accurately and duly at a fine scale is the important first step
in industrial land management. Sensing where industry is currently expanding or migrat-
ing and in what particular functions can help government officials to supervise informal
industrial land use, evaluate industrial use efficiency, and enact integrated development
policies [11,12].

With the rapid development of remote sensing technologies, a series of high-resolution
remote sensing images have emerged that provide abundant information for urban land
classification and industrial land mapping [13]. Numerus studies have focused on urban
land classification based on object-oriented classification and deep learning algorithms by
mining multiple features such as shapes, textures, spectral information, and spatial context
information [14–16]. Nevertheless, it is still a challenging task to effectively distinguish
industrial land from other urban land such as residential land and commercial land because
remote sensing data do not provide sufficient social function information. Furthermore, it
is difficult to identify the intra-structure of industrial land. So far, cadastral survey data are
considered the most favorable data theoretically. However, these data are not allowed to be
released to the public in China [17].

In the past few years, online volunteered geographic information (VGI) has emerged
as a new data source that makes it possible to capture urban land use dynamics at a
finer level [18]. One promising type of VGI for our purpose is point of interest (POI)
data. Currently, there are scores of voluntarily generated POI directories on map service
platforms such as Google, Baidu, and Gaode. Each POI is the abstract expression of a
geographical entity and includes a name, coordinates, tags, etc. Efforts have been made
to use POI data to delineate urban function areas [19,20], commercial hotspots [21], and
urban boundaries [22]. Several studies have used the emerging frequency of different types
of POI data to identify the urban land uses at the block level [23]. Yao et al. introduced a
natural language processing (NLP) method and used a Word2Vec model to mine semantic
information for urban land-use classification on the basis of the characteristics of POI
data [24]. By integrating NLP and a machine learning (ML) algorithm, Jia et al. successfully
classified different industries based on industrial POI data [25]. These studies indicated that
POIs have a great potential to characterize the different land-use functions and industrial
structure. However, based on the existing literature, we have little quantitative information
on the internal structure of industrial land at a fine parcel level combined with a lack of
an effective methodology to identify industrial intra-structure. Such information is crucial
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for the site selection of industries and identification of ecological pressure areas, thereby
helping decision-making authorities manage manufacturing industries and achieve sus-
tainable environment. In addition, previous studies have focused on the typical economic
development zone or the single-city scale [26,27], but scant attention has been paid to
the urban agglomeration scale. Urban agglomeration has become the new region unit in
global competition and international division [28]. A more reasonable and sustainable
mode of industrial land allocation and structure optimization is crucial for promoting
urban-agglomeration development and competitiveness [29]. Hence, to take the important
first step, studies on monitoring industrial land and the internal structure dynamics of
urban agglomerations in developing countries with special national conditions are urgently
needed, especially in China.

This paper aimed to develop a novel framework to monitor industrial land change
and its internal structure and to examine how industrial land expands, regenerates, and
upgrades in the urban agglomeration of China during the industrial transformation era.
The urban agglomeration around Hangzhou Bay was selected as the case study area.
The process of industrial land change in Hangzhou Bay involves both expansion and
renewal. Specifically, the expansion represents the non-construction land such as cultivated
land, green spaces, and water bodies converted into industrial land. The renewal primarily
involves industrial brownfields being redeveloped for multiple land uses such as residential
land, commercial land, green spaces, and other urban infrastructure [30]. The specific
objectives were to: (1) develop a framework for identifying industrial land and intra-
structure based on POI data and Google Earth (GE) images using NLP and ML to create a
detailed and accessible database of industrial land use; (2) apply spatial analysis tools to
characterize the spatial industrial land dynamics and to measure the uneven distribution
of different industrial structures; (3) unveil the characteristics of the industrial expansion
and renewal process; and (4) provide detailed information and scientific references for
industrial land management in the future.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

The urban agglomeration around Hangzhou Bay (UAHB) is located in northern Zhe-
jiang Province and southeastern Shanghai (118◦20′–123◦25′ E, 29◦13′–31◦11′ N) (Figure 1).
The UAHB includes six large cities (Hangzhou, Ningbo, Jiaxing, Huzhou, Shaoxing, and
Zhoushan). It had an area of 45,400 km2 and a total population of 24.9 million in 2015.
In the past three decades, the UAHB has been experiencing rapid urbanization and eco-
nomic development. The gross domestic product (GDP) of the UAHB increased from
RMB 8.6 billion in 1978 to RMB 2929.0 billion in 2015, which accounted for 63% of Zhejiang
Province. In Zhejiang Province, the regional block economy is the dominant industrial
form and has become a powerful engine to accelerate regional economic growth.

Due to the influences of natural conditions, resource distribution, and policy guid-
ance, there have been obvious regional divergences of industrial structure types between
different cities across the UAHB. The industrial structure of each city has formed with
local characteristics. For instance, the textile industry is a traditional pillar industry in the
cities of Jiaxing, Huzhou, and Shaoxing; the logistics, advanced equipment, and household
appliance industries play important roles in Ningbo; the logistics industry also plays a sig-
nificant role in Zhoushan; and Hangzhou has become famous for the electronic information
industry in recent years.

