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Abstract: Indoor air quality (IAQ) standards have been evolving to improve the overall IAQ situation.
To enhance the performances of IAQ screening models using surrogate parameters in identifying
unsatisfactory IAQ, and to update the screening models such that they can apply to a new standard, a
novel framework for the updating of screening levels, using machine learning methods, is proposed
in this study. The classification models employed are Support Vector Machine (SVM) algorithm with
different kernel functions (linear, polynomial, radial basis function (RBF) and sigmoid), k-Nearest
Neighbors (kNN), Logistic Regression, Decision Tree (DT), Random Forest (RF) and Multilayer
Perceptron Artificial Neural Network (MLP-ANN). With carefully selected model hyperparameters,
the IAQ assessment made by the models achieved a mean test accuracy of 0.536–0.805 and a maximum
test accuracy of 0.807–0.820, indicating that machine learning models are suitable for screening the
unsatisfactory IAQ. Further to that, using the updated IAQ standard in Hong Kong as an example,
the update of an IAQ screening model against a new IAQ standard was conducted by determining
the relative impact ratio of the updated standard to the old standard. Relative impact ratios of 1.1–1.5
were estimated and the corresponding likelihood ratios in the updated scheme were found to be
higher than expected due to the tightening of exposure levels in the updated scheme. The presented
framework shows the feasibility of updating a machine learning IAQ model when a new standard
is being adopted, which shall provide an ultimate method for IAQ assessment prediction that is
compatible with all IAQ standards and exposure criteria.

Keywords: machine learning model; indoor air quality (IAQ) index; screening; assessment

1. Introduction

Indoor air quality (IAQ) has gained enormous attention in the past decade due to
the considerable amount of time we spend indoors nowadays [1,2]. To tackle the problem
of poor IAQ, different countries have their own set of IAQ standards, with different
measurement parameters and range of exposure limits. Representative parameters, such
as carbon dioxide (CO2) and respirable suspended particulates (RSP), are always on the
list, while total volatile organic compounds (TVOC), carbon monoxide (CO), ozone (O3),
formaldehyde (HCHO), airborne bacteria count (ABC) may be included, depending on
the application purpose of the standard [3–7]. The exposure limits are usually established
based on health risk analysis, in which lifelong exposure to that level of pollutant shall not
produce significant adverse effects on the public [8].

Alternatively, instead of complying strictly with the IAQ standard, the screening
approach for assessing IAQ has become popular in recent years due to its simplicity
and cheaper monitoring cost. With a large enough sample size, we can find out the
“common” IAQ problems one type of premises often experiences, therefore, identifying the
representative IAQ parameters that explain the majority of poor IAQ. The simplest way
to reduce the cost of IAQ assessment is to just measure these representative parameters
and see if they exceed the standard. One of the most notable examples is using CO2
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level as an indicator of acceptable IAQ to adjust the fresh air quantity [9]. However,
this approach may overlook the possibility of having IAQ problems caused by other
IAQ parameters; therefore, a surrogate approach was proposed to identify surrogate IAQ
parameters that are not just representative but also statistically correlated with other IAQ
parameters. An express assessment protocol using three or five IAQ parameters, developed
by Hui et al. [10], successfully screened out more than 90% of offices with poor IAQ,
which provided an alternative for IAQ pre-assessment without the need to conduct a full
assessment (all nine parameters). This study gave insight into the ability of a limited
number of parameters in identifying problematic IAQ. Further to that, Wong et al. [11]
proposed using CO2, RSP and TVOC as the surrogate indicators for evaluating IAQ in
offices. The dependence and the correlations of the other nine parameters on the levels
of the proposed surrogate indicators were found to be statistically significant. The result
served as strong support that CO2, RSP and TVOC could be good surrogate indicators
for other IAQ parameters, in terms of representativeness, ease of measurement and the
possibility of real-time monitoring [12]. Individually, CO2, RSP and TVOC represent
occupant load and ventilation rate, system filtration performance and indoor activities,
and emissions from building materials and finishes, respectively, which serve as good
indicators for the general IAQ of an environment with a ventilation system. To sum up,
using surrogate indicators for IAQ evaluation can reduce the scale of measurement, as
some high-risk premises are already being screened out preliminarily, therefore, reducing
the resources required to identify problematic premises [10,11].

Based on the aforementioned efforts for simplifying IAQ assessment, an efficient and
cost-effective IAQ screening protocol was proposed by Wong et al. [13] for identifying
asymptomatic IAQ problems. IAQ index, the average fractional dose to exposure limits
of the representative pollutants, was proposed and was used to diagnose unsatisfied IAQ
in air-conditioned offices in the study by Mui et al. [14]. IAQ indices from 525 offices
were evaluated using a five-level screening test with thresholds determined by likelihood
ratios of unsatisfactory IAQ. A likelihood ratio larger than 1 indicates a high-risk sample
having an excessive occurrence of unsatisfactory IAQ, whereas a smaller than 1 likelihood
ratio identifies a low-risk sample. Given the pre-test probability of unsatisfactory IAQ and
the regional failure percentage of the Hong Kong IAQ Certification Scheme, the post-test
probability of offices with unsatisfactory IAQ can be estimated using the IAQ screening
test. This screening test with representative IAQ parameters provides a much simpler and
cost-effective alternative for IAQ assessment. If an environment “fails” in the screening
test (i.e., any one of the three surrogate indicators exceeds the exposure limit), immediate
remedies can be decided on to improve the IAQ. If not, based on the post-test probability
given by the screening test, facility management can determine the threshold of the test and
threshold of the remedy regarding the willingness to invest manpower and resources in
improving the IAQ. Further test, a comprehensive one, will only be needed if the screening
test result is in between the two thresholds [14].

It is noteworthy that this approach does not simply test some of the parameters against
the standard, but rather uses these parameters to predict the probability of dissatisfying
the standard based on correlation. Therefore, an assessment model developed based on the
levels of surrogate parameters and probability of failing an IAQ standard is essential in IAQ
screening practice. More improvements have been made to the IAQ index to further reduce
the resources required for IAQ screening [15]; however, as powerful as it is in screening
the IAQ of similar environments, prior knowledge of the IAQ of premises in the region
is required [10], and the index may not be applicable to other kinds of space or against
another set of IAQ standards.

In fact, throughout the development of IAQ policy, exposure limits have been updated
from time to time, based on collective professional judgement and managerial decisions
with a balance of social acceptance. The World Health Organization (WHO) has been
making constant efforts to improve and refine the air quality standards, since the estab-
lishment of the air quality guidelines on selected pollutants in 2005 [16], which include
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the REVIHAAP project to review the health impacts of air pollution [17], and the HRAPIE
project to identify dose–response relationship for RSP, O3 and nitrogen dioxide (NO2) [18].
Results from these two projects supported the comprehensive review of the European
Union air quality policy in 2013 and many follow-up consultations and discussion forums
on the preparation for an updated guideline [19]. In September 2021, the WHO issued
the new Global Air Quality Guideline that reduced levels of key air pollutants to address
the accumulated pieces of evidence of health effects and significant risks associated with
poor air quality [20]. In 2019, the IAQ standard in Hong Kong was updated with stricter
exposure limits to meet the updated IAQ guidelines published by the World Health Orga-
nization. The update consisted of the removal of three comfort parameters, the inclusion
of visual inspection of mould condition and more stringent limits for CO, RSP and radon
(Rn). Considering that the IAQ index itself, the screening levels and the likelihood ratios
were all developed using the old standard, it is essential to identify the effect of the new
IAQ standard on the suitability and performance of the established screening methods and
to provide a framework for “updating” the screening levels.

