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Abstract: The damming of the river changes the structure of the original river ecosystem, and
although fish passage plays an important role in maintaining the connectivity of the river ecosystem,
the fish have difficulty finding the fish passage entrance during the upstream process. This paper
studied the rheotaxis of fish under three different water flow conditions experimentally through
recirculating water tanks. To better understand the response of Crucian carp (Carassius auratus)
to water flow stimulation, the representative swimming trajectory, sensing success rate, attraction
success rate, reaction time, and attraction time of the fish were analyzed by using a video monitoring
system. The experimental results showed that fish responded differently to single-peak and lateral
bimodal outflow conditions: (1) the single-peak outflow condition had a much better attraction effect
than the lateral bimodal outflow condition, both in terms of sensing success rate and attraction success
rate; (2) the fish swam mainly in the middle area of the lateral bimodal outflow condition, while
the fish swam more evenly in the single-peak outflow condition. Therefore, setting the attraction
current at the right time and near the entrance of the fish passage may help to improve the effect of
fish attraction.

Keywords: rheotaxis; attraction flow; fish passage entrance; river restoration

1. Introduction

China is the country with the largest number of dams in the world; according to
statistics, 98,000 dams have been built, and there are more than 270,000 water conservancy
facilities, such as gates and weirs, with a discharge of 1 m3/s and above [1]. While
promoting the benefits and eliminating the harm, these dams and reservoirs also directly
block the connectivity of river water flow, destroy the topography and geomorphology
of the original river, make the aquatic environment of the river discontinuous, artificially
cut off the channels for fish and other aquatic organisms to migrate, resulting in the loss
of fish population diversity and even the endangerment of long-distance migratory fish.
It is urgent to restore the longitudinal connectivity of rivers and fish migration channels.
Fish passage, which contributes to the restoration of river connectivity and helps fish to
complete their upstream migration, is gaining a lot of attention.

The earliest fish passages were excavations, reefs in the river, dredging rapids, and
other natural obstacles to communicating the migratory route to the fish [2–5]. In 1662,
France’s Bayonne province issued regulations [6] requiring the construction of weirs on
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the passage of fish upstream and downstream. However, the structure of this fish passage
was simple—only some branches were fixed at the bottom of the weir to reduce the flow of
water, allowing fish to pass the weir. The world’s first real fish passage [7,8] was built at the
Hooley Dam on a tributary of the River Tees in Perthshire, Scotland in 1883. By the end of
the 1990s, more than 400 fish passages had been built in North America and more than 1400
in Japan [9,10]. The study of Chinese fish passages began in 1958, relatively late compared
to foreign countries [11]. For a long time afterward, the development of hydropower
projects in China became the focus, neglecting the protection of the ecological environment.
In the growing pursuit of sustainable and harmonious development, China has placed
a high priority on the protection of the ecological environment since November 2012. For
the protection of fish and other aquatic plants and animals, additional fish passages and
stocking measures have been proposed one after another [12–14]. The “European Water
Framework Directive” also requires the restoration of river continuity [15] through the
construction of efficient fish passages by 2027.

At present, most fish passage studies have been devoted to optimizing the structural
design of fish passages to improve the passing capacity [16–18]. Many researchers such as
Amaral [19], Baki [20], Enders [21], and Shicheng Li [22] have also studied the swimming
performance and appropriate flow velocity of fish in the interior of the fish passages.
Starrs [23] used burst swimming speed to predict the ability of fish to pass fish passages
and proposed that water temperature and flow velocity are two important factors for fish to
pass fish passages. Hein [24] studied a variety of migratory animals and proposed a model
to calculate the maximum migration distance, which is closely related to the size of the
animal. Foreign scholars have obtained various evaluation models [25,26] of swimming
ability through a large number of studies, such as the relationship between swimming
speed and body length; the relationship between swimming speed, body length, and fatigue
time; the relationship between temperature and swimming speed; the relationship between
temperature, body length, and swimming speed [27,28]; and the relationship between
swimming speed and oxygen consumption rate [29]. Yang Yu [30] introduced the research
of fish hydraulics from three aspects, including the demand of fish for water environments,
the physiological tolerance of fish, and the ecological tolerance of fish, and suggested
further exploring the action law and mechanism of water flow in the ecological problems
of fish and developing the hydraulics of overfishing facilities and fish habitat restoration.