In 2003, the “Urban agglomeration space developing strategy planning around Hangzhou
Bay, Zhejiang Province” was released. The planning firstly announced the mission of the
UAHB Industrial Belt construction. Furthermore, “Powerful Zhejiang province construc-
tion depending on industry planning” and “New urbanization development planning in
Zhejiang Province” were published in 2012. Both of them stressed that more attention
should be paid to exploring the mechanism for industrial belt development across the
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UAHB. All of these circumstances indicate that the UAHB has been regarded as a pilot area
by the central government to implement economic industrial transformation and measures
for upgrading. Therefore, the UAHB presents a typical study area for industrial land and
intra-structure monitoring.
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2.1.2. Data Preparation

The detailed datasets used in this study were as follows. (1) The POI datasets were
obtained from application programming interfaces (APIs) provided by Google Maps. The
Google POIs included diversified types of POIs such as education, hotel, entertainment,
government, residential community, industrial company, etc. We selected POIs of industrial
companies for our purpose, which resulted in 63,236 records from 2010 and 100,892 records
from 2015. Each industrial POI had six attribute values: CITYCODE, COMPANY NAME,
ADDRESS, TEL, X-coordinates, and Y-coordinates. The quality of industrial POIs was
validated by checking 200 randomly sampled sites manually; the accuracy level was 97.8%.
Other types of POIs including education, hotel, entertainment, government, and residential
community were also used to help identify industrial renewal processes. (2) High-resolution
Google Earth (GE) images at a spatial resolution of 1.03 m on 31 December 2010 and
31 December 2015 from the Google Earth Engine were used for manual photointerpretation
of industrial land. The images were orthorectified into the Universal Transverse Mercator
(UTM) projection system. For a cloud-free atmospheric condition in an entire image, there
was no need for atmospheric correction in the preprocessing step. (3) The road networks
included national roads, provincial roads, primary highways, railways, county roads, urban
roads, and other small roads.

2.2. Methods

The framework used for this study consisted of three stages as shown in Figure 2:
(1) identifying industrial intra-structure based on industrial POIs using NLP and ML;
(2) industrial land mapping and change detection (i.e., industrial expansion and renewal)
using Google Earth Maps; and (3) kernel density estimation of industrial land and its
intra-structure.
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2.2.1. Identifying Industrial Structure Using Natural Language Learning and
Machine Learning

Based on the latest “National Economic Industry Classification Criterion (GB/T4754-
2011)” regulation and the industrial characteristics of the UAHB, the industrial structure
classes were aggregated into 19 subclasses that fell into three groups of first classes (Table 1).

In this section, the main three steps in identifying industrial structures based primar-
ily on the enterprise name were: (1) word segmentation; (2) feature vectorization; and
(3) classification modeling. Firstly, in terms of word segmentation, the text information
(enterprise name) of each industrial POI was divided into words using an open-access tool
for Chinese text segmentation called Jieba. Based on prefix dictionaries, Jieba scans the
text efficiently and generates a directed acyclic graph of all possible Chinese word phases
(https://github.com/fxsjy/jieba, accessed on 17 June 2022). It uses dynamic programming
to search the maximum probability path and obtains the most proper groups based on word
frequency [31,32]. Furthermore, with the integrated hidden Markov model and Viterbi
algorithm in Jieba, unknown words can be easily handled [33]. Examples of industrial text
segmentation results are shown in Table 2. The Chinese company names were all translated
into English. The accuracy of segmentation processing was 90.5%.

https://github.com/fxsjy/jieba
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Table 1. Industrial structure classification system.

First Class Sub-Class

Traditional industry

Textile and clothing manufacturing (TCM)

Equipment manufacturing (EM)

Paper industry (PI)

Petrochemical manufacturing (PM)

Logistics industry (LI)

Metallurgical industry (MLI)

Household appliance manufacturing (HAM)

Transportation equipment manufacturing (TEM)

Construction material manufacturing (CMM)

Food-processing industry (FPI)

Electric power industry (EPI)

Medical manufacturing (MM)

Nuclear industry (NI)

Mining industry (MI)

Salt industry (SI)

New-fashioned industry

Electronic information industry (EII)

New material industry (EMI)

New energy industry (NEI)

Other industry Other industry (OI)

Table 2. Chinese text segmentation result examples.