With exposure standards being updated regularly in practical situations without the
quantitatively assessed probable impact of the tightening of levels, fine tuning the IAQ
screening baseline is deemed necessary. However, given that past data were assessed using
the old standard, the iterative process for baseline determination using newly collected
data takes a long time and is not ideal for responding to the rapid change in the need for
environmental control. This presents a problem if the standard is being updated. Can the
existing IAQ assessment model based on a statistical analysis of old data be useful against
the new standard?

In this study, we proposed using machine learning methods for the development of a
surrogate IAQ assessment model, which may be a solution to the problem of an updated
IAQ standard and avoid the iterative process for baseline determination. Machine learning
is a state-of-the-art method for environmental prediction. It is commonly used in outdoor
pollution predictions [21] and indoor energy simulations [22]. The awareness and applica-
tion of machine learning modeling in IAQ emerged in the past decade. A comprehensive
review of existing machine learning and statistical models for IAQ prediction, conducted
by Wei et al. [23], suggested that the majority of existing research focuses on using machine
learning algorithms to predict pollutant concentrations. The most popular statistical models
applied to IAQ consist of artificial neural network (ANN), multiple linear regression (MLR),
partial least squares (PLS), and random forest (RF). They focus on predicting the concen-
trations of airborne particles, including RSP, e.g., [24–26], CO2, e.g., [27,28], NO2, e.g., [29]
and Rn, e.g., [30,31], in indoor environments using outdoor data. Recently, the forecasting
of IAQ has become popular for the sake of improving public health and well-being, since
precautionary actions can be acted on ahead of time [32]. Machine learning methods, such
as linear and non-linear autoregressive models [33], are used to develop IAQ forecasting
models using the historical profile of IAQ parameters. As continuous monitoring of IAQ is
required as the basis of time-series machine learning models, it is common to forecast tem-
perature, e.g., [34,35], relative humidity, e.g., [35,36], CO2, e.g., [34–36] and CO, e.g., [36],
as they can be easily monitored using low-cost sensors [23]. Forecasting the concentration
of indoor aldehydes, volatile organic compounds (VOC), and semi-VOC using statistical
models remains scarce [33], and an example of using the nonlinear threshold autoregres-
sive (TAR) model and Chaos-dynamics-based model to forecast HCHO is presented in
the study by Ouaret et al. [37]. All things considered, it is advisable to test and compare
different statistical models for each specific case, as demonstrated by many studies that
used machine learning methods for IAQ modelling [33].

Besides indoor air pollutant prediction and forecasting, there are other examples of
applying machine learning methods in IAQ-related research that can be found in the lit-
erature. Zimmerman et al. [38] applied random forests (RFs) to improve low-cost sensor
performance for more accurate IAQ monitoring. Leong et al. [39] used a support vector
machine (SVM) for the prediction of the air pollution index (API) in Malaysia. Their study
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demonstrated that the radial basis function (RBF) kernel function could accurately and
effectively predict API. Sarkhosh et al. [40] used a decision tree (DT) model to identify the
most influential parameters that contributed to the prevalence of Sick Building Syndrome
(SBS) in office buildings. The high prevalence of SBS was found to be related to job satis-
faction, ergonomic parameters, microbiological pollutants and 1-methyl-4-(1-methylethyl)
benzene concentration.

While IAQ prediction and forecasting give us a better understanding of the IAQ
situation we are experiencing, it is of equal importance to identify whether the level of IAQ
is considered acceptable or not before any follow-up mitigation or precautionary strategies
are taken; therefore, an IAQ assessment model is essential.

To our best knowledge, we have identified the following research gaps in the field:

• Using machine learning methods to assess whether the IAQ is acceptable or not with
a given IAQ standard;

• Addressing the issues of updating/changing IAQ standards, which would affect the
screening levels and results; and

• Predicting the updated screening baselines of IAQ with new standards.

Therefore, in this study, we discuss the possibility of using machine learning methods
to “update” the screening levels, such that the IAQ screening method can still be applicable
with a new standard. Using Hong Kong’s case of an updated IAQ standard as an example,
in this paper, we present a universal framework of using machine learning models in
predicting the updated IAQ screening levels, which includes:

• Developing and evaluating the performance of machine learning IAQ assessment
models with surrogate IAQ parameters;

• Quantifying the impact of an updated scheme (i.e., an IAQ standard) on the machine
learning IAQ assessment model; and

• Evaluating the model flexibility in adapting an updated/another exposure standard.

Applicable to all IAQ standards and guidelines, this framework not only enables
the implementation of a territory-wide IAQ screening program but also facilitates IAQ
monitoring and improvements.

2. Materials and Methods

In the following section, the framework for updating the screening levels of IAQ
assessment models is presented. To demonstrate the updating process, machine learning
models for IAQ assessment based on the developed IAQ index algorithm and screening
methodology were first developed using selected machine learning modelling methods.
The performances of the models were evaluated, and with the average assessment results
from the models, the relative impact ratios of the updated standard on the old standard
were determined. The framework details the feasibility of developing machine learning
IAQ assessment models, methods for model performance evaluation and the procedures
for updating the screening levels with an updated standard.

2.1. Overview of the Data

IAQ assessment data collected from a cross-sectional IAQ survey of 525 air-conditioned
offices in Hong Kong reported in a previous study was adopted to evaluate the performance
of machine learning models [14]. The surveyed premises, which covered various grades,
types and ages, included a wide range of open-plan offices from 10 m2 to 300 m2. The IAQ
survey was conducted for the fulfilment of the Hong Kong IAQ Certification Scheme (the
Scheme); therefore, the measurement protocol, sampling locations, period and equipment
strictly followed the requirements stated in the Scheme. As such, 8 h continuous samplings
were conducted during the office-occupied hours with a sampling density of 500 m2. All the
sampling points were selected by the IAQ professionals during the walkthrough inspection
before the actual measurement.
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Two IAQ assessment schemes, Schemes 1 and 2, are exhibited in Table 1. Scheme 1
was the old IAQ objective in the Hong Kong IAQ Certification Scheme and Scheme 2 was
the updated one to update the requirement against the latest IAQ guidelines by the World
Health Organization [41]. In the updated scheme, exposure limits of CO, Rn and RSP are
tightened to provide better public health protection. As mentioned above, the IAQ index
using likelihood ratio cannot adapt to an updated standard since it was developed based
on the previous standard, so using machine learning algorithms to model the IAQ index
and IAQ dissatisfaction can, therefore, be a universal solution to the existing barrier.

Table 1. 8 h exposure limits of satisfactory indoor air quality.

