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Abstract: The commonly used two-step and one-pot synthesis methods for producing biochar require
the use of iron salt solutions, resulting in the undesirable consequences of energy consumption for de-
watering and potential pollution risks. To address this drawback, a magnetic sewage sludge-derived
biochar (MSBC-2) was synthesized by a solvent-free method in this study. The pseudo-second-order
kinetic model and Langmuir model provided the best fit to the experimental data, implying a mono-
layered chemisorption process of Pb2+, Cd2+and Cu2+ onto MSBC-2. As the reaction temperature
increased from 25 ◦C to 45 ◦C, the maximum adsorption capacities increased from 113.64 mg·g−1

to 151.52 mg·g−1 for Pb2+, from 101.01 mg·g−1 to 109.89 mg·g−1 for Cd2+ and from 57.80 mg·g−1

to 74.07 mg·g−1 for Cu2+, respectively. Thermodynamic parameters (∆G0 < 0, ∆S0 > 0, ∆H0 > 0)
revealed that the adsorption processes of all three metals by MSBC-2 were favourable, spontaneous
and endothermic. Surface complexation, cation-π interaction, ion exchange and electrostatic attraction
mechanisms were involved in the adsorption of Pb2+, Cd2+ and Cu2+ onto MSBC-2. Overall, this
study will provide a new perspective for the synthesis of magnetic biochar and MSBC-2 shows great
potential as an adsorbent for heavy metal removal.

Keywords: magnetic biochar; toxic metals; adsorption performance; kinetics; isotherms; mechanisms

1. Introduction

Industrial wastewater often contains various heavy metals, including Pb2+, Cd2+ and
Cu2+, etc. Heavy metals are not biodegradable and can be enriched in humans through the
food chain, leading to a serious impact on the aquatic environment and public health [1,2].
Current heavy metal removal approaches include ion exchange, co-precipitation, membrane
filtration and adsorption, etc. [3–7]. Among them, adsorption is regarded as one of the
most simple, cost-effective and efficient techniques, and has attracted increasing attention.
As adsorbents are essential for adsorption applications, various adsorbents have been
developed, such as activated carbon, biochar, metal oxides in nanoscale, natural minerals,
and polymers [8,9]. Generally, biochar is a carbon-based adsorbent which is generated
by the pyrolysis of biomass under anaerobic conditions or in the presence of limited
oxygen [10]. Due to its large specific surface area, abundant oxygen-containing functional
groups and low cost, biochar has been considered as a promising adsorbent [11,12].

Sewage sludge is a by-product of wastewater treatment plants, which contains various
organic pollutants and pathogens [13]. Traditional treatment methods for sewage sludge
(e.g., incineration and sanitary landfill) often have high energy consumption, low efficiency
and a tendency to cause secondary pollution, thus it is imperative to develop environ-
mentally friendly sludge treatment approaches [14,15]. Lately, sewage sludge has been
converted into biochar by pyrolysis and applied to remove heavy metals from wastewater
as the adsorbent or to mitigate greenhouse gas emissions as the soil amendment, which
has received increasing interest [16]. Previous studies reported that sewage sludge-derived
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biochar (SBC) was employed as an efficient adsorbent for the removal of Pb, Zn, Cd and
Cu from aqueous solution [17,18]. Compared to other biochar, SBC is demonstrated to
have more oxygen-containing functional groups (e.g., carboxyl, hydroxyl, and carbonyl
groups) and larger specific surface area, because of the large number of microorganisms
and organic matters in the sludge [19]. However, it is difficult to separate SBC adsorbent
from the aqueous solution after adsorption due to the tiny particle size, restricting its
practical application in wastewater treatment.

Despite the difficulty in separating from water, raw biochar has other disadvantages
such as small particle size and low density. To eliminate the above shortcomings and
enhance the metal removal efficiency, various modification methods (e.g., surface oxi-
dation, impregnation of metal oxides and functionalization) have been used to modify
biochar [20–22]. Among them, the magnetic modification of biochar offers the potential for
rapid separation and recovery in the presence of an external magnetic field. For instance,
previous studies have reported that FeCl3-modified biochar had excellent magnetic sensi-
tivity and could be separated from the aqueous solution rapidly [23]. In addition, magnetic
modification can enhance the metal adsorption performance [19,24,25]. Currently, two-step
and one-pot synthesis methods are the most used to produce magnetic biochar [26,27]. For
example, the former study successfully used a two-step method to prepare a magnetic
tea-based biochar with an iron-containing solution [27]. In terms of the one-pot method, the
substrate is usually placed in a magnetic solution containing metal ions for impregnation
loading and then pyrolysis is conducted to obtain biochar [28]. However, both require the
use of iron salt solutions as post- and pre-treatment reagents, respectively. This caused the
inevitable consequences of energy consumption for dewatering, potential pollution risks
and operational burden [29,30]. To address this drawback, the development of solvent-free
synthesis methods for magnetic biochar gradually gains the attention of researchers.