Green [31] found that fish tend to be attracted to the rapids of hydroelectric power
plants, which makes it difficult for fish to identify fishway entrances. Because the water
volume released from the fishway is relatively low, the velocity of flow is usually extremely
slow. Therefore, the attractiveness of the fish passage entrance is also critical to ensure that
the fish passage is fully functional. According to the “Fishway guidelines for Washington
State” [32], the number of fishways that can effectively pass fish is generally below 50% in
countries around the world, and the ability of fish to quickly find and accurately enter the
fishway entrance is one of the key factors in the successful operation of fishways. However,
a part of the reason for the low efficiency of fish passage is that it is difficult for target fish to
find the entrance of the fish passage during the upstream process [33]. Xie Chunhang [34]
used numerical simulations to study two types of fish passage entrance arrangements and
found that the flow pattern of the fish-catching water in the fish-catching channel formed by
the guide wall and the river bank was more attractive to the target fish. Fishway entrances
belong to the intersection of fish behavior and hydraulics research; however, most of the
current literature mentions fishway entrance design from the engineering operation point
of view and hydraulics. In this paper, we studied the rheotaxis of experimental fish under
different water flow conditions through an indoor tank to create fish-friendly water flow
conditions for fish passage projects and improve the fish collection and lure effect of fish
passage entrances.
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2. Materials and Methods
2.1. Experimental Setup

The fish experiments were conducted in an indoor self-built tank at the Tiexinqiao
Water Experiment Center of the Nanjing Institute of Water Resources Science from May to
September 2021. The self-built tank was a circular self-circulating tank with a total length
of 10.0 m, a total width of 4.0 m, and a total height of 1.0 m. The tank was divided into
three areas, namely the water storage area, the test area, and the water return area, by
using a gray plastic baffle (Figure 1). The water pump was used to extract the water stored
in the storage area into the test area, and the water flowing out of the test area entered
the storage area through the return channel to achieve self-circulation of the water supply.
Before the experiment, the effect of the 1.0 m wide return channel was tested, and it was
found that it could quickly and effectively replenish the reduced water in the storage area
and ensure that the pump provided the experimental water stably. To facilitate the analysis
of the experimental results, the effective test area of 7.0 m in length and 2.8 m in width was
divided into two units: the fish-release unit (downstream side) and the focal observation
unit (upstream side). The fish release unit was 2.4 m long and 2.8 m wide, and was used to
simulate the habitat area of downstream fish; the effective test area 4.0 m long and 2.8 m
wide was the focal observation unit. The path chosen by the experimental fish to move from
the fish release unit to the upstream water flow outlet area was completely recorded by
a camera arranged above the tank. The camera used for the experimental video recording
was a custom-made HD camera (sensor was Sony IMX317(1/2.5”), the resolution and frame
rate were 3840 × 2160@30 fps, FOV was 100 degrees, relative illumination (sensor) was
70%, and IR filter was 650 ± 10 nm). To minimize the distortion of the image during the
video recording, the camera was fixed on a high enough bracket to ensure that the fish
movement could be observed in all the experimental areas of the tank (Figure 2).
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Figure 1. Test model generalization diagram (unit: cm) (D-1—it represents the flow conditions of
single-peak outflow; D-2—it represents the flow conditions of bimodal outflow). The red line is the
boundary line of the model (actually exists), and the black dotted line is the schematic line of the
division of the internal area of the model (not really exists).

2.2. Target Fish and the Acclimation Conditions

Crucian carp (Carassius auratus) was selected as the target fish in this study. Carassius auratus
is a typical freshwater fish native to China, widely distributed in all major water systems
outside the Qinghai-Tibetan Plateau region of China, and it has been introduced to freshwa-
ter bodies around the world. The wild population mainly inhabits lakes, rivers, canals, and
marshes, especially in shallow lakes with lush water. It is an adaptable fish that can survive
in deep or shallow water, running or still water, or high or low temperature water, and even
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in alkaline water and saline lake Dali, it can still grow and reproduce. The Carassius auratus
used in the experiment were provided by a local fish farm in Jiangsu, China. To avoid
harming the fish, the fish were not caught by electric fishing, but by less harmful fishing
nets, and then they were kept in a portable container with an oxygenator. The fish were
then transported to the Tiexinqiao Water Experiment Center of the Nanjing Institute of
Water Resources Science in less than two hours to adapt to the laboratory environment.
To minimize the adverse effects [35] of stress on the subsequent experiments, the weight
and sex of the fish were not collected, but only the length of the fish was measured. The
local fishery provided 50 individuals of cultured Carassius auratus with an average size of
about 18.8 ± 0.4 cm. In the pre-test, it was observed that the target fish were able to swim
at burst speeds in the test area, and therefore, the size of this test area was considered to
meet the needs. All experimental fish were temporarily housed for 5 days in a circular
pool of 2.0 m diameter in the laboratory at a depth of 0.6 m (Figure 3). Temporary water
was tap water that had been aerated for 3 days, with a water temperature of 23 ± 1 ◦C
and a dissolved oxygen concentration greater than 8.0 mg/L. These fish were regularly fed
with appropriate fish food, and feeding was stopped one day before the experiment. For
the formal experiment, the experimental water was the same as the temporary water, with
a water temperature of 24 ± 0.5 ◦C and dissolved oxygen concentration maintained above
8.0 mg/L.
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2.3. Experimental Setup