Parameter (Unit) Scheme 1 Scheme 2

CO2 (ppm) 1000 1000
CO (ppm) 8.7 6.1

RSP (µg m−3) 180 100
NO2 (µg m−3) 150 150
O3 (µg m−3) 120 120

HCHO (µg m−3) 100 100
TVOC (µg m−3) 600 600
Radon (Bq m−3) 200 167

Airborne bacteria (CFU m−3) 1000 1000

A statistical summary of the dataset extracted for this study, which consists of three
independent yet closely correlated IAQ surrogate indicators concerning the IAQ index [14],
namely CO2, RSP and TVOC, is presented in Table 2. These three parameters were se-
lected as the surrogate indicators among the remaining 9 pollutants in the Scheme, among
which, RSP represents the filtering efficiency of the air-conditioning system, CO2 repre-
sents the occupant load and ventilation rate, and TVOC indicates building emission [13].
The overall summary of the dataset is shown at the top of the table, with the range of
CO2 = 339–1497 ppm, RSP = 4–125 µg m−3, TVOC = 0–3144 µg m−3 and the calculated
IAQ index = 0.189–1.99. Using the two assessment schemes introduced in Table 1 above,
this dataset was further classified into “Satisfactory IAQ” (i.e., if all of the 9 pollutant levels
fulfil the assessment scheme) or “Unsatisfactory IAQ” (i.e., 1 or more of the 9 pollutant
levels fail the assessment scheme). While the mean values of CO2, RSP and TVOC in the
“Satisfactory IAQ” group were significantly different from those in the “Unsatisfactory
IAQ” group (p < 0.05, t-test), the sample (satisfactory or unsatisfactory) group means results
from Schemes 1 and 2 were statistically the same (p > 0.1, t-test). Table 2 also exhibits the
IAQ index θ, which is an IAQ indicator determined using Equation (1), with j = 1, . . . ,3,
Φj* being the fractional dose of RSP, CO2 and TVOC, Φj the exposure level of the assessed
parameter over an exposure time, and Φj,e the reference exposure limit under Scheme 1
(RSP = 180 µg m−3, CO2 = 1000 ppm, TVOC = 600 µg m−3) [15].

θ =
1
3 ∑3

j = 1 Φ∗j ; Φ∗j =
Φj

Φj,e
(1)
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Table 2. Statistical summary of levels of indoor air quality surrogate parameters in 525 offices,
(a) overall summary; (b) summary of the dataset being classified as “Satisfactory IAQ” regarding
Schemes 1 and 2; (c) summary of the dataset being classified as “Unsatisfactory IAQ” regarding
Schemes 1 and 2.

(a) Overall Summary

CO2 (ppm) RSP (µg m−3) TVOC (µg m−3) IAQ Index

mean 658 30 358 0.473
std dev 151 20 328 0.201

min 339 4 0 0.189
25% 556 15 140 0.333
50% 639 22 295 0.431
75% 746 38 466 0.558
max 1497 125 3144 1.99

(b) Satisfactory IAQ

Scheme 1

Count 358
mean 634 28 242 0.397

std dev 126 20 152 0.111
min 339 4 0 0.189
25% 546 14 113 0.312
50% 624 20 209 0.381
75% 714 33 354 0.477
max 998 125 597 0.725

Scheme 2

Count 352
mean 634 27 240 0.394

std dev 126 18 152 0.110
min 339 4 0.0 0.189
25% 547 14 112 0.311
50% 623 20 208 0.378
75% 713 32 354 0.474
max 998 99 597 0.725

(c) Unsatisfactory IAQ

Scheme 1

Count 167
mean 709 34 607 0.637

std dev 184 19 446 0.249
min 396 7 45 0.202
25% 384 19 346 0.488
50% 678 29 517 0.406
75% 807 44 738 0.737
max 1497 91 3144 1.991

Scheme 2

Count 173
mean 707 36 598 0.634

std dev 183 22 442 0.246
min 396 7 45.0 0.202
25% 583 19 338 0.487
50% 678 29 497 0.603
75% 804 46 715 0.725
max 1497 125 3144 1.991
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2.2. Data Preprocessing

Figure 1 shows the pair plots of the IAQ parameters grouped by satisfactory and
unsatisfactory IAQ assessed using Schemes 1 and 2. A linear data scaling to the range [0, 1]
was applied for data normalization.

Figure 1. Pair plots of CO2, RSP, and TVOC grouped by assessed indoor air quality (IAQ) against
assessment (a) Scheme 1 (b) Scheme 2.

The training data and testing data were randomly selected at a distribution ratio of
training data (1 − rd) and testing data (rd), as shown in Equation (2), where nd,t and nd,g are
the numbers of data points in the testing and training datasets, respectively.

rd =
nd,t

nd,g
(2)

Multifold cross-validation was employed for model validation. The training dataset
was divided into 5 and 10 subsets of equal size and each subset was tested using the
hyperparameters trained on the remaining subsets. The cross-validation accuracy was
determined based on the percentage of correctly classified data. A grid search was then
conducted to optimize the model hyperparameters, which were later used to retrain the
model for evaluation.
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The model accuracy AC, the probability of the model making a correct prediction [14],
is usually compared with the baseline accuracy ACbl in Equation (3) which indicates the
certainty of the predictions made without the algorithm, where mode (N) is the mode of
true result and N is the sample size.

ACbl =
mode (N)

N
(3)

The baseline accuracy values adopted are 0.682 and 0.670 for Schemes 1 and 2, respec-
tively. A model with an accuracy below the baseline is considered to be unsatisfactory.

In this study, as shown in Figure 2, a total of 16 (=4 × 2 × 2) evaluation conditions
were generated from 4 different combinations (rd = 0.2, 0.3, 0.4, 0.5) of training and testing
data, 2 multifold cross-validations (K = 5, 10) and 2 IAQ schemes (Schemes 1 and 2). Trained
models (without grid-search-tuned model hyperparameters) and retrained models (with
grid-search-tuned model hyperparameters) were then evaluated using the testing data
of the 16 evaluation conditions, and finally, 32 sets of testing results were obtained for
evaluating the performance of the 9 models for IAQ assessment.

Figure 2. Data processing for model training and evaluation.

2.3. Models for Evaluation

Table 3 shows the classification models (classifiers) employed for developing the IAQ
assessment model. The selected models included Support Vector Machine (SVM) with
different kernel functions (i.e., linear, polynomial, radial basis function (RBF), and sigmoid),
k-Nearest Neighbors (kNN), Logistic Regression, Decision Tree (DT), Random Forest (RF)
and Multilayer Perceptron Artificial Neural Network (MLP-ANN). These algorithms are
commonly used for developing IAQ prediction and forecasting models based on the
literature review described in the introduction. In order to provide a universal framework
for developing the IAQ assessment models and updating the screening levels, these popular
models were adopted and their performances were evaluated. More details of each machine
learning model and its hyperparameters can be found in Appendix A.



Int. J. Environ. Res. Public Health 2022, 19, 5724 9 of 23

Table 3. Selected machine learning models and hyperparameters for the development of IAQ
assessment models.

Models Hyper-Parameters Test Range Validation
Accuracy Test Accuracy Hyperparameters

Used

SVM (linear) rd
C

0.2–0.5
0.1–10,000 0.794–0.832 0.752–0.824 0.4

1.0

SVM (polynomial)

rd
C
c1
c0

0.2–0.5
0.1–10,000

2, 3
0, 1

0.813–0.839 0.753–0.833

0.4
1000

3
1

SVM (rbf) rd
C

0.2–0.5
0.1–10,000 0.806–0.831 0.762–0.824 0.4

1.0

SVM (sigmoid)
rd
C
c0

0.2–0.5
0.0001–2000

0–1
0.638–0.652 0.443–0.800

0.2
0.0001

0

kNN
rd
k

W

0.2–0.5
2, 3, . . . , 11

1, 1/dk

0.785–0.809 0.762–0.824
0.4
10
1

Logistic regression rd
C

0.2–0.5
0.001–20,000 0.790–0.825 0.753–0.810 0.4

1

Decision tree

rd
D
ns
nr

Impurity

0.2–0.5
3, 4, . . . , 14
3, 4, . . . , 19
2, 3, . . . , 6

GI, EI

0.805–0.829 0.714–0.838

0.2
4
3
2
EI

Random forest

rd
nf
D
ns
nr

Impurity

0.2–0.5
10, 60, 110
1, 2, . . . , 11
1, 2, . . . , 9
2, 3, . . . , 6
GI or EI

0.824–0.844 0.724–0.829

0.3
60
2
3
1

GI

MLP-ANN

rd
C

Neurons
Hidden layer

Activation
Iteration

Learning rate

0.2–0.5
0.0001, 0.05, 1

100, 200
1, 3, 4, 6

Identity, logistic, tanh, relu
LBFGS, SDG, Adam
Constant, invscaling,

adaptive

0.807–0.836 0.714–0.810

0.4
0.0001

200
3

relu
LBFGS

Constant

Table 3 also presents the test ranges of the hyperparameters, the cross-validation
accuracy and the model accuracy with the testing datasets, and the corresponding hyper-
parameters that gave the best prediction accuracy in all tests. The development and the
training of models were coded using the Python programming language described by
Pedregosa et al. [42].