In this study, a magnetic sludge-derived biochar (MSBC-2) was synthesized based on
a solvent-free method. The as-prepared material was characterized by scanning electron
microscopy (SEM), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron
spectroscopy (XPS), vibrating sample magnetometer (VSM) and Raman spectroscopy. The
Pb2+, Cd2+ and Cu2+ were selected as representative heavy metal ions and the effects of
pH, temperature, background ionic strength and adsorbent dosage on the metal removal
efficiency of MSBC-2 were determined. Combining adsorption kinetics, isotherms, thermo-
dynamics analysis and further characterization results, the adsorption mechanisms of three
heavy metals onto MSBC-2 were systematically revealed. This work will provide a new
perspective for the synthesis of magnetic biochar with excellent metal adsorption capacities.

2. Materials and Methods
2.1. Materials

Cadmium (II) nitrate tetrahydrate (Cd(NO3)2·4H2O, >99.0% purity), copper (II) nitrate
trihydrate (Cu(NO3)2·3H2O, >99.0% purity) and Fe3O4 nanoparticles (99.5% purity) were
purchased from Shanghai Macklin Biochemical Technology Co., Ltd. (Shanghai, China).
Lead (II) nitrate (Pb(NO3)2, >99.0% purity), sodium nitrate (NaNO3, >99.0% purity) and
nitric acid (65–68% purity) were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Ultra-pure water was prepared by the Milli-Q water purification system.

2.2. Preparation of Magnetic Sewage Sludge-Derived Biochar

The sewage sludge used in this study was obtained from the No.2 wastewater treat-
ment plant of Kunming City, with a moisture content of 80.20 ± 0.07%, volatile solid of
43.99 ± 0.05% (dry basis) and C/N of 6.48. The moisture content of the sewage sludge
decreased to approximately 30% after several days of drying. Sewage sludge was further air-
dried to reduce moisture content (<5%), and ground and passed through a 60-mesh sieve.

Subsequently, 5 g of air-dried sewage sludge was mixed with a certain mass of Fe3O4
nanoparticles and mechanically ground to make a uniform mixture. The mixture was
placed in a quartz boat and pyrolyzed at 800 ◦C for 2 h with a heating rate of 5 ◦C/min



Int. J. Environ. Res. Public Health 2023, 20, 155 3 of 16

under a N2 atmosphere in a tube furnace (SK-G06123K, Tianjin Zhonghuan Furnace Corp,
China). The obtained material was cooled to room temperature, then ground and passed
through the 60-mesh sieve. In our previous study, the Fe3O4 nanoparticle content (based on
Fe element) was set to 0.07%, 0.15%, 0.36%, 0.58%, 0.72%, 1%, 2% and 5%, respectively [31].
The results showed that the Pb2+, Cd2+ and Cu2+ adsorption capacities were highest when
the Fe content was set to 2%, thus magnetic sludge-based biochar with a Fe content of 2%
(MSBC-2) was used in this study.

2.3. Characterization of Magnetic Sludge-Based Biochar

The scanning electron microscope (SEM) was used to observe the microscopic mor-
phology (Gemini 300, Zeiss, Birmingham, UK). The X-ray photoelectron spectrometer
(XPS) was used to characterize the elemental composition and chemical state of the sample
surface before and after adsorption (ESCALAB 250Xi, Thermo Fisher, Waltham, MA, USA).
The vibrating Sample Magnetometer (VSM) was used to determine saturation magnetiza-
tion (LakeShore 7404, Westerville, OH, USA). Raman spectroscopy was measured by the
Micro-Raman System 2000 (Renishaw, Wotton-under-Edge, UK). The Fourier transform in-
frared spectrometer (FTIR) was applied to characterize the functional groups (PerkinElmer
Frontier, Waltham, MA, USA).