To study the convergent behavior of fish under different water flow conditions, 15 sets
of experiments containing three different conditions were conducted in the laboratory,
namely, the lateral symmetric bimodal outflow mode, lateral asymmetric bimodal outflow
mode, and single-peak outflow mode (Table 1). In the lateral symmetric bimodal outflow
mode, the flow rate was set to 80 m3/h, i.e., the flow rate of each outlet was 40 m3/h. The
water depth was maintained at about 40 cm by adjusting the sink tailgate. The two outlets
were arranged at 1/4 of the width from the lateral sidewalls of the test area (70 cm from
the side walls). In the lateral asymmetric bimodal outflow method, the positions of the
two outlets were kept the same as in the lateral symmetric bimodal outflow method for
comparison purposes. The discharge was also set to 80 m3/h, and the discharges of the
two outlets were set to 65 m3/h (left) and 15 m3/h (right) for one large and one small outlet,
respectively. The cross-sectional shape of the spout with a circular shape and its ejected
discharges of 15 m3/h, 40 m3/h, and 65 m3/h were provided by calibrated pumps. The



Int. J. Environ. Res. Public Health 2022, 19, 5744 5 of 19

diameters of their spouts were 14 cm, 7.5 cm, and 6.0 cm, respectively. In the single-peak
outflow mode, the discharge was set to 65 m3/h and the flow outlet was set at the 1/2
width of the test area. To reasonably determine the vertical position of the outlet, the flow
conditions of surface outflow (at 30 cm above the bottom) and bottom outflow (at 10 cm
above the bottom) were compared. The test results showed that: under the bottom outlet
condition, the mainstream swung obviously due to the influence of the bottom sidewall,
and the flow pattern was chaotic, which had a great influence on the swimming behavior
of the experimental fish; under the surface outlet condition, the mainstream developed
downstream in a straight line, and there was no obvious lateral swing, and the flow pattern
met the required requirements of the test. Therefore, the vertical position of the outlet of
the experiment under three different water flow conditions was arranged at 30 cm above
the bottom, and the experimental water depth was maintained at about 40 cm.
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Table 1. Experimental runs.

Water
Flow Conditions

Run No. Number
of Fish

Discharge
(m3/h)

Water Depth
(cm)

Water Outlet

Width Position Vertical Position

Single-peak outflow

1 13

65 40 1/2 30 cm above
the bottom

2 12
3 12
4 15
5 15
6 13

Lateral symmetric
bimodal outflow

7 17
40 + 40 40 1/4 30 cm above

the bottom
8 16
9 15

Lateral asymmetric
bimodal outflow

10 17

65 + 15 40 1/4 30 cm above
the bottom

11 17
12 13
13 15
14 17
15 13
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2.4. Analysis of Fish Behavioral Response

The experiment was conducted from May to September, and the experiment was
chosen to be conducted indoors to avoid excessive temperature differences due to sunlight.
For each experiment, a dozen of experimental fish in the temporary pond were randomly
caught with soft fishing nets, the fish were gently placed into the release unit by manual
netting method, and the experimental fish were allowed to acclimatize in the release
unit until they stopped swimming freely before starting the test (about 30 min) [35]. The
swimming behavior of the experimental fish was recorded by the monitoring system. If the
experimental fish successfully swam from the release unit into the focal observation unit,
the experimental fish were considered to have successfully sensed the stimulus of water
flow; if the experimental fish successfully swam from the release unit to the vicinity of the
outlet, the experimental fish were considered to be successfully attracted. The maximum
observation time for each group of tests was 40 min, and if the experimental fish failed to
reach the vicinity of the water outlet after 40 min, the experimental fish were considered
not successfully attracted. Nevertheless, such a short adaptation time and duration of the
experiment may have caused some variation in the results [36,37]. To avoid the effects of
light and time, the experiments were completed during well-lit periods, and the time of the
experiments was kept the same as much as possible. At the end of the experiment, the fish
were transferred to another rectangular transient pond through the experimental basin to
observe whether there were any casualties, and after 24 h, the fish without obvious trauma
were transferred to the circular transient pond. Since the individual fish were not marked,
some of the experimental fish randomly caught for each group of experiments may have
been tested more than once, and it was also difficult to record the number of times each
individual fish was used. Therefore, multiple experimental tests of some fish may have
affected the experimental results, but this effect proved to be likely insignificant [38].

