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Abstract: Carbon emissions (CEs) are one of the most important factors causing global warming. The
development of social economy and the acceleration of the urbanization process leads to increasing
CEs, especially in China. Therefore, it has become an international community consensus to control
the growth of CEs and mitigate global warming. Understanding the changing patterns and driving
forces of CEs are important prerequisites for formulating policies that target the reduction of CEs
in response to global warming. This study developed an improved logarithmic mean Divisia
index (Spatial-LMDI) to explore the urban form and socio-economic driving forces of CEs in China.
Comparing with previous studies, this study is unique in the way of applying spatial landscape
index to LMDI decomposition analysis. The results show that population, per capita GDP, investment
intensity and urban expansion are the top driving forces of CEs growth from 1995 to 2019. Investment
efficiency, technology level, and aggregation are the most important factors in terms of restraining the
growth of CEs. To achieve the goal of energy saving, CEs reduction and climate change mitigation, we
proposed that strategies should be formulated as follows: improving efficiency of energy investment,
optimizing the spatial distribution of construction land aggregation, and rationalizing distribution
of industries.

Keywords: Spatial-LMDI; carbon emissions; driving forces; urban form

1. Introduction

Global warming is one of the most serious threats humankind faces, and one major
cause is the carbon dioxide emissions [1]. Carbon dioxide emission comes mainly from
urban areas [2]. Studies have shown that urban areas, accounting for 2% of the global land
area, generated 80% of greenhouse gas emissions, 70% of which is carbon dioxide [3,4].
Fossil energy consumption is one major source of carbon dioxide [5], and China has become
the world’s largest consumer of fossil energy, as well as the largest emitter of carbon
dioxide [6,7]. Data show that China’s carbon emissions (CEs) accounted for 28.17% of
the global total in 2015, reaching 9.12 billion tons [8,9]. With China’s growing economy,
the energy consumption and CEs keep increasing proportionately, thus China is facing
increasingly severe energy supply and environmental problems [10,11]. Effective actions
are urgently required for government and society to effectively reduce the growing CEs
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under global warming, so as to improve the living environment and achieve sustainable
development.

In response to global warming, the international communities have come to scientific
consensus and brought out some solutions. Major countries have signed the Kyoto Protocol
and the Paris Agreement under the United Nations Framework Convention on Climate
Change (UNFCCC), focusing on reducing CEs and achieving sustainable development
from socio-economic perspective [12,13]. The Chinese government has actively participated
in global climate change governance and international cooperation, and signed the Kyoto
Protocol in 1998, and then the Paris Agreement in 2015 [14], demonstrating that China
is taking a serious attitude and action in terms of mitigating global climate change. In
addition, the Chinese government has formulated a quantitative greenhouse gas emission
reduction target [15]. To formulate effective CEs reduction policies/plans and achieve the
CEs reduction targets, it is an important prerequisite to understanding the internal driving
forces of CEs growth. Quantitative research on CEs change and its influencing factors
can solidify the decision-making basis for energy-saving and CEs reduction policies, and
provide a reference for achieving sustainable socio-economic development.

The traditional regression method requires time-series land use data, but its availability
is limited and it is unable to analyze the space form effect to CEs. The traditional driving
forces analysis methods also contain a residual. Here, we propose to use the logarithmic
mean Divisia index (LMDI), which contains no residuals, and time-series data is not
required. LMDI model has been widely used in driving force research, and it has also
been adopted for the analysis of CEs driving force [16]. Existing literature using this
method focuses on global, regional, national and urban scale, respectively (Table 1). By
analyzing the existing literature, it is not difficult to find that decomposition factors related
to socioeconomic aspect, energy and CEs are widely used in LMDI analysis of previous
studies. However, spatial factors (such as landscape and shape, area, etc.) have not
been widely considered [17]. This may be due to the wide availability to socioeconomic
data, and the mature and simple method to construct LMDI models using socioeconomic
data. On the other hand, spatial data is relatively difficult to acquire at national level and
lacks continuous data source. Therefore, the LMDI models in previous literature give a
comprehensive explanation on the socio-economic, energy and CEs related driving forces
of CEs, but lacking the analysis of the impact from spatial factors on CEs, especially the
urban form. Moreover, Hoekstra proposed the index decomposition analysis (IDA), which
is more flexible, and it only needs the aggregated data [18]. However, the practical research
of this model is not enough for spatial form analysis.