2.4. Batch Adsorption Experiments

The effects of pH (2, 3, 4, 5, and 6), temperature (25, 35 and 45 ◦C), ionic strength (0.005,
0.01, 0.05, 0.1 and 0.5 mol·L−1) and adsorbent dosage (0.1, 0.5, 1, 2 and 4 g·L−1) on the metal
removal efficiency were determined by batch adsorption experiments. Typically, a certain
amount of MSBC-2 was added to the metal ion-containing solution (Pb2+, Cd2+ and Cu2+)
of a certain concentration and shaken orbitally at 250 rpm for 24 h at a certain temperature
in the incubator. The initial solution pH was adjusted by adding either NaOH or HNO3.
After adsorption, the mixtures were separated by centrifugation at 4000 rpm for 20 min.
Then the supernatant was filtered by using a 0.45 µM PES syringe filter and diluted in
5% HNO3. The metal concentration was measured by inductively coupled plasma-optical
emission spectroscopy (ICP-OES, Prodigy7, LeemanLabs, Hudson, NH, USA). All the
experiments were conducted in triplicate.

The adsorption capacity (Qe) and removal efficiency (E) of metal ions onto MSBC-2
were calculated according to Equations (1) and (2).

Qe = (C0 − Ce)×
V0

m
(1)

E =
C0 − Ce

C0
× 100% (2)

where Qe is the equilibrium adsorption capacity of adsorbent for heavy metal ions, mg·g−1;
C0 and Ce are the initial and equilibrium concentrations of heavy metal ions, mg·g−1; V0 is
the volume of the reaction solution, L; m is the addition dosage of adsorbent, g; and E is the
removal efficiency of heavy metal ions, %.

As for the kinetics experiments, samples were taken at 1, 3, 5, 10, 20, 30, 60, 90, 120, 180,
240, 360, 720, and 1440 min. Other procedures were the same as above. The results were
fitted to pseudo-first-order (Equation (3)), pseudo-second-order (Equation (4)), Elovich
(Equation (5)) and intraparticle diffusion (Equation (6)) models.

ln (Qe − Qt) = ln (Qe)− k1t (3)

t
Qt

=
1

k2Qe2 +
t

Qe
(4)

Qt =
1
b

ln(ab) +
1
b

ln(t) (5)
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Qt = Kidt0.5 + C (6)

where Qt and Qe are the metal concentrations adsorbed at equilibrium and time t, mg·g−1;
k1 is the rate constant of pseudo-first-order model, min−1; k2 is the rate constant of
pseudo-second-order, g·(mg·min)−1; a and b represent the initial sorption rate constants
(mg·(g·min)−1) and desorption constant (g·mg-1), respectively; Kid is the intraparticle
diffusion rate constant, mg/(g·min0.5); and C reflects the boundary layer effect, mg·g−1.

As for the adsorption isotherm, experimental data were fitted to Langmuir (Equation (7))
and Freundlich (Equation (8)) models.

Ce

Qe
=

1
QmKL

+
Ce

Qm
(7)

ln(Qe) = ln(KF) +
1
n

ln(Ce) (8)

RL =
1

1 + KLC0
(9)

where Qm is the maximum adsorption capacity, mg·g−1; KL is the Langmuir adsorption
constant, L·mg−1; KF is the Freundlich constant, mg·g−1·(L·mg−1)1/n; n is the empirical
heterogeneity factor; and RL is the separation factor.

Based on KL obtained from the Langmuir model, thermodynamic parameters were
calculated by Equations (10)–(12).

∆G0 = −RT ln KL (10)

∆G0 = ∆H0 − T∆S0 (11)

ln KL =
∆S0

R
− ∆H0

RT
(12)

where ∆G0 is the free energy change, kJ·mol−1; ∆S0 is the entropy change, kJ·(mol·K)−1;
∆H0 is the enthalpy change, kJ·mol−1; R is the ideal gas constant, 8.314 J·(mol·K)−1; and T
is the thermodynamic temperature, K.

2.5. Statistical Analysis

The adsorption capacity (Qe) and removal efficiency (E) data were analyzed by using
a one-way ANOVA with a significance set at p < 0.05 (SPSS 26.0, IBM, Armonk, NY, USA).