To better characterize the rheotaxis of experimental fish under different water flow
conditions, here, we first defined four parameters: sensing success rate, attraction success
rate, reaction time, and attraction time.

If the experimental fish successfully swam from the fish release unit into the focal
observation unit, the experimental fish were considered to have successfully sensed the
stimulation of the water flow, and the sensing success rate was calculated for each group of
tests. The sensing success rate was calculated by the formula:

SS =
NS
NN

× 100% (1)

where NS is the number of experimental fish that successfully swam from the fish release
unit into the focal observation unit in each group of tests; NN is the total number of fish
released in each group of tests.

If the experimental fish successfully swam from the release unit to the vicinity of
the outlet, the experimental fish were considered to be successfully attracted, and the
attraction success rate was calculated for each group of tests. The attraction success rate
was calculated by the formula:

SA =
NA
NN

× 100% (2)

where NA is the number of experimental fish that successfully swam from the fish release
unit into the vicinity of the water outlet in each group of tests; NN is the total number of
fish released in each group of tests.

Timing from the jet discharge of the water outlet, the time until the experimental fish
entered the focal observation unit from the release unit was defined as the reaction time TR.

The time spent by the experimental fish passing through the focal observation unit
was defined as the attraction time TU .
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2.5. Test and Measurement Means

Considering that the water depth in this test was only 40 cm, the water depth in the
test area of the flume varied in a small range, and the water pressure did not vary much
along with the depth, which also did not easily cause significant changes in fish behavior
in the vertical direction. At the same time, based on the qualitative test observation in the
early stage, it was found that the fish entering the tank quickly found their favorite water
depth and kept this depth upstream, which indicated that the movement trajectory of fish
in this experimental environment mainly changed in the plane. Therefore, this experiment
mainly collected the motion trajectories of experimental fish in the two-dimensional XY
plane. The experiment used Logger Pro 32 software to track the fish movement, which uses
the number of video frames as the time axis and the pixel point assignment to track the
target, and can capture the frames in the video frame-by-frame to track the process of the
target movement. By importing the captured video into this software and playing back the
video, the fish’s swimming can be tracked frame-by-frame. Assuming that the shape and
size of the fish have almost no effect on the path extraction, the trajectory is characterized
by the movement of the fish’s head to generate the fish’s motion trajectory. At the end of
the playback of the whole video tracking, the software generated a data table containing
the coordinate point positions of the experimental fish on the horizontal plane at different
moments and the swimming speed of the fish in the horizontal direction.

To understand the flow velocity in the focal observation unit more quantitatively,
a three-dimensional ADV velocity measurement system and a wireless propeller velocity
meter were used to measure the flow field in the test area. We laid 18 flow measurement
sections (section spacing 0.20 m) in the focal observation unit. We evenly distributed
15 measurement points (measurement point spacing 0.20 m) in each flow measurement
section. A total of 270 measuring points were set up, and the water depth at the measuring
point was 0.30 m. The ADV velocity measurement system uses an acoustic Doppler
velocimeter Vectrino (Nortek, Akershus, Norway). Flow velocities were collected at 25 Hz
for 2 min at each measurement location. The selection of velocity range must be greater than
the velocity value of the measuring point (the measurement effect is the best if it is slightly
greater). The wireless propeller velocity meter is a miniature contact intelligent velocity
meter (LGY-III) developed by Rui Di High-Tech Company of Nanjing Institute of Water
Resources Science, Nanjing, China, which was pre-calibrated by ADV before the experiment.
It was mainly used for the hourly average discharge measurement in the laboratory. The
water temperature of the test water was measured by a high-precision mercury thermometer
commonly used in laboratories, with a measurement accuracy of ±0.2◦. The dissolved
oxygen concentration measurement in water was adopted by the HACH HQ30d (HACH,
Loveland, CO, USA) dissolved oxygen meter imported from the USA, and the accuracy
of dissolved oxygen was ±0.1 mg/L for 0.1–8.0 mg/L and ±0.2 mg/L for greater than
8.0 mg/L. One-way analysis of variance (ANOVA) was performed using the SPSS Statistics
software (IBM V21.0; IBM, New York, NY, USA) to assess the significant effects. The
statistical significance of the results was accepted as p < 0.05 in all tests performed.