Regularization was applied to avoid overfitting by penalizing large coefficients [43]. It
was intended to reduce the generalization error but not the training error. As a result, the
application of regularization allowed a certain amount of misclassified data points in the
training dataset [44]. To minimize the error between the true value yi and the predicted
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value xβ, the cost function f shown in Equation (4) could be expressed with the L2 loss

function ∑i

(
yi −∑j xijβ j

)2
and the regularization factor C [45].

f = ∑
i

(
yi −∑

j
xijβ j

)2

+ C ∑
j

β2
j (4)

3. Results and Discussion

Figure 3 illustrates the cross-validation accuracy of the SVM classifiers with linear,
RBF, sigmoid and polynomial kernels. Consistent accuracy of AC > 0.8 was observed when
the regularization factor C was ≥2 for the SVM with linear kernel, and for the whole test
ranges of the SVM with RBF and polynomial kernels. However, the SVM with sigmoid
kernel did not perform well for the training datasets, as compared with other kernels, with
AC ≤ 0.65, which dropped significantly for C ≥ 0.6.

Figure 3. Cross-validation accuracy of the SVM classifier. (a) Linear kernel, (b) rbf kernel, (c) sigmoid
kernel, c0 = 0.01, (d) sigmoid kernel, c0 = 0.5, (e) polynomial kernel, c0 = 0, c1 = 2, (f) polynomial
kernel, c0 = 1, c1 = 3.
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Figure 4 shows the cross-validation accuracy of the kNN classifier, which was consis-
tent for k = 2–11. While the accuracy was more sensitive to the weight function applied, a
larger k that compensated for the accuracy drop was observed in Figure 4a.

Figure 4. Cross-validation accuracy of the kNN classifier. (a) W = 1/dk, (b) W = 1.

According to Figure 5, the logistic regression classifier improved the prediction ac-
curacy for regularization factor C > 2. The choice of training dataset was found to be
insignificant to the model accuracy.

Figure 5. Cross-validation accuracy of the logistic classifier.

Figure 6 graphs the cross-validation accuracy of the decision tree classifier. Within
the range of 0.75–0.8, the accuracy was sensitive to the size of the dataset, the impurity
function, the minimum number of samples required to split an internal node ns, and the
minimum number of samples required to be at a leaf node nr. It became less sensitive when
the maximum depth value was greater than or equal to 10 (i.e., D ≥ 10).

Figure 7 exhibits the cross-validation accuracy of the random forest classifier. The
accuracy, which became less sensitive for D ≥ 2, was improved, as compared with Figure 6.
It can be seen that the number of trees nf compensated for the accuracy drop due to D ≤ 5.

A wide range of hyperparameters can be adopted for a MLP-ANN classifier. In
this study, 100 and 200 neurons in the inner layers 1, 3, 4 and 6 were evaluated, with
neuron arrangements of each layer in the ratios of (1), (1:8:1), (1:4:4:1) and (1:2:2:2:2:1).
Figure 8 illustrates the cross-validation accuracy of the 60 configurations of the model
hyperparameters for the inner-layer architecture (i.e., x-axis with legends 1–60, Table A1).
A very sensitive accuracy ranging from <0.45 to about 0.8 was observed.
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Figure 6. Cross-validation accuracy of the decision tree classifier. (a) Entropy impurity, nr = 6 (b) Gini
impurity, nr = 2.

Figure 7. Cross-validation accuracy of the random forest classifier. (a) Entropy impurity, ns = 9,
nf = 10 (b) Gini impurity, ns = 9, nf = 110, (c) Gini impurity, ns = 2, nf = 110.

It was challenging to set up a suitable MLP-ANN for an engineering application
without prior selection of the model hyperparameters. Table 4 shows the test accuracy of
the MLP-ANN classifier. The identity activation function made the best predictions with
the highest (mean and median) test accuracy. Iteration schemes ADAM and L-BFGS, with
constant learning rates only, returned more accurate predictions, as compared with SGD.
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Figure 8. Cross-validation accuracy of the MLP-ANN classifier. (a) 100 neurons, 1 hidden layer,
(b) 200 neurons, 1 hidden layer, (c) 100 neurons, 6 hidden layers (d) 200 neurons, 6 hidden layers,
(e) 100 neurons, 3 hidden layers.

Table 4. Test accuracy of the MLP-ANN classifier (5-fold and 10-fold).

Hyper-Parameters Test Accuracy

Activation Iteration Learning
Rate Mean Median Min Max

identity

All

0.740 0.795 0.336 0.836
logistic 0.636 0.646 0.348 0.828

tanh 0.728 0.783 0.348 0.836
relu 0.701 0.743 0.348 0.836

all

ADAM Constant 0.765 0.801 0.638 0.832

LBFGS Constant 0.767 0.802 0.638 0.836

SGD
Adaptive 0.712 0.648 0.638 0.828
Constant 0.712 0.648 0.638 0.836

invscaling 0.550 0.646 0.336 0.676

identity

ADAM constant 0.801 0.806 0.641 0.832

LBFGS constant 0.805 0.806 0.778 0.824

SGD
adaptive 0.758 0.793 0.638 0.828
constant 0.758 0.791 0.638 0.836

invscaling 0.579 0.646 0.336 0.668
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Table 4. Cont.

Hyper-Parameters Test Accuracy

Activation Iteration Learning
Rate Mean Median Min Max

logistic

ADAM constant 0.667 0.646 0.638 0.828

LBFGS constant 0.683 0.646 0.638 0.820

SGD
adaptive 0.646 0.646 0.638 0.652
constant 0.646 0.646 0.638 0.652

invscaling 0.536 0.646 0.348 0.652

relu

ADAM constant 0.794 0.804 0.638 0.832

LBFGS constant 0.797 0.804 0.638 0.836

SGD
adaptive 0.689 0.646 0.638 0.823
constant 0.689 0.646 0.638 0.826

invscaling 0.536 0.646 0.348 0.652

tanh

ADAM constant 0.799 0.805 0.641 0.832

LBFGS constant 0.782 0.772 0.702 0.824

SGD
adaptive 0.754 0.786 0.638 0.826
constant 0.755 0.786 0.638 0.836

invscaling 0.548 0.646 0.348 0.676

To sum up, all of the IAQ assessment models developed achieved the maximum test
accuracy, in a narrow range of 0.807–0.820, with the mean test accuracy ranging from
0.536 to 0.805. Table 5 presents the best-performed models in the 32 tests (16 each for the
trained and retrained models). The results showed that the SVM with polynomial kernel
gave the highest test accuracy and next-best predictions in the trained and retrained model
tests. Moreover, models with decision tree and random forest classifiers gained 4 and 3
counts (out of 16), respectively, in the trained model test, whereas the SVM with linear
kernel gained 8 counts (i.e., the best prediction performance) in the retrained model test.
These classifiers can be good choices for accurate IAQ assessment model development.