3. Results and Discussion
3.1. Characterization of MSBC-2

According to Figure 1a,b, the morphology of SBC was smoother, less porous and
cleaner than that of MSBC-2. After magnetic modification, various nano-sized particles
were exposed on the surface of the carbon skeleton. The specific surface area and pore
structure of MSBC-2 and unmodified sewage sludge-derived biochar (SBC) are shown in
Table 1. The specific surface area of MSBC-2 was 63.68 m2·g−1, which was higher than that
of SBC (59.38 m2·g−1), due to the larger specific surface area of loaded Fe3O4 nanoparticles
and the pore expansion effect brought by magnetic modification. The total pore volume of
MSBC-2 (0.089 cm3·g−1) increased slightly compared to SBC (0.073 cm3·g−1). An increase
in pore volume would accelerate the adsorbate entering the inner pore system of the
adsorbent. The average pore diameter of MSBC-2 was 5.96 nm, implying that MSBC-2 had
a typical mesoporous structure. Thus, MSBC-2 had a higher specific surface area and more
abundant adsorption sites for binding metal ions.
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Figure 1. SEM surface morphology of SBC (a), ×5000 and MSBC-2 (b), ×5000, magnetization curve
of MSBC-2 (c) and actual separation performance (d).

Table 1. Specific surface area and pore structure characteristics of MSBC-2 and SBC [31].

Sample BET
(m2·g−1)

Total Pore Volume
(cm3·g−1)

Average Pore Diameter
(nm)

MSBC-2 63.68 0.089 5.96
SBC 59.38 0.073 4.56

Figure 1c indicates that the saturation magnetization value of MSBC-2 was 5.07 emu·g−1

and MSBC-2 had a typical superparamagnetic behaviour and high saturation magnetization
value. Hence, MSBC-2 could be easily recycled from solutions by using an external magnetic
field (Figure 1d).

Raman spectroscopy was used to explore the carbon structure (Figure 2a). As-prepared
samples exhibited two peaks at approximately 1360 and 1590 cm−1, corresponding to the
D band (disordered band) and G band (graphite band). The D-band/G-band (ID/IG) value
of SBC was 1.45, while the value of MSBC-2 decreased to 1.42, indicating that magnetic
modification would reduce the graphitization degree of biochar. The FTIR spectra of SBC
and MSBC-2 before and after adsorption are shown in Figure 2b. The band at 3646 cm−1

was ascribed to the hydroxyl stretching vibration peak, and the peak intensity of the MSBC-
2 was stronger than that of SBC, implying that the magnetic modification had loaded more
hydroxyl groups onto MSBC-2 [32]. The appearance of a peak around 1796 cm−1 was
observed after loading Fe, which corresponded to the stretching vibration of the carboxyl or
lactone group. The result indicates that the modification process introduced more aromatic
groups in biochar, which might enhance the metal adsorption capacity [33]. The band at
1498 cm−1 was attributed to the deformation vibration of the C-N [34].
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3.2. The Influence of Environmental Factors

The impacts of pH, temperature, adsorbent addition dose and ionic strength on metal
removal efficiency and adsorption capacity were determined (Figure 3).
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Figure 3. Effect of pH (a–c), temperature (d–f), adsorbent dosage (g–i) and ionic strength (j–l) on
removal efficiency of Pb2+, Cd2+ and Cu2+ by MSBC-2.

3.2.1. pH

The pH value has a critical effect on the surface charge of biochar, thus significantly
affecting the adsorption performance. As a higher pH would lead to precipitation, the
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pH range in this study was set to 2–6 for Cd2+, Pb2+ and Cu2+ (Figure 1a–c) [35]. For Pb2+

and Cd2+, the adsorption efficiency and capacity increased rapidly from pH 2 to 4, and
then remained stable from pH 4 to 6. The maximum removal efficiencies were 98.9% for
Pb2+ and 99.5% for Cd2+, respectively. For Cu2+, the removal efficiency did not change
apparently from pH 4 to 6, which increased from 42.9% to 51.1%. The poor adsorption
performance of all three metals at the pH of 2–3 was due to the higher concentration of H+

which would compete and occupy binding sites with heavy metal ions [36]. In addition,
several functional groups such as carboxylic groups in MSBC-2 were protonated, resulting
in a positive charge on the MSBC-2 and electrostatic repulsion between the heavy metal
ions and MSBC-2 [37].

As the pH increased, the deprotonation process occurred and negatively charged
carboxyl groups and free hydroxyl groups on the surface would provide more adsorption
sites to enhance heavy metal removal [38]. The initial pH was set to 6 for the following
batch adsorption experiments.

3.2.2. Temperature

Figure 3e,f presents the effect of temperature on the adsorption of Pb2+, Cd2+, and
Cu2+ by MSBC-2. At an initial heavy metal concentration of 100 mg·L−1, the removal
efficiency of Pb2+ and Cd2+ by MSBC-2 was almost not affected by temperature due to the
excessive adsorption sites, while the copper removal efficiency increased as temperature
increased. When the initial Pb2+/Cd2+ concentration increased to 250 mg·L−1, the removal
efficiency increased by 14.5% for Pb2+ and 18.3% for Cd2+, respectively, as the temperature
increased from 25 ◦C to 45 ◦C. The varied influence of temperatures might be due to the
different affinities of Pb2+, Cd2+, and Cu2+ to MBSC-2 [39,40].