3. Experimental Results
3.1. Swimming Mode

Figure 4 shows the swimming trajectory of some experimental fish under different
water flow conditions. Figure 5 shows the percentage of swimming mode under different
water flow conditions. From the figure, it can be seen that the swimming trajectory of the
experimental fish under lateral symmetric bimodal outflow condition could be divided into
three swimming modes: swimming through the middle of the bimodal peak, swimming
against the mainstream, and swimming along the sidewall. The total number of experi-
mental fish was 48, and the number of successfully attracted fish was 19; the swimming
mode appeared in a larger proportion of the situation, and the swimming mode was more
obvious, mainly through the middle of the bimodal peak swimming, accounting for 63%;
swimming against the mainstream accounted for 26%; and along the sidewall swimming
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accounted for 11%. The total number of fish tested in the lateral asymmetric bimodal
outflow condition was 92, and the number of successfully attracted fish was 32. Swimming
through the middle of the bimodal peak accounted for 88%; swimming along the sidewall
accounted for 12%; the experimental fish swam in a relatively single direction, and an
obvious single swimming mode appeared. The swimming mode of the experimental fish in
the lateral asymmetric bimodal outflow condition was different from the lateral symmetric
bimodal outflow condition in that the swimming against the mainstream mode did not
appear. The total number of fish in the single-peak outflow condition was 80, and the
number of successfully attracted fish was 66. The percentage of swimming against the
mainstream was 33%; the percentage of swimming on the right side of the mainstream was
27%; and the percentage of swimming on the left side of the mainstream was 40%. The
swimming mode of the experimental fish was relatively average, and there was no obvious
single swimming mode. The swimming mode could be divided into three swimming
modes: swimming against the mainstream, swimming on the right side of the mainstream,
and swimming on the left side of the mainstream. Here, the classification of the swimming
mode under the three water flow conditions is partially supplemented. The experimental
fish swimming through the high-velocity zone of the mainstream into the vicinity of the
outlet was classified as swimming against the mainstream, and the experimental fish swim-
ming from the low-velocity zone on both sides of the mainstream into the vicinity of the
outlet was classified as swimming on the right side of the mainstream and swimming on
the left side of the mainstream. The experimental fish were classified as along the sidewall
swimming when they swam away from the mainstream and always on the sidewall.
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3.2. Visualization of the Upstream Path

The representative swimming trajectories of experimental fish in single-peak outflow,
lateral symmetric bimodal outflow, and lateral asymmetric bimodal outflow conditions
with superimposed flow fields are shown in Figures 6–8, respectively. The selection of
representative trajectories was mainly based on the motion observed in this experiment,
which was divided into three principles. The first principle was to select the shortest
length of the trajectory under the water flow condition as the representative trajectory. The
second was to select the trajectory with a relatively special motion under the water flow
condition, such as the trajectory with a 90◦ or 180◦ turn. The third was the trajectory with
the highest frequency (including similar trajectories and the same trajectory brought by
group motion). In the figures, the direction of the water flow was from the right (upstream)
to left (downstream), while the fish swam in the opposite direction.
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As can be seen from the Figure 6, the mainstream of the single-peak outflow condition
basically flowed downstream along a straight line, and the mainstream gradually spread
to both sides along the way, forming a vortex on both sides of the mainstream, but the
intensity of the vortex on both sides was not large, the size of the flow velocity was basically
in the range of 0.30~0.40 m/s, and the experimental fish did not lose their way in the vortex.
Path 1 (black dots) appeared as high as 44%, and the path of the experimental fish in the
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front two-thirds of the focal observation unit was mainly in the flow velocity range of
0.20~0.50 m/s. The experimental fish moved along an inclined straight line and gradually
approached the core mainstream area above the flow velocity of 0.50 m/s upstream. In
the one-third area behind the focal observation unit, the experimental fish swam through
the core high-velocity mainstream and entered the jet outlet area. The different path 2 (red
dots) accounted for 32%, and the path of the experimental fish in the front two-thirds of the
focal observation unit was parabolic with a small amplitude. The experimental fish did not
approach the central mainstream in the latter third of the focal observation unit but swam
to the jet outlet area by turning 90◦ to the sidewall area where the flow velocity was low
(0.30~0.40 m/s) and the flow pattern was smooth.

It is important to emphasize the representative path 3 (green dots), which occurred
in only 11% of the experiments but was present in the rest of the two bimodal outflow
conditions. The experimental fish swam mainly along the left (or right) sidewall in the
low-flow velocity zone of 0.20~0.40 m/s throughout the focal observation unit and swam
the whole focal observation unit with the path away from the central mainstream. The flow
velocity under this path was relatively small and the flow pattern was smooth, which was
one of the typical swimming trajectories of fish.