In this study, we considered factors including investment efficiency (GI), fixed asset in-
vestment intensity (UInv) and other socio-economic factors, GDP and Population (P). More
importantly, as an innovative methodology, spatial factors such as Splitting index (SPLIT),
Effective mesh size (MESH), Edge Density (ED) and perimeter index (TE) were included in
the model, these factors were urban form index. In addition, we also modified the existing
LMDI model, which was named Spatial-LMDI, to explore the impact of spatial and socio-
economic factors on CEs. Compared with the traditional LMDI method, the Spatial-LMDI
method can effectively detect the impact of urban form on CEs. The study focused on the
following aspect: Firstly, we accounted the CEs according to fossil energy consumption in
China’s built-up areas at provincial-level. Among them, we mainly accounted the CEs gen-
erated by terminal energy consumption in five sectors: housing (residents’ living), industry,
construction, transportation and agriculture. Secondly, through decomposition analysis,
we quantitatively assessed the impact of social and economic development, built-up area
expansion and urban form on CEs. The traditional LMDI model was improved, to detect
the urban form driving factors, which include social–economic and urban form. Finally,
we provided support and recommendations for policy formulation and climate change
mitigation. This study has made contributions in three aspects. Firstly, according to the
validity of the data, the time span of the sample data (from 1995 to 2019) is longer than that
of the previous studies. Secondly, the sample data of CEs in this study include five sectors:
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industry, construction, transportation, residents’ living and agriculture, which are more
comprehensive and detailed than those covered by existing research. Thirdly, this study
employs GI, UInv, SPLIT, MESH, ED and TE to develop the Spatial-LMDI model, which
can detect not only the traditional socio-economic driving factors of CEs change, including
per capita GDP (PGDP), population (P), carbon intensity per unit GDP (UC), but also the
urban form factors (such as SPLIT, MESH, ED and TE). This study explored the root causes
of CEs change to provide a reference for policy-making, dealing with CEs reduction under
global climate change.

Table 1. Decomposition of CEs changes in existing literature.

Scale Sectors Decomposition Factors Study Area & Time Source

Global

Electricity Geographical shift, energy mix, share and efficiency,
emission factor Global, 1990–2013 [19]

Industry
Carbon intensity, energy structure, industrial energy
intensity, economic structure, economic development,

and population, respectively
Global, 1990–2017 [20]

Electricity Socioeconomic indicators Global, 1990–2014 [21]
Export the aggregate carbon intensity, the aggregate weight Global, 2014 [22]

Energy-related Emission factor, energy structure and intensity,
income, population Global, 1980–2015 [23]

Country

Cement Activity, cement structure, electricity intensity,
emission factors China, 1990–2009 [24]

Industry Carbon intensity, energy mix and intensity, industrial
activity, employment China, 1991–2010 [25]

Coal Economic scale, industrial structure, energy intensity
and mix China, 1997–2014 [26]

Energy-related Population, income, energy intensity, energy
structure, and carbon intensity

China and US,
2000–2014 [27]

Chemistry industry Carbon intensity, energy structure and intensity,
output per worker, economic scale China, 1981–2011 [28]

Power Carbon intensity, energy efficiency and density,
economic scale, population Pakistan [29]

Industry Carbon intensity, energy intensity and structure China, 1996–2012 [30]

Region

Seven sectors Socioeconomic and energy Region, 1996–2012 [31]

Electricity Carbon density, energy structure, energy intensity,
industrial structure, economic intensity

Latin America &
Caribbean, 1990–2015 [32]