3.2.3. Adsorbent Dosage

The dosage of adsorbent is another important factor affecting removal efficiency.
Insufficient amounts cannot achieve the purpose of treating water pollution caused by
heavy metals, while excessive amounts do not make full use of resources and increase costs.
The removal efficiency of Pb2+ and Cd2+ increased sharply when the MSBC-2 addition dose
was increased from 0.1 g·L−1 to 1 g·L−1, then remained stable, while the inflection point
occurred at 2 g·L−1 for Cu2+ (Figure 3g–i). For all three metal ions, adsorption capacities
decreased as the adsorbent dosage increased. With the increasing MSBC-2 addition dose,
more available adsorption sites were provided, which led to higher metal removal efficiency
but reduced the adsorption per unit mass of adsorbent as well [41].

3.2.4. Ionic Strength

The background ionic strengths were set to 0.005–0.5 mol·L−1 NaNO3 (Figure 3i–l).
The ionic strength had a negligible effect on the removal of Pb2+ and Cd2+, suggesting
that the inner complex might be generated [42]. However, the removal efficiency and
adsorption capacity of Cu2+ by MSBC-2 decreased significantly with the increasing ionic
strengths (p < 0.05), probably due to competition between Na+ and Cu2+ for adsorption
sites [43].

3.3. Adsorption Kinetics

The adsorption capacity of Pb2+, Cd2+ and Cu2+ at different contact time is shown
in Figure 4. The adsorption kinetics curves of Pb2+, Cd2+ and Cu2+ onto MSBC-2 were
similar and the adsorption process could be divided into three stages: fast adsorption
stage, slow adsorption stage and adsorption equilibrium stage. In the fast adsorption
stage, the adsorption capacity and metal removal efficiency of MSBC-2 for all three metals
increased rapidly, due to abundant adsorption sites on the surface of MSBC-2. Gradually,
MSBC-2 adsorption sites were occupied, and then the adsorption capacity increased slowly
and finally reached equilibrium. The equilibrium time was 120 min for Pb2+ and Cd2+
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adsorption systems, while the Cu2+ adsorption onto MSBC-2 reached equilibrium at about
360 min.
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Figure 4. Adsorption kinetics curve of Cd2+, Pb2+ and Cu2+ onto MSBC-2 and SBC.

To further explore the adsorption process of Pb2+, Cd2+ and Cu2+ onto MSBC-2, the
experimental data were fitted to pseudo-first-order, pseudo-second-order, Elovich and
intraparticle diffusion models (Table 2).

As for Pb2+, Cd2+ and Cu2+, the correlation coefficients (R2) of the intraparticle model
(R2 = 0.4–0.74) were lower than the fits to the other three models (R2 = 0.74–1.00), indi-
cating that intraparticle diffusion was not the only rate-limiting step during the adsorp-
tion process [44]. All kinetics data could be described best by the pseudo-second-order
model with the R2 over 0.99, indicating that chemisorption was the most responsible rate-
limiting step for adsorption of Pb2+, Cd2+ and Cu2+ onto MSBC-2 [45,46]. Moreover, the
adsorption rates for the three metals were various, and the rate constant sequence was:
Pb2+ > Cd2+ > Cu2+. The Elovich model generally presents the heterogeneous chemisorp-
tion process [44]. The experimental data for the Elovich models gave high correlation
coefficients for Cd2+ (R2 = 0.9124, p < 0.0001) and Cu2+ (R2 = 0.9794, p < 0.0001), implying
the adsorption systems were highly heterogeneous.