As shown in Figure 7, under the condition of lateral symmetric bimodal outflow,
the smooth flow pattern of the two mainstreams, with a small swing from left to right
appeared. A 40~50 cm wide low-velocity reflux zone (0.2~0.4 m/s) appeared in the middle
region of the two streams. The percentage of path 2 (green dots) was 32%. The path of the
experimental fish in the focal observation unit was basically along the outer edge of the right
stream, and the flow velocity of the path was mainly in the range of 0.20~0.40 m/s. The
experimental fish passed through some small eddies of low velocity and swam gradually
to the jet outlet area. This path successfully avoided the area of maximum flow velocity,
which was one of the preferred swimming paths for fish. Path 3 (red dots) appeared in
a high percentage of 48%, fish were attracted by the flow and gradually approached the
middle area of the bimodal peak along an inclined straight path, and the flow velocity of
this path was basically around 0.20 m/s. After that, they gradually moved away from the
left stream and entered the low flow velocity area between the two streams, and the return
flow velocity of this path was mainly 0.20~0.40 m/s.

As shown in Figure 8, in the lateral asymmetric bimodal outflow condition, due to the
large difference between the flow of the two streams resulting in the secondary mainstream
on the right (15 m3/h) downstream to a much smaller distance than the left mainstream
(65 m3/h), which in turn formed a whirlpool at the end of the right stream, the width of the
whirlpool was about 80~100 cm, and the size of the flow velocity value was 0.05~0.20 m/s,
which did not make the test fish lost in the vortex. Path 1 (black dots) appeared in 38%,
the experimental fish were attracted by the flow, the flow velocity in the front third of
the path of the focal observation unit was below 0.20 m/s, and gradually approached
the secondary mainstream on the right (15 m3/h); the flow velocity for one-third of the
path after passing through the right mainstream into the middle low-flow area of the
two streams was between 0.20 m/s and 0.30 m/s; and after encountering the vortex in
the middle low-velocity area of the two streams, the experimental fish first turned 180◦

and then turned 90◦ to find the swimming path toward the secondary mainstream on the
right (15 m3/h), and gradually swam along the left outer edge of the right stream to the jet
outlet area. The different path 2 (green dots) accounted for 34%, the flow velocity of the
experimental fish in the front one-half of the path of the focal observation unit was below
0.20 m/s, fish gradually swam to the low-flow velocity area between the two streams,
and this section of the path was a straight line; after that, the fish were attracted by the
high-flow velocity of the left mainstream (65 m3/h) in the middle low-flow velocity area,
and it swam to the right outer edge of the left mainstream (65 m3/h) in the 0.40 m/s flow
velocity area; and the swimming path in the second half of the focal observation unit was
along the right outer edge of the left mainstream (65 m3/h) where fish swam to the jet
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outlet area in a straight line, and the flow velocity in this section of the swimming path was
between 0.20 m/s and 0.50 m/s.

3.3. Sensing Success Rate and Attraction Success Rate

The average sensing success rate under different water flow conditions is shown
in Figure 9. The ANOVA results are tabulated in Table 2. Under the three water flow
conditions, the experimental fish had the best effect on the water flow stimulation under
the single-peak outflow condition, with an average sensing success rate of 91%. Under
the bimodal outflow condition, the test fish sensed the water stimulation effect of the
lateral symmetric bimodal outflow condition and the lateral asymmetric dual-peak outflow
condition equally, and the average sensing success rate was 79% and 75%, respectively.
Although the discharge under the single-peak outflow condition was smaller than that
under the bimodal outflow condition, the fish sensing success rate under this condition was
better than that under the bimodal outflow condition, and the average sensing success rate
of the three water flow conditions was single-peak outflow > lateral symmetrical bimodal
outflow condition > lateral asymmetrical bimodal outflow condition.
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Table 2. Analysis of variance (ANOVA).

Water Flow Conditions (Mean ± Standard Deviation)

F p
Single Peak Outflow Symmetrical

Bimodal Outflow
Asymmetrical

Bimodal Outflow

Sensing success rate 0.90 ± 0.10 0.79 ± 0.11 0.75 ± 0.08 4.433 0.036 *
Attraction success rate 0.82 ± 0.06 0.39 ± 0.06 0.34 ± 0.13 42.557 0.000 **

* p < 0.05, ** p < 0.01.