Table 5. The most accurate classifiers in 32 comparison tests.

Classifier
Trained Model Retrained Model Trained & Retrained

Models

Count
(N = 16)

Test
Accuracy

Count
(N = 16)

Test
Accuracy

Count
(N = 16)

Test
Accuracy

SVM (linear) 0 8 0.811 8 0.811
SVM (polynomial) 6 0.820 6 0.816 12 0.818

SVM (rbf) 0 2 0.814 2 0.814
SVM (sigmoid) 0 0 0

kNN 2 0.807 0 2 0.807
Logistic regression 0 0 0

Decision tree 4 0.814 0 4 0.814
Random forest 3 0.819 0 3 0.819

MLP-ANN 1 0.810 0 1 0.810

4. Model Prediction of IAQ Assessment with IAQ Index Updates

The IAQ index was developed previously as a screening strategy to screen out premises
with problematic IAQ based on assessment Scheme 1. Given that the assessment scheme
has been updated to Scheme 2, this section evaluates the relative impact of the index due to
the updated values of baselines in the two schemes.

The relative impact on the IAQ index for IAQ assessment with Schemes 1 and 2 was
evaluated using three uniformly distributed ranges: CO2 = 400–1400 ppm, RSP = 1–120 µg m−3,
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and TVOC = 0–1500 µg m−3. The selected ranges of surrogate pollutants generally cover
the observable range in the office IAQ database. Determined by Monte Carlo sampling
techniques, the three IAQ parameters in the above ranges were used to calculate the
corresponding IAQ index and to predict the IAQ satisfaction/dissatisfaction using the
trained and retrained classifiers.

Figure 9 shows the percentage of predicted satisfactory and unsatisfactory IAQ for the
range of IAQ indices under Schemes 1 and 2. The IAQ satisfaction was assessed by the best
performing trained and retrained IAQ classification models (with model accuracy shown
in brackets). Classifications were performed with models with classifiers of a decision
tree, a random forest, SVM with polynomial kernel and RBF kernel for Scheme 1, and
models with classifiers of kNN, MLP-ANN, SVM with linear kernel and polynomial kernel
for Scheme 2. The figure shows that the predictions of unsatisfactory IAQ made by these
models generally agree with each other, with a deviation up to ±5% from the average
prediction of satisfactory IAQ with Scheme 2.

Figure 9. Predicted IAQ satisfaction and dissatisfaction with an IAQ index with assessment criteria,
(a) Scheme 1, (b) Scheme 2.

The IAQ index in Figure 9 does not map any particular office distribution function
and, thus, a relative approach was adopted to study the relative impact of Scheme 2 on
Scheme 1, in terms of assessment likelihood, using the dataset summarized in Table 2. The
relative impact ratio r2,1 is determined by Equation (5), where xu and xs are the distribution
functions of the IAQ index for unsatisfactory and satisfactory IAQ respectively.

r2,1 =
LR2

LR1
; LR =

∫ x2
x1

f (xu)dx∫ x2
x1

f (xs)dx
(5)
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Table 6 outlines a proposed likelihood ratio LR1 for air-conditioned offices with unsat-
isfactory IAQ using Scheme 1, as reported in an earlier study [29]. The estimation of r1,2
was made based on the average predictions from all models shown in Figure 9. Normality
of the IAQ index was assumed (p > 0.05, w/s test). Based on the relative impact values
determined for the IAQ index ranges <0.32, 0.32–0.42, 0.43–0.53, 0.54–0.64, ≥0.65, the corre-
sponding values of LR2 were computed (by LR2 = r2,1 LR1) and summarized in Table 6. The
corresponding likelihood ratios in Scheme 2 were found to be higher due to the tightening
of assessment criteria in the updated scheme.

Table 6. IAQ index of air-conditioned offices in Hong Kong.

IAQ Index θ

Likelihood Ratio
(Scheme 1)

LR1

Relative Impact
r2,1

Likelihood Ratio
(Scheme 2)

LR2

<0.32 0.1 1.4 0.1
0.32–0.42 0.4 1.2 0.5
0.43–0.53 0.8 1.1 0.9
0.54–0.64 1.7 1.3 2.2
≥0.65 25 1.5 38

5. Conclusions

One of the ongoing IAQ development tasks is to constantly improve IAQ objectives
so that they are updated, relevant and attainable. Territory-wide IAQ screening should be
implemented immediately, and later, periodically, to understand the overall IAQ situation
and to maintain an up-to-date IAQ profile. Given so many IAQ standards with a wide
range of exposure limits established by various governments, a universal framework for
IAQ assessment modelling, which applies to all standards, is of urgent need.

In this study, a new strategy for unsatisfactory IAQ prediction using machine learning
models of three surrogate IAQ indicators in the IAQ index was proposed. The results
showed that all selected machine learning models performed well, achieving a maximum
test accuracy of 0.807–0.820. Among the selected models, SVM with linear kernel and
polynomial kernel, decision tree classifier and random forest classifier gave an IAQ classifi-
cation with higher accuracy. To further demonstrate the use of IAQ index with different
exposure limits in IAQ assessment, machine learning models of IAQ index using two
different baselines (Schemes 1 and 2) were presented. The predictions of IAQ made by all
selected models generally agreed with each other, with a ±5% deviation observed in the
prediction of satisfactory IAQ under Scheme 2. The likelihood ratio of the IAQ index in
Scheme 2 also increased with the tightening criteria for assessing exposure levels.

As demonstrated, machine learning models for IAQ index give promising prediction
accuracy in identifying unsatisfactory IAQ, and that shall provide an ultimate strategy for
IAQ screening and assessment, even under various IAQ standards and exposure criteria.
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Nomenclature

IAQ index and updates
j surrogate parameter
Φj

* fractional dose
Φj exposure level
Φj,e reference exposure limit
θ IAQ index
r relative impact ratio
xu/xs distribution functions for unsatisfactory/satisfactory

IAQ index
LR likelihood ratio
Data processing Data processing
X data vector
rd/1 − rd test data/training data
nd,t/nd,g number of data points in the test/training set
AC model accuracy
ACbl baseline accuracy
TP/TN true positive/negative
FP/FN false positive/negative
N sample size
K number of folds
Units for IAQ parameters
ppm parts per million
µg m−3 microgram per cubic meter
Bq m−3 becquerels per cubic meter
CFU m−3 colony-forming units per cubic meter
Regularization
f cost function
yi true value
xβ predicted value
C regularization factor
n number of dimensions
Decision tree/random forest
pj

2 probability of j
j class
D tree’s maximum depth
ns/nr minimum number of samplesrequired to split an internal

node/be at a leaf node
nf number of trees
Support Vector Machines
α, β constants
xi inputs
yi output class
M margin half-width
εi slack variables
c0, c1 hyperparameters for K(xi,xj)
K(xi,xj) kernel function
γ kernel coefficient
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k-Nearest Neighbors
k constant
d(xi,yi) Euclidean distance
ŷ predictions
W weight function
dk
−1 neighbour distance

MLP-ANN
R dataset
m/o dimension for input/output
J local gradient of function f
β parameter
y independent variables
δ increment
Logistic regression
x0 sigmoid’s midpoint of x
x inputs
k logistic growth rate
w coefficient vector

Appendix A.