Industry Emission intensity, energy structure and intensity,
economic structure and output, population

Beijing-Tianjin-Hebei,
1996–2000 [33]

Province

Electricity Electric production, electricity structure, energy
efficiency, energy mix, emission factor Shandong, 1995–2012 [34]

Energy-related Energy mix and intensity, economic activity,
labor, investment Liaoning, 1995–2012 [35]

Energy-related Population, economic output, energy intensity and
energy mix

30 Provinces of China,
2005–2011 [36]

City

Industry Industrial structure, economic growth and
industrial structure

9 cities in Pearl River
Delta, 2006–2014 [37]

Energy-related
Energy structure, energy intensity, industrial

structure, population density, and area of
construction land

Shanghai, 1999–2015 [17]

2. Materials and Methods
2.1. Study Area and Materials

This study focuses on mainland China as the research area. The data of end energy
consumption (physical quantity) for CEs accounting in this study were obtained from China
Statistical Yearbook (CSY), China Energy Statistical Yearbook (CESY) and the National
Data Website of the National Bureau of Statistics of the People’s Republic of China (http:

http://data.stats.gov.cn/index.htm
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//data.stats.gov.cn/index.htm, accessed on 10 January 2021). These energy consumption
data were collected on a provincial basis with 14 kinds of energy consumption, including
raw coal, coal washing, coke, coke oven gas, crude oil, gasoline, diesel, kerosene, fuel oil,
liquefied petroleum gas, refinery dry gas, coke oven gas, other coal washing and natural
gas. Data on fixed asset investment, population and gross domestic product (GDP) were
obtained from the CSY. Based on data availability, all statistical data were collected from
1995 to 2019. Land use data of China, including cultivated land, woodland, grassland, water
area, construction land and unused land, were obtained from Resource and Environment
Data Cloud Platform (REDCP, http://www.resdc.cn/, accessed on 10 January 2021) with a
spatial resolution of 1 km. The land use data is 1995, 2000, 2005, 2010, 2015, and 2020. This
study used land use of 2020 instead of 2019 land use. Provincial and national administrative
boundary vector dataset were obtained from the National Geographic Information Bureau
of China, which was collected and organized in 2015.

2.2. Methods

This study utilized a bottom-up method to quantitatively account CEs from energy
consumption. This study considered the energy CEs mainly in built-up areas, so that the
scenario includes the following categories: end energy consumption CEs in industrial
production (Industry), residents’ living (Residential), construction (Construction), trans-
portation (Traffic) and agriculture (Agriculture). Among them, Residential refers to the
CEs from the terminal energy consumed by residents. Detailed physical consumption
statistics of energy consumption departments are provided in the energy balance tables of
China Statistical Yearbook (CSY) and China Energy Statistical Yearbook (CESY). The CEs
accounting model is shown in Formula (1), in which the energy low calorific value data
refers to China’s General Principles for Computing Comprehensive Energy Consumption,
and the carbon content per unit calorific value and the oxidation rate of energy combustion
data are derived from China’s Provincial Guidelines for the Compilation of Greenhouse Gas
Inventories. Based on the carbon content and oxidation rate parameters, combined with
General Principles for Comprehensive Energy Consumption Calculation, the parameters
that can be used to calculate the carbon emissions of various types of energy in China
are obtained.

E = ∑n
j=1 Cj × Ij = ∑n

j=1 Cj × Lj × Pj × Oj ×
44
12

(1)

where, C represents the physical quantity of energy consumption, I is the CEs coefficient,
J represents the energy type, L is the low calorific value of energy (kJ/kg or kJ/m3), P
represents the carbon content per unit calorific value, O represents the oxidation rate of
energy combustion (%) and 44/12 represents the conversion coefficient of carbon to carbon
dioxide.