The average attraction success rates of different water flow conditions are shown in
Figure 10, and the ANOVA results are tabulated in Table 2. The experimental fish under the
single-peak outflow condition showed the best attraction effect, with an average attraction
success rate of 82%, even when the attraction discharge of 65 m3/h under the single-peak
outflow condition was smaller than the attraction discharge of 80 m3/h under the bimodal
outflow condition; under the bimodal outflow condition, the average attraction success
rate of the lateral symmetric bimodal flow and the lateral asymmetric bimodal flow were
lower, at 39% and 34%, respectively, which was much smaller than that of the single-peak
flow condition; the average attraction success rate of the three water flow conditions was
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single-peak flow > lateral symmetric bimodal flow condition > lateral asymmetric bimodal
flow condition.
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3.4. Reaction Time and Attraction Time

The average reaction times of the experimental fish for the single-peak outflow, lateral
symmetric bimodal outflow, and lateral asymmetric bimodal outflow conditions were 86 s,
391 s, and 667 s, respectively, as shown in Figure 11. The ANOVA results are tabulated
in Table 3. The shortest average reaction time was 86 s, which appeared in the single-
peak outflow condition, and the reaction time was much smaller than in the bimodal
outflow condition; the longest average reaction time was 667 s, which appeared in the
lateral asymmetric bimodal outflow condition, possibly because the left outflow was much
larger than the right outflow, the left mainstream had a greater influence on the secondary
mainstream on the right, and the two streams showed a small swing from left to right
under the influence of each other.
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Table 3. Analysis of variance (ANOVA).

Water Flow Conditions (Mean ± Standard Deviation)

F p
Single Peak Outflow Symmetrical

Bimodal Outflow
Asymmetrical

Bimodal Outflow

Reaction time 86.13 ± 63.65 390.50 ± 297.94 667.32 ± 176.46 109.935 0.000 **
Attracting time 46.56 ± 31.41 25.63 ± 15.52 47.63 ± 35.68 3.817 0.025 *

* p < 0.05, ** p < 0.01.

The average attraction time under different flow conditions is shown in Figure 12,
and the ANOVA results are tabulated in Table 3. The shortest average attraction time was
26 s, which appeared in the lateral symmetric bimodal outflow condition, and the reason
may be because the diffuse collision of the two jets weakened the flow velocity in part
of the region but did not confuse the flow pattern in the region. On the other hand, it
may be the main swimming mode for the middle region of the bimodal peak swimming,
as the low-flow region in the middle of the bimodal peak did not hinder the swimming.
The longest average attraction time was 48 s, which appeared in the lateral asymmetric
bimodal outflow condition, probably because the lateral asymmetric outflow caused small
oscillations of the two streams laterally, and then formed part of the unfavorable flow
pattern in the swimming region.
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3.5. Distribution at Different Time

The distribution of some of the experimental test fish in the water tank at different
moments is shown in Figure 13. Considering the short swimming time of the experimental
fish in the focal observation unit (20~50 s), only a few test groups are listed here for the
movement of experimental fish attracted by the jet.

The single-peak flow condition had the shortest reaction time and the best attraction
effect. The experimental fish were attracted into the focal observation unit within 5 min
of the start of the test for each test group; the experimental fish were attracted into the
focal observation unit within 15 min of the start of the test for each of the bimodal outflow
conditions. The small number of test fish that were not attracted in each test group may
be due to the influence of individual factors, and these fish also did not enter the focal
observation unit during the subsequent test time.

In run 7, the experimental fish were dispersed more evenly in the release unit at the
beginning of the test, and when T = 855 s, there were already 15 experimental fish left in
the release unit and they started to swim upstream, which successfully attracted 82% of the
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experimental fish to the focal observation unit. In run 11, at T = 858 s, it also successfully
attracted 77% of the experimental fish to the focal observation unit. However, the fish that
were attracted to the focal observation unit did not swim in large groups (more than 10 fish)
as in the lateral symmetric bimodal flow condition, but in small groups of 3–5 fish, and
most of them entered the focal observation unit on the right side of the low-flow attraction
flow. In run 4, most of the test fish gathered in the corner in the release unit at the beginning
of the trial, and 87% of the experimental fish were successfully attracted at the trial time
T = 55 s. Under the single-peak outflow condition, the reaction time of the experimental fish
was shorter and the attraction effect was better than that of the bimodal outflow condition.
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4. Discussion

It was expected that by studying the rheotaxis of fish under different water flow
conditions and arranging a suitable attraction flow, the entrance set of the fish passage
could be improved to lure fish, thus improving the efficiency of the fish passage. Stud-
ies showed that chaotic and widely fluctuating flows discourage fish, while flows with
predictability can attract fish [39]. There were significant differences in the responses of
the experimental fish for the three different water flow conditions in this experiment, and
Fuentes-Pérez et al. [40,41] found that hydraulic changes from power plant operation and
hydrological changes in the river affect the attractiveness of the fish passage entrance to fish.
Experiments by Yiqun Hou [42] also found that experimental fish had a greater tendency to
select the velocity of flow for the channel than the substrate type of the channel. In addition,
the number of experimental fish per group was similar to that used by researchers such
as Goettel [35] and Junjun Tan [43]. There may have been a few experimental fish caught
randomly for each group of experiments that participated in multiple tests, and multiple
tests may have affected the experimental results. However, according to Yao Wang [38],
who observed fish before and after experiments for up to one year, this effect might not
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be significant. Under asymmetric bimodal outflow conditions, a vortex was formed at the
end of the stream of the right jet. The low-flow velocity (0.05–0.2 m/s) was still too small
compared to the velocity of the fish, making the interaction time between the vortex and
the fish short enough to make the fish disoriented in the vortex. Webb [44] and Cote [45]
also found support for this idea. Lupandin [46] also believed that fish–vortex interactions
involve time scales.