Appendix A.1. Support Vector Machine (SVM)

The support vector machine (SVM) algorithm identifies the optimal hyperplane in
an n-dimensional space that distinctly separates the data points to be classified into two
classes (in this study, satisfaction or dissatisfaction). The algorithm maximizes the margin
between these two classes. The linear classifier can be expressed by Equation (A1), where α
and β are constants, x is the input vector of inputs xi [46,47], and yi is the output class.

f (x) = β0 + ∑i αi〈xi, x〉; f (yi) =

{
0 f (xi) < 0
1 f (xi) > 0

(A1)

To maximize the margin half-width M of the strip that separates the data points into
the two classes, slack variables εi are specified for the soft margins, such that observations
(training data) on the wrong side are allowed. It is a trade-off between misclassification of
the training samples and simplicity of the decision surface suitable for a general model.

In Equation (A2), C is the regularization factor that is optimized for the number of
samples [42]. For a large value of C, the optimizer chooses a smaller-margin hyperplane if
that hyperplane can classify all the training points correctly. Conversely, a small value of C
causes the optimizer to look for a larger-margin separating hyperplane. The application of
regularization improves the numerical stability and the universality errors for predicting
unseen data.

∑i εi ≤ C; yi(β0 + β1xi1 + . . .) ≥ M(1− εi), εi ≥ 0 (A2)

Four types of kernel functions K(xi,xj) in SVM were investigated in this study. They
were linear, polynomial, radial basis function (RBF) and sigmoid kernel functions, ex-
pressed below in Equations (A3)–(A6), where c0 and c1 are the hyperparameters for the
functions [48], and γ is the kernel coefficient, which defines how much influence a single
training sample has. A large γ increases the area of influence of the support vectors but
reduces the regularization for overfitting prevention, whereas a small γ constrains the
model to capture the complexity of the data. The behavior of the model is very sensitive to
the value of γ.

K
(

xi, xj
)
= ϕ(xi)

T ϕ
(
xj
)
=
〈

xi, xj
〉

(A3)

K
(
xi, xj

)
=
[
c0 + γ

〈
xi, xj

〉]c1 (A4)

K
(
xi, xj

)
= exp

(
−γ‖xi − xj‖2

)
(A5)
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K
(

xi, xj
)
= tanh

(
c0 + γ

〈
xi, xj

〉)
(A6)

Appendix A.2. k-Nearest Neighbors (kNN)

The k-nearest neighbors (kNN) algorithm is a non-parametric classification approach
that classifies a point based on the majority class of the k-neighbors closest to the point. The
average response of the k-closest points to x is given by Equation (A7).

f (x) =
1
k ∑

i = 1...k
yi (A7)

The Euclidean distance d(xi,yi), expressed in Equation (A8), is usually adopted for
calculating the distance [49].

d(xi, yi) =
√

∑
i = 1...k

(xi − yi)
2 (A8)

The neighbors closer to a query point have a greater influence than the neighbors that
are farther away. Therefore, the predictions ŷ can be made with a non-negative weight
function to the neighbor distance W~dk

−1, as shown in Equation (A9).

ŷ = ∑
i = 1...n

W
(
xi, xj

)
xi (A9)

Appendix A.3. Logistic Regression

A logistic regression algorithm is a linear classification model. The probabilities
of the outcomes of a single trial are modelled using the logistic function exhibited in
Equation (A10), where x0 is the x value of the sigmoid’s midpoint, and k is the logistic
growth rate [50].

f (x) =
1

1 + exp[−k(x− x0)]
(A10)

The decision function is expressed in Equation (A11), where w is a coefficient vector.

f (x) = minw,c
1
2

wTw + C ∑
i = 1...n

log
(

exp
(
−yi

(
XT

i w + c
))

+ 1
)

(A11)

Appendix A.4. Decision Tree (DT) and Random Forest (RF)

A decision tree (DT) is a non-parametric learning algorithm that partitions the data into
subsets for classification [40]. The goal is to create the smallest possible tree (training model)
that can predict the value of a target variable by learning simple decision rules. A tree can
be seen as a piecewise constant approximation. The binary partitioning process continues
until no further splits can be made so that the tree nodes are pure. The node purity can
be measured by Gini impurity (GI) or by the information entropy (EI). GI measures the
frequency at which any element of the dataset is mislabeled when it is randomly labeled.
EI measures the disorder of the features with the target. A tree node is determined by
minimizing the chosen index so that all the contained elements in the node are of one
unique class. The GI and EI can be expressed by Equations (A12) and (A13), where pj

2 is
the probability of class j.

GI = 1−∑
j

p2
j (A12)

EI = −∑
j

pjlog2 pj (A13)

Regularization can be done by confining the tree size, the tree’s maximum depth D,
the minimum number of samples required to split an internal node ns, and the minimum
number of samples required to be at a leaf node nr.
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A random forest (RF) is a meta-estimator that fits several decision tree classifiers to
various subsamples of the dataset. It is also known as a random decision forest (RDF)
that uses the mode of the classification to improve the predictive accuracy and control the
problem of over-fitting [51]. The number of trees in the forest is a hyperparameter to be
tuned, in addition to those hyperparameters for a decision tree.

Appendix A.5. Multilayer Perceptron Artificial Neural Network (MLP-ANN)

A multilayer perceptron artificial neural network (MLP-ANN) is a supervised learning
algorithm that learns a function f (): Rm → Ro by training a dataset R with m-dimensional
input and o-dimensional output. It can also learn a nonlinear function approximated for
predicting the output. As ANNs do not have predefined assumptions, they have a low
sensitivity to error term assumptions and high tolerance to noise. Therefore, an MLP-ANN
can be used to examine the relationships in complex nonlinear datasets in the same way as
conventional statistical techniques, but without many of the parametric restrictions about
the nature of the data relationships [29]. The algorithm is described by Equation (A14),
where J is the local gradient of function f concerning parameters β, y is independent
variables and δ is the increment.(

JT J + λdiag
(

JT J
))

δ = JT [y− f (B)] (A14)

The hyperparameters are adjusted for model performance. Hidden layer arrangement
includes the number of hidden layers and the number of neurons in each hidden layer.
The activation function of a neuron defines the output of that neuron given an input. Four
activation functions (identity, logistic, tanh and rectified linear unit (ReLU)) used in this
study are given in Equations (A15)–(A18).

f (x) = x (A15)

f (x) =
1

1 + exp(−x)
(A16)

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

(A17)

f (x) =

{
0 x ≤ 0
x x > 0

(A18)

Moreover, iterative methods adopted for training the neural networks (weight opti-
mization) can be specified. The L-BFGS type quasi-Newton method calculates the second
derivative of the objective function and that leads to a more efficient descent direction [52].
Stochastic gradient descent (SGD), by using an estimate calculated from a randomly se-
lected subset of the data rather than the entire dataset, optimizes an objective function
with differentiable smoothness properties [53]. Adaptive moment estimation (Adam) is
an algorithm for first-order gradient-based optimization of stochastic objective functions,
based on adaptive estimates of lower-order moments [54].

Learning rate determines the weight updates. The default value for the constant
learning rate is 0.001 for all iterative methods. Optional weights are available for the
stochastic gradient descent solver. An “invscaling” weight gradually decreases the learning
rate at each time step using an inverse scaling exponent to the time step, while an “adaptive”
weight keeps the learning rate constant, as long as the training loss keeps decreasing.
Dividing the current learning rate by 5 is generally adopted for the adaptive weight.
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Appendix B.

Table A1. Configuration sets of the model hyperparameters for the inner layer architecture for the
MLP-ANN classifier.