3.4. Adsorption Isotherms

Figure 5 shows the adsorption isotherms of Pb2+, Cd2+ and Cu2+ onto MSBC-2 at
25 ◦C, 35 ◦C and 45 ◦C. As the initial metal concentrations increased, the adsorption
capacities of Pb2+, Cd2+ and Cu2+ by MSBC-2 increased gradually and then tended to
reach equilibrium. The adsorption capacities of the three metals were greater at a higher
temperature. To further illustrate the adsorption mechanism of Pb2+, Cd2+ and Cu2+

onto MSBC-2, Langmuir and Freundlich models were used to fit the experimental data
(Table 3). Compared to Freundlich model, the Langmuir model showed better fits to the
experimental data with R2 of 0.9958–0.9999. The results revealed that adsorption processes
were monolayer adsorption between the metal ions and oxygen-containing functional
groups distributed homogeneously on the MSBC-2 surface [47,48]. When the reaction
temperature increased from 25 ◦C to 45 ◦C, the maximum adsorption capacities increased
from 113.64 mg·g−1 to 151.52 mg·g−1 for Pb2+, from 101.01 mg·g−1 to 109.89 mg·g−1

for Cd2+ and from 57.80 mg·g−1 to 74.07 mg·g−1 for Cu2+, respectively. The adsorption
processes were endothermic for all three metal ions.
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Table 2. Adsorption kinetics parameters for various adsorption kinetics models.

Metal
Qe,exp

(mg·g−1)

Pseudo-First-Order Model Pseudo-Second-Order Model Elovich Model Intraparticle Diffusion Model
Qe,cal

(mg·g−1) k1(min−1) R2 p Qe,cal
(mg·g−1)

k2
(g·(mg·min)−1) R2 p a

(mg·(g·min)−1)
b

(g·mg−1) R2 p Kid
(mg·(g·min0.5)−1)

C
(mg·g−1) R2 p

Pb 95.75 44.35 4.80 × 10−3 0.8788 0.0006 95.24 3.33 × 10−3 0.9999 <0.0001 6.75 × 102 0.104 0.8392 <0.0001 1.333 61.94 0.4263 0.0213
Cd 93.22 44.33 4.60 × 10−3 0.7896 0.0006 93.46 1.27 × 10−3 0.9998 <0.0001 1.53 × 102 0.095 0.9124 <0.0001 1.638 49.41 0.5750 0.0043
Cu 53.17 24.39 3.00 × 10−3 0.7398 0.0002 52.91 8.60 × 10−3 0.9971 <0.0001 6.75 × 102 0.201 0.9794 <0.0001 0.862 26.87 0.7350 0.0002
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Figure 5. The adsorption curves of Cd2+, Pb2+ and Cu2+ onto MSCB-2 at different temperatures.
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Table 3. Adsorption isotherm parameters of heavy metals onto MSBC-2 at different temperatures for Langmuir and Freundlich models.

Metal Temperature
(◦C)

Langmuir Freundlich

Qm
(mg·g−1)

KL
(L·mg−1) R2 p RL

Kf
(mg·g−1·(L·mg−1)1/n) n R2 p

Pb
25 113.64 1.073 0.9990 <0.0001 0.0011–0.0458 39.958 4.024 0.7527 0.0052
35 131.58 1.310 0.9999 <0.0001 0.0020–0.0768 44.228 3.986 0.6709 0.0129
45 151.52 0.617 0.9997 <0.0001 0.0042–0.1501 49.511 3.849 0.6036 0.0233

Cd
25 101.01 0.339 0.9992 <0.0001 0.0073–0.2278 34.03 4.40 0.5379 0.0384
35 106.38 0.355 0.9997 <0.0001 0.0070–0.2198 33.08 4.06 0.5890 0.0262
45 109.89 0.387 0.9996 <0.0001 0.0064–0.2053 35.08 4.13 0.5601 0.0327

Cu
25 57.80 0.413 0.9968 <0.0001 0.0060–0.1949 27.183 5.89 0.7695 0.0095
35 66.23 0.557 0.9958 <0.0001 0.0045–0.1522 32.122 6.03 0.7258 0.0149
45 74.07 0.808 0.9966 <0.0001 0.0031–0.1101 41.04 6.89 0.7231 0.0153
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The separation factor RL (Equation (9)) was calculated from the Langmuir model,
which can indicate whether adsorption is favourable (0 < RL < 1), linear (RL = 1), un-
favourable (RL > 1) or irreversible (RL = 0) [49]. As shown in Table 3, RL values ranged
from 0.0011 to 0.2278, thus the adsorption of Pb2+, Cd2+ and Cu2+ onto MSBC-2 at various
temperatures was favourable. The 1/n value represents the degree of heterogeneity [50].
The 1/n values were all less than 1, proving that the adsorption of Pb2+, Cd2+ and Cu2+

onto MSBC-2 was favourable, which was in accordance with RL values [51].