Number Text Segmentation Result Example

1 Ningbo/Zhonglei/wool/textile/factory/
2 Ningbo/Xinxin/plastic/product/factory/
3 Ningbo/Fulianyue/garment/factory/
4 Chenhong/dressing/factory/
5 Shanghai/Yiyun/international/delivery/factory/
6 KaiEndi/numerical control technique/factory/
7 Ningbo/Saifu/international/delivery/factory/
8 Ningbo/newspaper/printing/factory/
9 Ningbo/Changjin/imports and exports/factory/
10 Hanlong/metallic material/technology/factory/

Secondly, the feature vectorization consisted of the feature extraction and the feature
selection. The feature extraction was required to eliminate numbers, punctuation, personal
names, and other irrelevant information from the words relating to industrial structure. The
left words were regarded as a keyword dictionary (Figure 3), and then we presented the
text in vector form that could be the evidence for industrial structure classification. Feature
selection led to improved classification efficiency and reduces the computational complexity.
A classical algorithm; namely, the term frequency–inverse document frequency (TF-IDF),
was applied for feature selection and included term frequency (TF) and inverse document
frequency (IDF). TF is the frequency of words in text, and IDF reflects the distribution of
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feature items in the entire corpus. TF-IDF determined the weight for each word in the
enterprise name. The TF-IDF was calculated as:

Wdt =
t fdt × lg

(
N
n + 0.01

)
√

∑K
p=1

[
t fdt × lg

(
N
n + 0.01

)] (1)

where t represents the word, d represents the text of enterprise name, Wdt represents the
weight of t in d, t fdt represents the frequency of t appearing in d, N represents the total
number of d in the corpus, n represents the number of texts that contain t in the corpus, and
K represents the number of t in d. The formula shows that the TF-IDF was proportional to
the frequency of a word in the document and inversely proportional to the frequency of it
in the corpus.
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Thirdly, the classification models considered were the multivariate logistic regression
(MLR), naive Bayes (NB), support vector machine (SVM), and decision tree (DT). The MLR
is analogous to the binary model and is suitable for classification without order among
categories. For a K-category classification, MLR contains K− 1 binary regression models.
For a given input x (feature), the category with the highest probability is selected as the
predicted category when operating these K− 1 binary regression models. NB is a classifier
based on Bayes’ theorem and the independent assumption of feature conditions. First, for a
given training dataset, the joint probability distribution of the feature and prior probability
model is learned based on independent assumption of feature conditions. Using the
maximum-likelihood estimation function and Bayes’ theorem, the output y (classification)
with the greatest posterior probability is obtained for a given input x (feature). Multinomial
NB is the most commonly used model and is a bag-of-words model. The SVM classifier
aims to seek the best compromise between the model complexity and the learning ability
based on the statistical VC dimensions and the principle of structural risk minimization.
The common kernel functions include liner, polynomial, sigmoid, and the radial basis
function (RBF). The RBF kernel was used because it nonlinearly delineates samples into a
higher dimensional space and ensures that the model achieves good accuracy. The penalty
factor C and the kernel parameter γ are two important parameters of RBF, and these values
directly affect the classification results. Therefore, we further used the grid-search method
to determine the optimal C and γ. In terms of the DT algorithm, it uses decision rules to
generate decision trees recursively from top to bottom. The typical classifier CART in DT
was chosen for text classification in this study. The Gini coefficient was used to represent
the impurity of the model.

The industrial POI samples with a total number of 16,600 were divided into a training
dataset (90%) and a validation dataset (10%). For analyzing the classification accuracy of
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different machine learning models, the 10-fold cross-validation method was used. The
classification accuracy of each model was further calculated. The abovementioned steps
were conducted using Python 3.8 on the PyCharm platform. The model with the highest
accuracy was selected and applied to predict the internal structure of the industrial POIs.

2.2.2. Industrial Land Mapping Using Google Earth Maps

GE images were used for mapping industrial land in ArcGIS 10.2.2, ESRI, Redlands,
CA, USA. The industrial POIs were superimposed on the GE images to show the precise
positions of the industrial companies. To improve the efficiency of the photointerpretation
process, a detailed road network and river network were also applied. The networks
facilitated the industrial land digitization by providing easily recognizable geographical
features.

Industrial land has specific characteristics in GE images. The materials of industrial
rooftops mainly include clay, metal, and concrete (Figure 4a–c). The traditional industrial
parks have large areas; new-style industrial parks such as high-tech industrial parks are in
smaller areas (Figure 4d).
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Figure 4. Examples of different types of industrial parks: (a) metal rooftops, mainly in blue; (b) con-
crete rooftops, mainly in grey; (c) clay rooftops, mainly in dark or red color; (d) concrete rooftops,
which have a smaller occupied area compared with the former three types.

When checking the industrial POIs and other POIs (i.e., residential area, commercial
area, parks, etc.) from 2010 to 2015, both expansion and renewal were found. The process
of industrial parcel mapping began with digitalizing the parcels in the 2010 images. The
new industrial POIs from 2010 to 2015 were also superimposed, and the newly expanded
industrial land was digitized in the 2015 image. In terms of the digitalization of industrial
renewal, the industrial parcels that transformed into the six re-use types of transportation
facilities, residential land, commercial land, green space, water body, and barren land were
manually delineated with references to GE images and other POIs.

With respect to the intra-structure of the industrial parcels, we connected the digital-
ized industrial land parcels with the industrial POIs through a proximity analysis, which
means that the intra-structure of each parcel was equal to that of the industrial POIs. Finally,
each industrial parcel was linked with its intra-structure. Figure 5 shows visual examples
of industrial land and the corresponding intra-structure in Google Images.