Legend Activation C Learning
Rate Solver Legend Activation C Learning

Rate Solver

1 identity

0.0001

constant

Adam

31 relu
0.05

adaptive

SDG

2 logistic 32 tanh
3 relu 33 identity

1
4 tanh 34 logistic
5 identity

0.05

35 relu
6 logistic 36 tanh
7 relu 37 identity

0.0001

constant

8 tanh 38 logistic
9 identity

1

39 relu
10 logistic 40 tanh
11 relu 41 identity

0.05
12 tanh 42 logistic
13 identity

0.0001

LBFGS

43 relu
14 logistic 44 tanh
15 relu 45 identity

1
16 tanh 46 logistic
17 identity

0.05

47 relu
18 logistic 48 tanh
19 relu 49 identity

0.0001

invscaling

20 tanh 50 logistic
21 identity

1

51 relu
22 logistic 52 tanh
23 relu 53 identity

0.05
24 tanh 54 logistic
25 identity

0.0001
adaptive SDG

55 relu
26 logistic 56 tanh
27 relu 57 identity

1
28 tanh 58 logistic
29 identity

0.05
59 relu

30 logistic 60 tanh

References
1. Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The

National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci.
Environ. Epidemiol. 2011, 11, 231–252. [CrossRef] [PubMed]

2. Burroughs, H.E.; Hansen, S.J. Managing Indoor Air Quality; Fairmont Press: Lilburn, GA, USA, 2001.
3. Brown, S.K. Indoor Air Quality. Australia: State of the Environment Technical Paper Series (Atmosphere); Department of the Environment,

Sport and Territories: Canberra, Australia, 1997.
4. Husman, T.M. The Health Protection Act, national guidelines for indoor air quality and development of the national indoor air

programs in Finland. Environ. Health Perspect. 1999, 107 (Suppl. S3), 515–517. [CrossRef] [PubMed]
5. Azuma, K.; Uchiyama, I.; Ikeda, K. The regulations for indoor air pollution in Japan: A public health perspective. J. Risk Res. 2008,

11, 301–314. [CrossRef]
6. Aurola, R.; Valikyla, T. (Eds.) Guidelines for Healthy Housing; Ministry of Social Affairs and Health: Pori, Finland, 1997. (In Finnish)
7. Ad-hoc-Arbeitsgruppe IRK-AGLMB. Guideline values for indoor air: General Scheme. Bundesgesundheitsblatt 1996, 39, 422–426.

(In German)
8. Meyers, R.A. Encyclopedia of Physical Science and Technology; Academic Press: San Diego, CA, USA, 2002.
9. Schell, M.; Int-Hout, D. Demand Control Ventilation Using CO2. ASHRAE J. 2001, 43, 18–29.
10. Hui, P.S.; Wong, L.T.; Mui, K.W. Feasibility study of an Express Assessment Protocol for the indoor air quality of air-conditioned

offices. Indoor Built Environ. 2006, 15, 373–378. [CrossRef]
11. Wong, L.T.; Mui, K.W.; Hui, P.S. A statistical model for characterizing common air pollutants in air-conditioned offices. Atmos.

Environ. 2006, 40, 4246–4257. [CrossRef]
12. Indoor Air Quality Management Group. Practice Note for Managing Air Quality in Air-Conditioned Public Transport. Facilities;

Environmental Protection Department: Hong Kong, China, 2003.

http://doi.org/10.1038/sj.jea.7500165
http://www.ncbi.nlm.nih.gov/pubmed/11477521
http://doi.org/10.1289/ehp.99107s3515
http://www.ncbi.nlm.nih.gov/pubmed/10347001
http://doi.org/10.1080/13669870801967119
http://doi.org/10.1177/1420326X06067866
http://doi.org/10.1016/j.atmosenv.2006.04.005


Int. J. Environ. Res. Public Health 2022, 19, 5724 22 of 23

13. Wong, L.T.; Mui, K.W.; Hui, P.S. Screening for indoor air quality of air-conditioned offices. Indoor Built Environ. 2007, 16, 438–443.
[CrossRef]

14. Mui, K.W.; Hui, P.S.; Wong, L.T. Diagnostics of unsatisfactory indoor air quality in air-conditional workplaces. Indoor Built Environ.
2011, 20, 313–320. [CrossRef]

15. Wong, L.T.; Mui, K.W.; Tsang, T.W. Evaluation of indoor air quality screening strategies: A step-wise approach for IAQ screening.
Int. J. Environ. Res. Public Health 2016, 13, 1240. [CrossRef]

16. WHO Regional Office for Europe. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur
Dioxide; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2006.

17. WHO Regional Office for Europe. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project: Final Technical Report;
World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2013.

18. WHO Regional Office for Europe. Health Risks of Air Pollution in Europe—HRAPIE Project. Recommendations for Concentration–
Response Functions for Cost–Benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide; World Health Organization Regional
Office for Europe: Copenhagen, Denmark, 2013.

19. WHO Regional Office for Europe. Evolution of WHO Air Quality Guidelines: Past, Present and Future; World Health Organization
Regional Office for Europe: Copenhagen, Denmark, 2017.

20. WHO. WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon
Monoxide; World Health Organization: Geneva, Switzerland, 2021.

21. Rybarczyk, Y.; Zalakeviciute, R. Machine learning approaches for outdoor air quality modelling: A systematic review. Appl. Sci.
2018, 8, 2570. [CrossRef]

22. Seyedzadeh, S.; Rahimian, F.; Glesk, I.; Roper, M. Machine learning for estimation of building energy consumption and
performance: A review. Vis. Eng. 2018, 6, 5. [CrossRef]

23. Wei, W.; Ramalho, O.; Malingre, L.; Sivanantham, S.; Little, J.C.; Mandin, C. Machine learning and statistical models for predicting
indoor air quality. Indoor Air 2019, 29, 704–726. [CrossRef] [PubMed]

24. Elbayoumi, M.; Ramli, N.A.; Fitri Md Yusof, N.F. Development and comparison of regression models and feedforward backprop-
agation neural network models to predict seasonal indoor PM2.5–10 and PM2.5 concentrations in naturally ventilated schools.
Atmos. Pollut. Res. 2015, 6, 1013–1023. [CrossRef]

25. Yuchi, W.; Gombojav, E.; Boldbaatar, B.; Galsuren, J.; Enkhmaa, S.; Beejin, B.; Naidan, G.; Ochir, C.; Legtseg, B.; Byambaa, T.; et al.
Evaluation of random forest regression and multiple linear regression for predicting indoor fine particulate matter concentrations
in a highly polluted city. Environ. Pollut. 2019, 245, 746–753. [CrossRef]

26. Park, S.; Kim, M.; Kim, M.; Namgung, H.G.; Kim, K.T.; Cho, K.H.; Kwon, S.B. Predicting PM10 concentration in Seoul metropolitan
subway stations using artificial neural network (ANN). J. Hazard. Mater. 2018, 341, 75–82. [CrossRef]

27. Skön, J.; Johansson, M.; Raatikainen, M.; Leiviskä, K.; Kolehmainen, M. Modelling indoor air carbon dioxide (CO2) concentration
using neural network. World Acad. Sci. Eng. Technol. Int. Sci. Index. 2012, 6, 737–741.