3.5. Adsorption Thermodynamic Analysis

Based on the KL values achieved from Langmuir model, the thermodynamic parame-
ters were calculated and presented in Table 4. Negative ∆G0 values implied the adsorption
of Pb2+, Cd2+ and Cu2+ onto MSBC-2 was spontaneous [52]. With the increasing tem-
peratures, ∆G0 decreased for all three metals illustrating that the adsorption process was
more spontaneous and favourable at higher temperatures [53]. This could be due to the
enhancement of the adsorbate molecules mobility, indicating greater affinity at the higher
temperature. The sorting of ∆G0 values was: Cu2+ > Pb2+ > Cd2+, implying that the adsorp-
tion of Cd2+ onto MSBC-2 had the highest spontaneity and largest feasibility. All the ∆H0

values were positive, indicating that the adsorption of Pb2+, Cd2+ and Cu2+ onto MSBC-2
was endothermic in nature, which was consistent with the adsorption isotherms results.
Typically, the value of ∆H0 in a range of 80–200 kJ·mol−1 suggests chemisorption [54,55].
The calculated ∆H0 values were 91.41 kJ·mol−1, 186.89 kJ·mol−1 and 46.28 kJ·mol−1 for
Pb2+, Cd2+ and Cu2+, respectively. The results imply that the adsorption of the three
metal ions by MSBC-2 mainly depended on chemical adsorption, which agreed with the
adsorption kinetics and adsorption isotherm results. The positive ∆S values exhibited that
the randomness on the metal solution-MSBC interface increased and the affinity of metal
ions was adequate to adhere to the adsorbent surface during the sorption process [56].

Table 4. Thermodynamic parameters of Cd2+, Pb2+ and Cu2+ onto MSBC-2.

Metal T (K) ∆G0 (kJ·mol−1) ∆S0 (kJ·(mol·K)−1) ∆H0 (kJ·mol−1) R2 p

Pb
298.15 −4.8321

0.3218 91.4139 0.9631 <0.05308.15 −7.0649
318.15 −11.3108

Cd
298.15 −4.9783

0.6430 186.8869 0.9973 <0.05308.15 −10.8810
318.15 −17.8607

Cu
298.15 −1.4316

0.1594 46.2807 0.9464 <0.05308.15 −2.4190
318.15 −4.6460

3.6. Adsorption Mechanisms

To further explore the adsorption mechanism, FTIR and XPS analyses were performed
by identifying the changes in functional groups before and after adsorption. According to
FTIR, the peak intensity of the –OH group was weakened after the adsorption of heavy
metals, probably due to the involvement of the –OH group in surface complexation and
ion exchange. The intensity of the peak at 1042 cm−1, which was ascribed to C–O stretch-
ing vibration, reduced after metal adsorption, suggesting that C–O was involved in the
formation of chelates with metals [57].

The XPS spectroscopy was used to investigate the elemental composition and chemical
state of MSBC-2 before and after adsorption (Figure 6). The Fe 2p spectrum show two peaks
representing Fe 2p3/2 (711.3 eV) and Fe 2p1/2 (725.3 eV), proving that iron was loaded
onto biochar successfully [58]. The characteristic binding energies ascribed to Pb 4f (139.3
and 14.1 eV), Cd 3d (412.9 and 406.2 eV) and Cu 2p (411.9 and 405.1 eV) occurred after
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adsorption, indicating that all three metal ions were adsorbed by MSBC-2 [59]. Specifically,
the peaks with the binding energies of 139.3 and 144.1 eV in the Pb 4f were attributed to Pb2+

and Pb-O, and the existence of Pb2+ species exhibited that electrostatic attraction occurred
between Pb and MSBC-2 [60]. The Cd 3d could be divided into Cd-π (412.9 eV) and
Cd-O binding (406.2 eV), suggesting that coordination with π electrons and electrostatic
attraction were involved in the Cd2+ adsorption process [61,62]. The spectra of Cu 2p
could be divided into three main peaks Cu 2p1/2, Cu 2p3/2, and shake-up satellites. The
peaks with the binding energy of 934.0 eV in the Cu 2d were ascribed to (–COO)2Cu and
(–O)2Cu, representing that the carboxyl and hydroxyl groups reacted with the Cu2+ [63].
The appearance of the shake-up satellites demonstrates that an ion exchange existed in
the Cu2+ adsorption process [64]. The O 1s XPS spectra of the MSBC-2 was decomposed
into three components: Fe–O–H, Fe–O–Pb, Fe–O–Cd, or Fe–O–Cu at ~531.5 eV, C–O at
532.4 eV and O=C–O at 533.6 eV, respectively. After metal ions were adsorbed by MSBC-2,
the intensity of the peaks at ~531.5 eV increased from 7.5% to 16.1% for the Pb2+ system,
to 24.2% for the Cd2+ system and to 21.0% for the Cu2+ system, due to the interaction of
the surface of Fe–O–H with Pb2+/Cd2+/Cu2+ through ligand exchange (O-Pb, O-Cd or
O-Cd) [62,65]. The O=C-O peak decreased from 47.9% to 30.4% (for Pb2+), 35.4% (for Cd2+)
and 29.5% (for Cu2+), respectively, implying that −COOH groups were involved in surface
complexation [65].
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Figure 6. XPS analysis of MSBC-2 before and after Cd2+, Pb2+ and Cu2+ adsorption.