The experimental discharge was set to 80 m3/h to compare the behavioral responses
of the experimental fish under the two bimodal outflow conditions, but the control ex-
perimental flow was 65 m3/h for the single-peak outflow condition. The reason was that
whether comparing the induction success rate (91% > 79% > 75%), attraction success rate
(82% > 39% > 34%), or fish reaction time (86 s < 391 s < 667 s), the experimental effect
of single-peak outflow is better than bimodal outflow. Thus, the experimental discharge
for the single-peak outflow condition was not increased to 80 m3/h. Enders [47] and
Smith [48] suggested that fish tend to avoid flows that have wide fluctuations in flow
velocity or flows that interfere with swimming trajectories on both spatial and temporal
scales. This may be one explanation for the much smaller attraction success in the bimodal
outflow condition than in the single-peak outflow condition. The study by Plew [49] and
Chen [50] et al. provide another possible explanation that some of the test fish behaviors
were influenced by school movements since carp prefer to move in groups. The reason
for using Carassius auratus as experimental subjects in this experiment was the expectation
that the fish release unit of the experimental model could be used to simulate the fish habi-
tat, rather than simply considering the behavioral responses of individual experimental
fish. Based on the qualitative test observation in the early stage, it was found that the
experimental fish quickly found their preferred depth of water when entering the tank and
maintained that depth to swim upstream. This is in agreement with the findings of Junjun
Tan [51] and Rodriguez [52] in their experiments.

It is worth re-emphasizing that the same type of representative swimming path
emerged in all three conditions, with fish swimming along the sidewalls where the flow
velocity was relatively low. Some of the better swimmers swam along the mainstream,
while the less competent swimmers swam along the low-flow velocity zone of the sidewalls.
This is similar to the findings of Mcelroy [53]. Hang Wang [54] suggested that fish tend to
swim close to the sidewalls in areas of low-flow velocity and high turbulence intensity.

Despite the time spent on experimental studies, the applicability of the obtained
experimental results to practical engineering problems may still be limited to the target
fish and their habitats. In addition, some sediments, rocks, and aquatic vegetation can be
considered in laboratory studies to better simulate the study by arranging them according
to the habitat environment of the target fish [42]. Studies on the joint mechanisms of
multiple senses associated with tropism are also worth carrying out [55]. One uncertainty
of the experimental study is whether the attraction flow arrangement can be extended to
open water. More laboratory and field experiments are needed to validate the attraction
flow arrangement with a variety of fish species of different sizes before the results obtained
can be more widely applied to engineering.

To further optimize the arrangement of attraction flow, the effects of different fish
attraction flow on the fish attraction effect under the single-peak outflow condition can
be focused on in subsequent studies. For example, future studies can focus on the fish
luring distance, sensing success rate, and attraction success rate under different discharges.
Conducting research on the influence of hydrodynamic factors on fish swimming behavior
and creating fish-friendly water flow conditions for fish passage projects is a key part of fish
passage construction. It is important to promote the construction of fish passages, promote
the development of ecohydrology, and protect the fish resources and biodiversity of rivers.

5. Conclusions

This study was conducted to better understand the possibility of using the rheotaxis
of fish to improve fish migration efficiency near fish passage entrances or fish habitats.
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From the experimental results, the following main conclusions could be drawn: (1) the
single-peak outflow condition not only had a higher sensing success rate for fish compared
to the other two bimodal outflow conditions but also a much higher attraction success
rate than the bimodal outflow conditions. (2) The fish swimming mode was not always
chosen to swim against the mainstream, and the swimming mode was affected by the flow
conditions and varied; under the bimodal outflow condition, the fish swimming mode was
mainly the middle of the bimodal. In the single-peak outflow condition, the swimming
mode was more average, and the three swimming modes could better ensure the possibility
of fish swimming successfully near the entrance of the fish passage. (3) The arrangement
of attraction flow was essential to improve the attraction effect in the entrance of the fish
passage because the fish attracted by the flow could swim near the entrance of the fish
passage in a relatively short time. The significance of this study is that it may help to
improve the effect of fish attraction. It may also guide the development of biological design
criteria for fish passage enhancement through hydraulic infrastructure.
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