28. Khazaei, B.; Shiehbeigi, A.; Haji Molla Ali Kani, A.R. Modeling indoor air carbon dioxide concentration using artificial neural
network. Int. J. Environ. Sci. Technol. 2019, 16, 729–736. [CrossRef]

29. Challoner, A.; Pilla, F.; Gill, L. Prediction of indoor air exposure from outdoor air quality using an artificial neural network model
for inner city commercial buildings. Int. J. Environ. Res. Public Health 2015, 12, 15233–15253. [CrossRef]

30. Kropat, G.; Bochud, F.; Jaboyedoff, M.; Laedermann, J.P.; Murith, C.; Palacios, M. Improved predictive mapping of indoor radon
concentrations using ensemble regression trees based on automatic clustering of geological units. J. Environ. Radioact. 2015, 147,
51–62. [CrossRef]

31. Kropat, G.; Bochud, F.; Jaboyedoff, M.; Laedermann, J.P.; Murith, C.; Gruson, M.P.; Baechler, S. Predictive analysis and mapping
of indoor radon concentrations in a complex environment using kernel estimation: An application to Switzerland. Sci. Total
Environ. 2015, 505, 137–148. [CrossRef] [PubMed]

32. Ahn, J.; Shin, D.; Kim, K.; Yang, J. Indoor air quality analysis using deep learning with sensor data. Sensors 2017, 17, 2476.
[CrossRef] [PubMed]

33. Saini, J.; Dutta, M.; Marques, G. Indoor air quality prediction systems for smart environments: A systematic review. J. Ambient
Intell. Smart Environ. 2020, 12, 433–453. [CrossRef]

34. Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and Forecasting; John Wiley & Sons: New York,
NY, USA, 2008.

35. Yu, T.C.; Lin, C.C. An intelligent wireless sensing and control system to improve indoor air quality: Monitoring, prediction, and
preaction. Int. J. Distrib. Sens. Netw. 2015, 11, 140978. [CrossRef]

36. Han, Z.; Gao, R.X.; Fan, Z. Occupancy and indoor environment quality sensing for smart buildings. In Proceedings of the 2012
IEEE International Instrumentation and Measurement Technology Conference Proceedings, Congress Graz, Graz, Austria, 13–16
May 2012; IEEE: Piscataway, NJ, USA, 2012.

37. Ouaret, R.; Ionescu, A.; Petrehus, V.; Candau, Y.; Ramalho, O. Spectral band decomposition combined with nonlinear models:
Application to indoor formaldehyde concentration forecasting. Stoch. Environ. Res. Risk Assess. 2018, 32, 985–997. [CrossRef]

38. Zimmerman, N.; Presto, A.A.; Kumar, P.N.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L.; Subramanian, R. A machine
learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmos.
Meas. Tech. 2018, 11, 291–313. [CrossRef]

http://doi.org/10.1177/1420326X07082159
http://doi.org/10.1177/1420326X11400880
http://doi.org/10.3390/ijerph13121240
http://doi.org/10.3390/app8122570
http://doi.org/10.1186/s40327-018-0064-7
http://doi.org/10.1111/ina.12580
http://www.ncbi.nlm.nih.gov/pubmed/31220370
http://doi.org/10.1016/j.apr.2015.09.001
http://doi.org/10.1016/j.envpol.2018.11.034
http://doi.org/10.1016/j.jhazmat.2017.07.050
http://doi.org/10.1007/s13762-018-1642-x
http://doi.org/10.3390/ijerph121214975
http://doi.org/10.1016/j.jenvrad.2015.05.006
http://doi.org/10.1016/j.scitotenv.2014.09.064
http://www.ncbi.nlm.nih.gov/pubmed/25314691
http://doi.org/10.3390/s17112476
http://www.ncbi.nlm.nih.gov/pubmed/29143797
http://doi.org/10.3233/AIS-200574
http://doi.org/10.1155/2015/140978
http://doi.org/10.1007/s00477-017-1510-0
http://doi.org/10.5194/amt-11-291-2018


Int. J. Environ. Res. Public Health 2022, 19, 5724 23 of 23

39. Leong, W.C.; Kelani, R.O.; Ahmad, Z. Prediction of air pollution index (API) using support vector machine (SVM). J. Environ.
Chem. Eng. 2020, 8, 103208. [CrossRef]

40. Sarkhosh, M.; Najafpoor, A.A.; Alidadi, H.; Shamsara, J.; Amiri, H.; Andrea, T.; Kariminejad, F. Indoor Air Quality associations
with sick building syndrome: An application of decision tree technology. Build. Environ. 2021, 188, 107446. [CrossRef]

41. Indoor Air Quality Management Group. A Guide on Indoor Air Quality Certification Scheme for Offices and Public Places; Hong Kong
Environmental Protection Department, Government of the Hong Kong Special Administrative Region: Hong Kong, China, 2019.

42. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

43. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320.
[CrossRef]

44. Bzdok, D.; Altman, N.; Krzywinski, M. Statistics versus machine learning. Nat. Methods 2018, 15, 233–234. [CrossRef] [PubMed]
45. Pecha, M.; Horák, D. Analyzing l1-loss and l2-loss Support Vector Machines Implemented in PERMON Toolbox. In AETA

2018—Recent Advances in Electrical Engineering and Related Sciences: Theory and Application; Zelinka, I., Brandstetter, P., Trong Dao,
T., Hoang Duy, V., Kim, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 13–23.

46. Adak, M.F.; Ercan, S. Identification of Indoor Harmful Gas to Human Respiratory System using Support Vector Machines. In
Proceedings of the 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara,
Turkey, 1–13 October 2019; IEEE: Piscataway, NJ, USA, 2019.

47. Zhang, L.; Tian, F.; Nie, H.; Dang, L.; Li, G.; Ye, Q.; Kadri, C. Classification of multiple indoor air contaminants by an electronic
nose and a hybrid support vector machine. Sens. Actuators B Chem. 2012, 174, 114–125. [CrossRef]

48. Intan, P.K. Comparison of Kernel Function on Support Vector Machine in Classification of Childbirth. J. Mat. Mantik. 2019, 5,
90–99. [CrossRef]

49. Imandoust, S.B.; Bolandraftar, M. Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical
background. Int. J. Eng. 2013, 3, 605–610.

50. Schein, A.I.; Ungar, L.H. Active learning for logistic regression: An evaluation. Mach. Learn. 2007, 68, 235–265. [CrossRef]
51. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition,

Montreal, QC, Canada, 14–16 August 1995; IEEE: Piscataway, NJ, USA, 1995.
52. Bollapragada, R.; Nocedal, J.; Mudigere, D.; Shi, H.J.; Tang, P.T.P. A progressive batching L-BFGS method for machine learning. In

Proceedings of the International Conference on Machine Learning, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018.
53. Bottou, L. Stochastic gradient learning in neural networks. In Proceedings of the Neuro-Nımes, Nimes, France, 12–16 November

1990; EC2: Nanterre, France, 1991.
54. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

http://doi.org/10.1016/j.jece.2019.103208
http://doi.org/10.1016/j.buildenv.2020.107446
http://doi.org/10.1111/j.1467-9868.2005.00503.x
http://doi.org/10.1038/nmeth.4642
http://www.ncbi.nlm.nih.gov/pubmed/30100822
http://doi.org/10.1016/j.snb.2012.07.021
http://doi.org/10.15642/mantik.2019.5.2.90-99
http://doi.org/10.1007/s10994-007-5019-5

	Introduction 
	Materials and Methods 
	Overview of the Data 
	Data Preprocessing 
	Models for Evaluation 

	Results and Discussion 
	Model Prediction of IAQ Assessment with IAQ Index Updates 
	Conclusions 
	Appendix A
	Support Vector Machine (SVM) 
	k-Nearest Neighbors (kNN) 
	Logistic Regression 
	Decision Tree (DT) and Random Forest (RF) 
	Multilayer Perceptron Artificial Neural Network (MLP-ANN) 

	Appendix B
	References