In conclusion, surface complexation, cation-π interaction, ion exchange and electro-
static attraction were involved in the adsorption of Pb2+, Cd2+ and Cu2+ onto MSBC-2.
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3.7. Comparison with Other Relevant Adsorbents

Table 5 summarizes several adsorption parameters (e.g., Qm and k2) of as-prepared
material and other relevant adsorbents. The maximum adsorption capacities of MSBC-2 for
Cd2+, Pb2+ and Cu2+ were greater than those of most resembling adsorbents, thus MSBC-2
could be used as a potential adsorbent for Pb2+, Cd2+ and Cd2+ removal.

Table 5. Comparison of Qm and k2 between MSBC-2 and various magnetic biochars.

Raw Materials k2
(g·(mg·min)−1)

Qm
(mg·g−1) Reference

Rice straw
2.4 × 10−2 (Pb)

9.00 × 10−2 (Cd)
3.90 × 10−2 (Cu)

133.3 (Pb)
42.7 (Cd)
19.6 (Cu)

[66]

Date leaves and stalks 3.98 × 10−3 (Pb)
2.70 × 10−3 (Cd)

103.1 (Pb)
106.4 (Cd) [18]

Cellulose 5.00 × 10−3 (Pb)
5.00 × 10−4 (Cu)

17.3 (Pb)
42.2 (Cu) [67]

Corn straw
3.2 × 10−4 (Pb)

1.30 × 10−4 (Cd)
6.10 × 10−4 (Cu)

54.5 (Pb)
66.2 (Cd)
84.8 (Cu)

[68]

Rice husk 5.00 × 10−2 (Cd) 21.7 (Cd) [69]

Sunflower 2.8 × 10−2 (Cd)
2.3 × 10−2 (Cu)

2.9 (Cd)
2.7 (Cu) [70]

Chitosan 4.5 × 10−3 (Cu) 33.9 (Cu) [71]
Cane 6.33 × 10−4 (Pb) 40.6 (Pb) [72]

Sludge
3.33 × 10−3 (Pb)
1.27 × 10−3 (Cd)
8.60 × 10−4 (Cu)

113.6 (Pb)
101.0 (Cd)
57.8 (Cu)

This study

4. Conclusions

To address the drawback of two-step and one-pot synthesis methods for producing
biochar, a magnetic sewage sludge-derived biochar (MSBC-2) was synthesized by a solvent-
free method in this study. The adsorption performance of three metal ions (Pb2+, Cd2+ and
Cu2+) onto the MSBC-2 was investigated in detail together with adsorption mechanisms.
The pseudo-second-order kinetic model (R2 = 0.9971–0.9999, p< 0.0001) and Langmuir
model (R2 = 0.9958–0.9999, p < 0.0001) provided the best fit to the experimental data, im-
plying a monolayered chemisorption process of Pb2+, Cd2+and Cu2+ onto MSBC-2. As the
temperature increased from 25 ◦C to 45 ◦C, the maximum adsorption capacities increased
from 113.64 mg·g−1 to 151.52 mg·g−1 for Pb2+, from 101.01 mg·g−1 to 109.89 mg·g−1 for
Cd2+ and from 57.80 mg·g−1 to 74.07 mg·g−1 for Cu2+, respectively. Thermodynamic
parameters (∆G0 < 0, ∆S0 > 0, ∆H0 > 0) demonstrated that the adsorption processes of all
three metals by MSBC-2 were favourable, spontaneous and endothermic. The adsorption
mechanisms involved surface complexation, cation-π interaction, ion exchange and elec-
trostatic attraction for the adsorption of Pb2+, Cd2+ and Cu2+ onto MSBC-2. Overall, this
study will provide a new perspective for the synthesis of magnetic biochar and MSBC-2
presents a significant potential as an adsorbent for heavy metal removal.
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