Analysis of Driving Force

In order to better understand the impact of socio-economic development and land-
scape pattern changes of built-up area on CEs in the process of urbanization, we employed
Spatial-LMDI model to decompose CEs into the following nine factors:

C = P × GDP
P × Inv

GDP × C
GDP × GDP

Inv × A2

∑n
j=1 a2

j
× ∑n

j=1 a2
j

A × Ed
A × 1

Ed

= P × PGDP × UInv × UC × GI × SPLIT × MESH × ED × (TE)
(2)

where, C is CEs; P is population; GDP is gross domestic product (GDP); Inv is fixed assets
investment; A is area; aj is patch area of built-up areas; and n represents total patches of
built-up areas; Ed is edge density. For the convenience of description, we use PGDP, UInv,

UC, GI, SPLIT, MESH, ED and TE to instead GDP
P , Inv

GDP , C
GDP , GDP

Inv , A2

∑n
j=1 a2

j
,

∑n
j=1 a2

j
A , Ed

A , 1
Ed ,

respectively. Additionally, obtain Formula (2). PGDP stands for GDP per capita; UInv
stands for investment intensity of fixed assets; UC stands for CEs per unit GDP; and GI

http://data.stats.gov.cn/index.htm
http://data.stats.gov.cn/index.htm
http://www.resdc.cn/
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stands for investment efficiency. SPLIT stands for landscape separation index; MESH stands
for effective grain size area index; and TE stands for perimeter index, that is, reciprocal of
edge length. SPLIT, MESH, Ed, and A were calculated by Fragstats 4.2 software; GDP, P,
and Inv were from statistical year book.

PGDP reflects the level of social and economic development and the degree of affluence.
P reflects population size. UC reflects the CEs per unit GDP, and indirectly reflects the
change of technology level. These indices are of great socioeconomic significance and
are the conventional driving factors widely used in current research. GI refers to the
output value of unit fixed assets investment, which reflects the transformation ability of
investment to economic output. High GI value and high investment conversion rate. UInv
refers to the investment in fixed assets per unit GDP output, which reflects the intensity
of social and economic expansion of reproduction. Since fixed asset investment (Inv) and
economic output (GDP) can be regarded as input and output, respectively, they reflect the
driving pattern of economic growth. The smaller UInv value, the lower the investment
intensity, the higher the investment utilization rate, the higher the technical content, as the
technology drives the economic growth. The higher UInv value, the greater the investment
intensity, the lower the investment utilization rate, the lower the technical content, as the
investment drives the economic growth. Few studies have applied UInv to the study of
LMDI model [38]. SPLIT equals the total landscape area squared divided by the sum of
patch area squared, summed across all patches of the corresponding patch type. SPLIT
refers to the level of looseness of landscape spatial distribution. The smaller the value,
the looser the spatial form is. On the contrary, the higher the level of aggregation is.
MESH is constrained by the ratio of cell size to landscape area and is achieved when the
corresponding patch type consists of a single pixel patch. The larger the value, the larger
the average patch area, the larger the total area. ED refers to the ratio of perimeter to area,
which reflects the increase of boundary length and the expansion of area. The higher the
value, the greater the level of fragmentation. TE is the reciprocal of the circumference, which
is used to measure the expansion of the area. The smaller the value is, the more significant
the expansion is, and the total area increases. In the existing literature, few studies have
applied SPLIT, MESH and ED to Satial-LMDI model. These three indices reflect the change
of spatial form of built-up areas. The introduction of these three factors overcomes the
shortcomings of the existing LMDI model, because the existing LMDI model is unable
to detect the impact of spatial morphology changes on CEs. Therefore, the Spatial-LMDI
model proposed in this study allows us to explore the driving factors of CEs changes from
the spatial and socio-economic levels.