2.2.3. Spatial Measurements of Urban Industrial Land and Internal Structure

The area of each industrial land parcel in 2010 and 2015 was calculated to quantify
the industry size and analyze changes in ArcGIS 10.2.2. In order to better understand
the spatial patterns of urban agglomeration and industrial land as well as the uneven
distribution of different industrial structures, kernel density estimation (KDE) was also
adopted in ArcGIS 10.2.2. KDE is a well-proven spatial-analysis method for transforming
mass geographical distributed points into a smoothly curved surface [34]. Generally, KDE
exhibits a visualization of the event clusters across the study area. The visualization will
represent the local probability of the emergence and extent of human industrial activities
in the area. Peaks represent the occurrence of industrial hotspots, whereas low values
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represent industrial activities to be much weaker. Given the multivariate dataset (x1, y1),
(x2, y2), . . . , (xn, yn), the kernel density estimator f (x, y) is computed as:

f (x, y) = 1/
(

nh2
)

∑n
i=1 K(di/h) (2)

where f (x, y) is the density estimated at the location of observation (x, y), n is the total
number of observations, K is the kernel function, h is the bandwidth parameter, and di is the
distance from the observation (x, y) to the ith observation. In this study, the kernel function
K was defined as the area of each industrial land that was extracted via photointerpretation
based on GE images. The selection of the bandwidth parameter h, which dictates the
smoothness degree of an estimated density surface, is an essential task in practice. As the
bandwidth h increases, the density surface will become smoother. If the bandwidth is too
large, the key spatial fluctuations may be missed due to over-smoothing. If the bandwidth
is too small, the surface will turn out to be highly fractured, thereby generating redundant
wiggles [35]. Given all this, the bandwidth parameter h in this study was set to 2 km at the
UAHB scale through tests.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 9 of 24 
 

 

Figure 5. Visual examples of industrial changes (renewal or expansion) in GE images during 2010–

2015. 

2.2.3. Spatial Measurements of Urban Industrial Land and Internal Structure 

The area of each industrial land parcel in 2010 and 2015 was calculated to quantify 

the industry size and analyze changes in ArcGIS 10.2.2. In order to better understand the 

spatial patterns of urban agglomeration and industrial land as well as the uneven distri-

bution of different industrial structures, kernel density estimation (KDE) was also 

adopted in ArcGIS 10.2.2. KDE is a well-proven spatial-analysis method for transforming 

mass geographical distributed points into a smoothly curved surface [34]. Generally, KDE 

exhibits a visualization of the event clusters across the study area. The visualization will 

represent the local probability of the emergence and extent of human industrial activities 

in the area. Peaks represent the occurrence of industrial hotspots, whereas low values rep-

resent industrial activities to be much weaker. Given the multivariate dataset (x1, y1), (x2, 

y2),…, (xn, yn), the kernel density estimator𝑓(𝑥, 𝑦) is computed as: 

𝑓(𝑥, 𝑦) = 1/(𝑛ℎ2)∑ 𝐾(𝑑𝑖/ℎ)
𝑛

𝑖=1
 (2) 

where 𝑓(𝑥, 𝑦) is the density estimated at the location of observation (𝑥, 𝑦), n is the total 

number of observations, K is the kernel function, h is the bandwidth parameter, and di is 

the distance from the observation (𝑥, 𝑦) to the ith observation. In this study, the kernel 

function K was defined as the area of each industrial land that was extracted via photoin-

terpretation based on GE images. The selection of the bandwidth parameter h, which dic-

tates the smoothness degree of an estimated density surface, is an essential task in practice. 

As the bandwidth h increases, the density surface will become smoother. If the bandwidth 

is too large, the key spatial fluctuations may be missed due to over-smoothing. If the 

Figure 5. Visual examples of industrial changes (renewal or expansion) in GE images during 2010–2015.

3. Results
3.1. Industrial Structure Classification

To assess the classification accuracy of the different machine learning models, the
training samples were divided into a calibration dataset and a validation dataset. The
prediction results when using different classifiers are depicted in Figure 6. The four models
performed well with an average accuracy of 83.1%. The accuracy of the SVM was the
highest with a value of 84.5%, followed by DT, MLR, and NB. Then, the SVM model was
applied in predicting the POIs for 2010 and 2015. We further calculated the overall accuracy
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(OA), producer accuracy (PA), and user accuracy (UA) of different industrial structures
identified by the SVM (see Table A1). The PAs of the food-processing industry, nuclear
industry, mining industry, salt industry, and the electronic information industry were over
90%, and the PAs of most industries were above 80%, which indicated that the SVM model
had a good predictive ability with strong robustness. However, it is worth noting that the
PA of the medical manufacturing industry was low and that several samples were confused
with the construction material manufacturing, metallurgical industry, and petrochemical
manufacturing, probably because the enterprise names of the medical manufacturing
industry contained keywords such as chemistry, which could easily be mistaken for the
other two industrial types.
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3.2. Overall Statistics of Industrial Land and Its Internal Structure