Taking logarithms on both sides of the formula and referring to the addition Spatial-
LMDI decomposition rules adopted by [39,40], we rewrite the Formula (2) as follows:

∆C = ∆P + ∆PGDP + ∆UInv + ∆UC + ∆GI + ∆SPLIT + ∆MESH + ∆ED + ∆(TE) (3)

∆C = Ct+1 − Ct (4)

∆P =
Ct+1 − Ct

lnCt+1∆lnCt
× ln

(
Pt+1

Pt

)
(5)

∆PGDP =
Ct+1 − Ct

lnCt+1 − lnCt
× ln

(
PGDPt+1

PGDPt

)
(6)

∆UInv =
Ct+1∆Ct

lnCt+1 − lnCt
× ln

(
UInvt+1

UInvt

)
(7)

∆UC =
Ct+1 − Ct

lnCt+1 − lnCt
× ln

(
UCt+1

UCt

)
(8)

∆GI =
Ct+1 − Ct

lnCt+1 − lnCt
× ln

(
GIt+1

GIt

)
(9)
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∆SPLIT =
Ct+1 − Ct

lnCt+1 − lnCt
× ln

(
SPLITt+1

SPLITt

)
(10)

∆MESH =
Ct+1 − Ct

lnCt+1 − lnCt
× ln

(
MESHt+1

MESHt

)
(11)

∆ED =
Ct+1 − Ct

lnCt+1 − lnCt
× ln

(
EDt+1

EDt

)
(12)

∆TE =
Ct+1 − Ct

lnCt+1 − lnCt
× ln

(
TEt+1

TEt

)
(13)

Therefore, the final driving factors of CEs change are divided into seven effects,
include nine factors. They are population effect (population size ∆P and P), economic
effect (economic level ∆PGDP and GDP), intensity effect (investment intensity UInv and
∆UInv), technology effect (technology level ∆UC and UC), and efficiency effect (investment
efficiency ∆GI and GI). Aggregation effect (separation degree ∆SPLIT and SPLIT, edge
density ∆ED and ED), expansion effect (Effective mesh size ∆MESH and MESH, perimeter
index TE and ∆TE). Negative values for these factors indicate negative effects, and positive
values indicate positive effects.

3. Results and Discussion
3.1. Carbon Dioxide Emission Accounting

In 2019, China’s total CEs in five sectors amounted to 11.96 billion tons, an increase of
297.44% compared with the amount in 1995, with an average annual growth rate (AAGR)
of 5.92% (Figure 1a). Among them, Industry CEs increased from 2.30 billion tons in 1995 to
8.85 billion tons in 2019, with an AAGR of 5.78%. Residential CEs increased 322.55%, with
an AAGR of 6.19%. CEs from the Traffic, construction and agriculture sectors increased
with AAGRs of 8.80%, 7.54% and 2.40%, respectively (Figure 1a). From the decomposition
of CEs, the proportion of Industry decreased from 76.42% in 1995 to 74.03% in 2019, which
shows that industrial CEs are still a major component of China’s CEs (Figure 1b). In
addition, the proportion of household CEs decreased from 13.68% to 14.54%, while that
of Traffic, Construction and Agriculture are 7.77%, 1.49% and 2.17% in 2019, respectively
(Figure 1b).

Figure 1. Trends in CEs from 1995 to 2019. (a) carbon emissions of China from 1995 to 2019; (b) carbon
emission percentages of five sectors of China.

The growth of CEs in China can be divided into three main stages: the low growth
stage in 1995–2000, the fast growth stage in 2000–2012 and the deceleration stage in 2012–
2019. From 1995 to 2000, China was in the early stage of the Reform and Opening-up [41],
and the economy was in a period of low-speed growth, with an AAGR of 0.97% in GDP
and an AAGR of 2.22% in CEs. Since China joined the World Trade Organization (WTO) in
2001, China’s economy entered the fast lane [42]. From 2000 to 2012, the AAGR of China’s
GDP is 3.58%, and the AAGR of CEs is 10.56% in a period of rapid growth. After 2012, due
to the economic restructuring and upgrading in China [43] and the outbreak of the global
financial crisis in 2008 [44], economic growth slowed down. On the other hand, industrial
emissions in China slowed down due to the industrial transformation and upgrading. The
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AAGR of GDP decreased to 1.07%, while the AAGR of CEs decreased significantly to 3.27%.
It could be seen that the changing trend of social economy is consistent with that of CEs.

In order to understand the relationship between CEs and socio-economic changes,
we explored the relationship between per capita CEs, per capita industry CEs, per capita
household CEs, per capita building CEs and per capita Agriculture CEs, and per capita
GDP CEs and per capita GDP (Figure 2). Among them, GDP is the quantitative indicator
for comparison. In addition, per capita GDP is used to indicate the level of social affluence
and economic development level. Per capita residential CEs and per capita Agriculture CEs
are used to indicate the per capita energy consumption level of residents and agricultural
activities. Per capita Industrial CEs and per capita construction CEs are used to represent
the per capita level of CEs of industry and construction, indirectly reflecting the level of
social and economic development. The results show that per capita CEs increase from
3.04 tons per person to 8.51 tons per person with the growth of per capita GDP, with
a growth rate of 243.84 %. This reflects that the improvement of social affluence has a
positive impact on CEs (Figure 2). Among them, the per capita industry CEs increased
233.06% with the growth of per capita GDP, which indicates that the improvement of social
affluence promotes the consumption of energy and industrial products, this leading to
the increase of industrial CEs. The growth trend of industrial CEs is consistent with per
capita CEs, because industrial CEs are the main component of CEs, accounting for more
than 70% of total CEs. In addition, per capita residential CEs, per capita traffic CEs, per
capita Agriculture CEs and per capita construction CEs increased by 265.57%, 554.60%,
56.10% and 395.73%, respectively. This shows that the level of social affluence has a positive
effect on the living standards of residents and economic development. Interestingly, the
per unit GDP CEs increased from 0.63 ton/thousand yuan to 1.25 ton/thousand yuan. Per
unit GDP CEs has three increase rates, the first stage is the annual increase rate −0.34%
with the per capita GDP from 4.72 to 4.93 thousand yuan per person. The second stage
has the highest increase rate of 11.78%, with the per capita GDP increased from 5.03 to
6.25 thousand yuan per person. During the latest low increase stage, annual increase rate
slowed down to 0.61%. This three stages reflect the continuous maturity and advancement
of China’s industrial structure, due to the economic development, industrial upgrading
and societal increasing awareness of energy conservation and emission reduction.

Figure 2. Per capita CEs and per GDP CEs versus per capita GDP.

With respect to the changes of CEs in terms of provinces distribution, Shandong
Province experienced the greatest increase in CEs (959.40 million tons), followed by Jiangsu
(736.82 million tons), Guangdong (660.37 million tons), Hebei (654.96 million tons) and
Zhejiang (491.33 million tons) between 1995 and 2019 (Figure 3). From 1995 to 2019, Hainan
had the lowest increment in CEs (44.30 million tons), and followed by Beijing (48.10 million
tons). Ningxia has the highest AAGR (10.47%), which indicated that the growth rate of
CEs in Ningxia Province was higher than that in other provinces, and followed by Hainan
(10.42%), Inner Mongolia (10.31%). It is notable that Hainan has high AAGR and low
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increase, which means Hainan’s economy developed fast, and demanded rapidly growing
energy relatively, but its absolute increase amount is smaller than other provinces. Two
of three provinces with the largest AAGR are located in western China. From 1995 to
2019, Beijing’s GDP increased 152.50%, with CEs growth of 63.29%, and the ratio of CEs
growth rate to GDP growth rate is 0.52, remaining the lowest in China. This shows that
there is a weak decoupling relationship between economic growth and CEs growth in
Beijing, that is, economic growth is less dependent on energy consumption, so its economic
development quality is higher. One of the main reasons for this phenomenon is that the
industrial restructuring in Beijing has led to the gradual upgrading of energy-intensive
industries and the transfer to other provinces [45,46]. In terms of spatial distribution, most
of the provinces with a large increase in CEs, they located in the southeastern coast and
central regions of China, while the provinces have a fast growth rate are mostly located in
the western and eastern regions. The southeastern coastal and central regions of China are
important areas of China’s economy and the most populous areas (accounting for 65.02% of
the national population). Therefore, there is a huge demand for energy in the southeastern
coastal and central regions, and the increment of CEs is larger than west region. The highest
growth rate of CEs in the western region (such as Ningxia) is due to the implementation of
the strategy of developing the western region, which has enabled the western economy
to develop and the investment to increase gradually, so the demand for energy and CEs
are growing rapidly. The three provinces with the largest ratio of CE growth rate to GDP
growth rate are Inner Mongolia (7.45), Heilongjiang (7.05) and Hainan (4.56), GDP growth
is highly dependent on energy consumption.