Table 3 reports the overall statistics of the identified industrial land across the UAHB
at the city level. Figure 7 shows the general spatial distribution of the industrial land
from 2010 to 2015. In terms of quantity, the total area of the industrial land in the UAHB
increased considerably from 112,766.9 ha in 2010 to 132,124.2 ha in 2015. The industrial
land changes varied among cities. During the study period, the industrial land of Ningbo
increased from 32,376.8 to 38,632.4 ha, which was the largest industrial change (6255.6 ha)
among the six cities. After Ningbo, Shaoxing and Jiaxing also experienced significant
changes of 3617.7 ha and 3476.0 ha, respectively, and the provincial capital Hangzhou was
measured to have increased by 2928.0 ha. Additionally, Huzhou and Zhoushan showed
slower increases of 1900.3 and 1179.8 ha, respectively.

In terms of the industrial land use structure, traditional industry occupied the largest
area in the UAHB in 2015. Specifically, textile and clothing manufacturing was the most
representative in terms of its percentage, followed by equipment manufacturing, the
paper industry, petrochemical manufacturing, and the logistics industry. As shown in
Figures 8 and 9, the industrial structure pattern differed in each city. In Hangzhou, the core
of the UAHB, the main industrial land structures were textile and clothing manufacturing,
equipment manufacturing, and the paper industry with proportions of 18.9%, 16.6%, and
9.7%, respectively. Furthermore, as Hangzhou is a well-known city for “Internet+” develop-
ment, the electronic information industry followed after those three traditional industries.
In Shaoxing, approximately 37.7% of the total area of industrial land was dedicated to tex-



Int. J. Environ. Res. Public Health 2023, 20, 226 11 of 21

tile and clothing manufacturing, followed by equipment manufacturing and petrochemical
manufacturing. Like Shaoxing, Jiaxing has also focused on developing textile and clothing
manufacturing (33.0%), followed by equipment manufacturing and the paper industry.
Ningbo, the subcore of the UAHB, mainly utilized industrial land for equipment manufac-
turing (22.3%), textile and clothing manufacturing (10.0%), petrochemical manufacturing
(9.4%), and household appliance manufacturing (7.4%). In Zhoushan, an island city, the
dominant industrial land uses were the logistics industry, transportation equipment manu-
facturing, and equipment manufacturing. In terms of Huzhou, the proportions of textile
and clothing manufacturing, equipment manufacturing, and electric power manufacturing
were relatively high at 22.2%, 14.3%, and 4.4%, respectively.

Table 3. Overall industrial dynamics of the UAHB by city.

City 2010/ha 2015/ha 2010–2015/ha

Hangzhou 26,630.8 29,558.8 2928.0
Huzhou 12,706.0 14,606.3 1900.3
Jiaxing 20,720.2 24,196.2 3476.0
Ningbo 32,376.8 38,632.4 6255.6

Shaoxing 16,925.2 20,542.9 3617.7
Zhoushan 3407.9 4587.7 1179.8

Total 112,766.9 132,124.2 19,357.3
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3.3. Characteristics of the Industrial Land Expansion and Renewal Process

Table 4 provides the overall statistics of the industrial land changes and intra-structure
proportions from 2010 to 2015. Figure 10 shows the spatial intensity of expansion and
renewal according to the kernel density estimation. It was found that a total of 2888 expan-
sion sites (19,396.1 ha) and 182 renewal sites (581.7 ha) were in the UAHB. The renewal
projects mainly occurred in the central city, which accounted for 94.2% of the total, espe-
cially in the core city of Hangzhou and subcore city of Ningbo (Figure 10). The original
industrial uses of these renewal projects were mostly textile and clothing manufacturing,
equipment manufacturing, and the paper industry, which accounted for 28.58%, 26.04%,
and 7.98%, respectively (Table 4). Additionally, the areas with intensive expansion were
mainly on the edges of cities and along the coastal zone (Figure 10). The major industrial
uses of the expansion areas were equipment manufacturing, textile and clothing manu-
facturing, and petrochemical manufacturing, which accounted for 21.57%, 13.84%, and
10.00%, respectively (Table 4).

Table 4. Industrial land-use proportions of expansion (renewal) projects during 2010–2015.

Industrial Structure Type Expansion/ha Percentage/% Renewal/ha Percentage/%

Textile and clothing manufacturing (TCM) 2684.38 13.84 166.25 28.58
Equipment manufacturing (EM) 4183.41 21.57 151.49 26.04
Paper industry (PI) 360.13 1.86 46.44 7.98
Petrochemical manufacturing (PM) 1939.51 10.00 12.85 2.21
Logistics industry (LI) 1210.44 6.24 2.78 0.48
Metallurgical industry (MLI) 811.35 4.18 20.87 3.59
Household appliance manufacturing (HAM) 736.47 3.80 24.24 4.17
Transportation equipment manufacturing (TEM) 1156.14 5.96 43.19 7.42
Construction material manufacturing (CMM) 341.66 1.76 23.95 4.12
Food-processing industry (FPI) 439.02 2.26 24.83 4.27
Electric power industry (EPI) 386.88 1.99 3.53 0.61
Medical manufacturing (MM) 283.82 1.46 0.73 0.12
Nuclear industry (NI) - - - -
Mining industry (MI) - - - -
Salt industry (SI) 3.12 0.02 0.13 0.02
Electronic information industry (EII) 637.96 3.29 2.83 0.49
New material industry (EMI) 374.92 1.93 - -
New energy industry (NEI) 244.23 1.26 - -
Other industry 3602.74 18.57 57.60 9.90

Summary 19,396.17 100.00 581.70 100.00
Percentage area in central city of total amount/% 53.30 - 94.20 -
Site number 2888 - 182 -

These results further supported the idea that reviving the existing stock and creating
new engines of industrial land growth have become the two major characteristics of in-
dustrial land development in the post-industrialization stage across the UAHB. On one
hand, due to the urgent need to improve urban environment and to achieve socioeconomic
inclusive growth, the traditional industrial land that is randomly arranged within the
central city is mostly planned to be replaced by residential, commercial, or innovational
office buildings. On the other hand, as the edge of the central city has a unique location
and a convenient traffic arrangement, it is more likely to attract the attention of industrial
companies. In addition, the coastal zone is another potential area for industrial develop-
ment. Therefore, the edge of the central city and the coastal zone became the new territory
for industrial parks and open economic zones.
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3.4. Kernel Density Estimation of Industrial Clusters in the UAHB

In using the kernel density estimator, we estimated the industrial land use intensity to
understand the industrial clusters in the UAHB. As illustrated in Figure 11, the industrial
intensity showed an increasing trend from the central urban area to rural areas, which
indicated that the industrial size was increasing and the distribution was more centralized
at the urban fringes. We found that scores of industrial clusters have formed that are
mainly located in eastern Hangzhou, the Huzhou border region (along Tai Lake), northern
Shaoxing, coastal Jiaxing, coastal Ningbo, and northern Zhoushan mainland. Moreover,
the cluster areas (Figure 11b) that are located across Hangzhou Bay tended to increase
sharply in quantity and in magnitude, which suggested that the integration and union of
the coastal industrial zone through transportation networks such as cross-sea bridges will
be important means for the regional government to strengthen industry development in
the UAHB.

In terms of industrial structures, their spatial distribution varied in the UAHB. Several
typical industrial structure maps are exhibited in Figure 12. For instance, textile and
clothing manufacturing showed intense development in the UAHB, especially in Tongxiang,
Haining county of Jiaxing, Shangyu, Yuecheng county of Shaoxing, and Nanxun county of
Huzhou. Equipment manufacturing mainly occurred in the coastal zones (Beilun, Zhenhai
county) of Ningbo and Xiasha and in Xiaoshan county of Hangzhou. The electronic
information industry showed intense development in Yuhang and Xiaoshan counties of
Hangzhou and Yinzhou county of Ningbo.
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4. Discussion
4.1. Advantage and Applicability Analysis of the Methodology

In this study, we utilized both industrial POIs and GE images to map the industrial
land and intra-structure at the urban-agglomeration scale. The spatial pattern of industrial
land and structure composition was well reflected. Our approach had several advantages
that were in contrast with the traditional survey methods. Firstly, the industrial POIs
applied in this study recorded not only the location coordinates of geographical entities but
also the textual information that revealed different industrial land use functions (e.g., textile
and clothing manufacturing, equipment manufacturing, etc.). The industrial structure
classification method that integrates NLP and ML can be considered a faster and more
effective method, especially for large metropolitan areas, compared with the traditional
industrial land-use field investigations. By comparing the classification results, these
four models had good predictive abilities with respectively high accuracies. The SVM
model performed best with an overall accuracy of 84.5% and producer accuracies for most
industries of over 80%; the predicted results of the industrial classification using SVM were
almost identical to the actual results. Secondly, both data sources used in our study are free
and accessible as compared with other commercial very-high-resolution remote sensing
images or cadastral survey data. Moreover, both the POIs and GE images are updated
at regular intervals. This indicates that industrial land and its internal structure changes
can be continuously monitored by keeping pace with the updating of the two datasets in
the future.

Although our approach successfully monitored industrial land and intra-structure
dynamics, some limitations should still be considered. First, delineating industrial parcels
via manual photointerpretation of GE images is time-consuming. Therefore, further work
could be undertaken toward developing a semi-automatic or fully automatic classification
technique to discriminate industrial parcels in GE images [36]. Second, both Chinese text
segmentation and the feature-selection procedure played significant roles in the accuracy
of the industrial structure identification. In this study, the names of several companies
may not have reflected their social functions, which made it difficult for us to identify the
keywords for the relevant industrial category.

4.2. Change Dynamics

This study was an initial attempt to understand the spatial dynamics of industrial
land and intra-structure over a five-year period across the UAHB. The spatial changes
revealed some interesting findings. First of all, the industrial land was mainly concentrated
at the urban fringes and industrial development zones with parcels occupied vast areas.
The industrial development zones located along the coastal area of Hangzhou Bay tended
to increase sharply in quantity and in magnitude during the study period. The results
were consistent with other studies because they also mentioned that urban fringes and
industrial development zones had higher expansion intensities of industrial land than
other regions during the parallel period [37]. The phenomena of industrial land at the
urban fringes and industrial development zones could be attributed to the shortage of
developable land and the continuous increase in land parcel value in the urban center [10].
Many industrial enterprises were forced to seek new manufacturing space at the urban
fringes in consideration of capitalized costs. Moreover, the industrial development zones
of the UAHB also exhibited enormous attractiveness to industrial enterprises due to prefer-
ential terms such as sufficient land space, financial incentives, technical support, power
guarantees, etc. [5] In addition, the implementation of a series of policies also played
important roles in the establishment of industrial development zones [38]. As shown in
Figure 13, the overall spatial distribution of industrial clusters has conformed to the layout
of the UAHB industrial clusters (2020). The industrial development plans issued by gov-
ernment such as the Zhejiang industrial cluster zone development plan (2011–2020) have
been strongly encouraged since 2010. The Zhejiang industrial cluster zone development
plan (2011–2020) put forward industrial-cluster-zone construction to make room for the
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in-depth development of advanced industries such as new energy and new materials and
equipment manufacturing. The plan also pointed out that the UAHB should speed up
the transformation from a traditional lump economy to modern industrial clusters. Eight
industrial cluster zones were determined as the key development zones; these include Da
Jiangdong (Hangzhou), the West Science and Technology Innovation Corridor (Hangzhou),
the Hangzhou Bay New Zone (Ningbo), Meishan Logistics (Ningbo), the South Taihu
Lake Industrial Zone (Huzhou), the Jiaxing Industrial Zone (Jiaxing), the Coastal Shaoxing
Industrial Zone (Shaoxing), and the Coastal Zhoushan Industrial Zone (Zhoushan).
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Second, the industrial land-use types were mostly traditional labor-intensive industries
or capital-intensive industries such as petrochemical manufacturing, equipment manufac-
turing, textile and clothing manufacturing, and transportation equipment manufacturing.
The major industrial intra-structure varied among the different cities. The results were
consistent with the development orientation and industrial economic performance of each
city. The industrial structure varied between the city center and periphery. In the city center,
the industrial types were mainly new industries such as the electronic information industry
with a relatively high land-use efficiency, while traditional industries tended to be far away
from the city center.

Thirdly, during the study period, industrial renewal was also found in parallel to
industrial land expansion and structure optimization. Industrial expansion mainly occurred
in the urban–rural areas and coastal areas, whereas industrial renewal mainly occurred
at the city centers. Since the most incompatible manufacturing industries were forced to
leave the city centers, industrial brownfields must be regenerated because the considerable
amount of brownfields may lead to negative socio-psychological behaviors by citizens and
introduce urban inequality and ecological degradation [39,40]. As a result, the projects
of industrial renewal mostly occurred in the core area of the cities in the UAHB. These
phenomena were consistent with those in other megacities of China such as Shenzhen [41]
and in many dense cities abroad [42,43]. Moreover, as the government policies and plans
have been essential parts of facilitating regional development in China, the projects of
industrial renewal could be difficult to execute without the support of land-use policies.
For example, the implementation of plans for industrial land renovation; namely, “from
the secondary industry to the tertiary industry”, have contributed to improving land-use
efficiency.
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4.3. Implications for Sustainable Industrial Land Development in the Future

The regional industrial block economy is an important characteristic and the main
source of economic vitality of the UAHB [44]. The UAHB has been enacting strict protection
of cultivated land and the sustainable use of marine resources, which indicate that the
industrial growth will be restricted within certain boundaries [45]. Now it is regarded as
the key period of industrial transformation [46]. Therefore, in the future, it is essential to
optimize industrial patterns and structures for quicker and better industrial development.

Firstly, we emphasize that multiple levels of industrial planning are needed for the
UAHB. Irrational, redundant industrial construction and vicious competition may occur
between different cities due to the administration division [47]. To strengthen the linkages
of six cities and create “win–win” situations, Zhejiang’s central government should enhance
the industrial macroscopic plan across the UAHB. The local government of each city must
coordinate its prefecture-level plan with the overall plan of the UAHB. Based on the
industrial development advantages, a scientifically based plan must be included and
implemented strictly.

Secondly, we suggest that intensive utilization of industrial land should be further
improved. The industrial land-use focus should be diverted to the renewal of inefficient
industrial land. The projects such as “Space Exchange” and “Revitalize the Stock” should
be comprehensively carried out [48]. Additionally, it is urgent to standardize and amplify
the industrial land-circulation mechanism, implement policies such as the elimination of
zombies or backward industrial companies, and encourage companies to develop new
industry states through merger or recombination.

Thirdly, industrial parks have become the frontier for attracting foreign capital, ad-
vanced technology, and management experience due to the preferential policies and mature
investment environment in China [49]. More attention should be paid to the rigorous
control of companies’ entry into industrial parks. Companies that can neither meet in-
dustrial park standards nor be integrated into the industry chain must be prohibited. A
comprehensive benefit-evaluation system should be created to determine whether any
company fits the requirements, and the performances of companies should be under super-
vision. Moreover, new industries such as the Internet industry and advanced equipment
manufacturing should be strongly encouraged in order to boost industry transition.

5. Conclusions

The emergence of geospatial big data has provided new opportunities for us to sense
urban socioeconomic activities. One promising big data source—POIs—was applied in
our study. POIs showed a powerful potential to characterize the intra-urban structure at a
high spatial resolution and a large scale. GE images were also adopted in order to build a
detailed and updated industrial-use spatial dataset. In the present study, we established
a new and comprehensive framework to identify and analyze the industrial spaces and
intra-structure through three steps: using NLP and ML to identify industrial structures,
industrial parcel photointerpretation, and applying a KDE analysis tool. The industrial
intra-structure maps were generated using a support vector machine (SVM) approach that
showed an overall accuracy of 84.5%, which indicated that the SVM model performed well
with a good predictive ability. The method successfully recognized the spatiotemporal
pattern of the industrial space and industrial intra-structure across the UAHB.

The results revealed the higher growth of industrial parcels in the coastal UAHB
and urban–rural fringes during 2010–2015. The renewal projects mainly occurred in the
central city and accounted for 94.2% of the total renewal areas. After decades of mass
industrial economic development, the industrial structure of each city has formed its own
characteristics. Textile and clothing manufacturing occupied the most area in Shaoxing,
Jiaxing, Huzhou, and Hangzhou. Adjacent cities were more likely to share similar industrial
structures. Moreover, with the encouragement of industry transition across the UAHB, huge
support has been given to developing new industries (e.g., the Internet industry), especially
in the core city of Hangzhou and subcore city of Ningbo. The current situation and change



Int. J. Environ. Res. Public Health 2023, 20, 226 19 of 21

dynamics of industries further reflect the economic progress and policy management. Our
findings can serve as a fine and detailed reference for industrial land use. Our data can
also be easily updated regularly. Hence, they will be helpful for government managers to
supervise the extent and positions of the informal industrial expansion and the proceeding
of industrial renewal projects to enact proper policies in a timely manner to achieve healthier
and better industrial land utilization. Additionally, identifying the current industrial
structure is a basic step in understanding the urban industry division and predicting future
trends. For government managers, our findings will provide valuable references and might
be useful in making proper arrangements for new industrial companies.
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Appendix A

Table A1. Confusion matrix of industrial land use identification.

TCM EM PI PM LI MLI HAM TEM CMM FPI EPI MM NI MI SI EII EMI NEI OI UA

TCM 120 2 3 2 1 0 0 0 0 3 3 4 0 0 1 0 1 1 1 84.5%
EM 3 102 1 1 2 0 5 3 3 0 3 0 0 0 0 2 2 2 0 79.1%
PI 4 0 90 2 1 2 0 0 3 1 0 3 0 0 0 0 0 0 1 84.1%

PM 0 0 2 91 1 3 3 0 5 0 0 4 0 0 0 0 1 0 0 82.7%
LI 0 0 0 0 89 1 1 4 0 1 0 2 0 0 1 0 3 5 0 83.2%

MLI 0 0 1 3 0 97 2 3 0 0 0 6 0 1 0 0 4 0 0 82.9%
HAM 2 4 0 0 0 1 105 6 3 0 7 0 0 0 0 1 0 0 1 80.8%
TEM 0 0 0 0 5 2 1 96 0 0 3 0 0 0 0 0 0 0 2 88.1%
CMM 1 2 2 1 2 1 0 1 118 0 0 7 0 0 0 0 4 0 1 84.3%
FPI 2 0 0 1 2 0 0 0 0 93 0 2 0 0 2 0 0 0 3 88.6%
EPI 0 0 0 0 3 3 2 2 0 0 116 0 0 0 0 2 0 6 0 86.6%
MM 0 0 2 4 0 2 3 1 4 0 0 98 0 0 0 2 1 0 0 83.8%
NI 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 100.0%
MI 0 0 0 0 0 3 0 0 0 0 0 1 0 46 0 0 0 0 0 92.0%
SI 0 0 0 0 0 0 0 0 0 2 0 0 0 0 36 0 0 0 0 94.7%
EII 0 3 0 0 2 3 4 0 0 0 2 1 0 0 0 102 0 1 0 86.4%

EMI 3 0 2 1 2 0 0 0 2 0 0 0 0 0 0 0 65 0 0 86.7%
NEI 0 2 1 0 1 2 1 0 0 0 0 2 0 0 0 0 2 92 3 86.8%
OI 3 2 4 1 2 2 3 1 2 0 3 2 0 0 0 0 0 1 96 78.7%
PA 87.0% 87.2% 83.3% 85.0% 78.8% 79.5% 80.8% 82.1% 84.3% 93.0% 84.7% 74.2% 100.0% 97.9% 90.0% 93.6% 78.3% 85.2% 88.9% OA:

84.5%

PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy.
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