Figure 3. CEs increase (a) and AAGR (b) of 30 Provinces, China.

3.2. Analysis of Driving Force

The change of CEs in China has experienced three stages: low growth period (1995–2000),
accelerated growth period (2000–2012) and medium growth period (2012–2019) (Figure 1a).
From 1995 to 2019, P, PGDP, UInv and ED were positive factors for the increase of CEs
(Figure 4). SPLIT, GI, UC and TE played a positive role in reducing CEs. In addition, MESH
has a positive value on the increase of CEs from 1995 to 2019, which played a positive
effect from 1995 to 2019 (Figure 4). This means that the expansion of built-up areas in
the context of urbanization will promote the increase of CEs. SPLIT is a positive factor
in the low growth period (1995–2000), while it is a negative factor in 2000–2019. This is
due to the low level of urbanization and the loose spatial pattern of cities in China during
the period of low-speed growth. Therefore, the correlation between cities is weak, and
the development of cities is still in an independent stage of development, which is not
conducive to reducing CEs. However, due to the acceleration of urban expansion and the
increasingly close relationship between cities (such as the rise of urban agglomerations),
the spatial distribution between cities becomes more and more concentrated, and the
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population is also more concentrated, which is conducive to reducing transportation energy
consumption and improving the utilization rate of infrastructure, so industrial division of
labor and cooperation is more reasonable and efficient, thus reducing CEs.

The contribution of each factor to the increase of CEs is listed in Table 2. From 1995
to 2019, the positive factors contributing to the increase of CEs were PGDP (2363.47%),
MESH (14,568.32%), UInv (19,371.61%), ED (2025.84%) and P (939.25%). At the same
time, the positive factors for reducing CEs are UC (−13,727.04%), SPLIT (−14,565.66%), GI
(−19,371.61%), and TE (−2028.79%). As a result, CEs increased by 297.44% between 1995
and 2019. The greatest positive driving force for the growth of CEs is UInv, which shows
that the investment intensity is the main driving force for the increase of CEs, UInv and
CEs are strongly coupled (Table 2).

Figure 4. Factorization of four stages; the number is in percentage indicating the growth rate of
each component.

Table 2. The contribution of each factor to the change of CEs in five periods.

Factors 1995–2000 2000–2005 2005–2010 2010–2015 2015–2019 1995–2019

∆P 108.86 91.41 268.32 340.15 216.65 939.25
∆PGDP 44.19 435.23 1252.60 296.69 601.20 2363.47
∆UInv 1428.24 3926.06 6890.04 6283.41 1006.58 19,371.61
∆UC −1232.12 −1961.43 −5135.41 −5456.78 −456.57 −13,727.04
∆GI −1428.24 −3926.06 −6890.04 −6283.41 −1006.58 −19,371.61

∆SPLIT 313.99 −4079.95 −2477.14 −3734.09 −8107.53 −14,565.66
∆MESH 131.84 3451.62 2477.91 3735.28 8107.01 14,568.32

∆ED 75.96 202.43 187.90 915.83 1405.29 2025.84
∆TE −76.63 −202.76 −189.22 −916.88 −1404.00 −2028.79
∆C 11.61 74.20 56.01 16.04 12.92 297.44

Note: the number is in percentage indicating the growth rate of each component. Negative figures indicate a
positive contribution to reducing CEs.

3.3. Regional Differences

In order to understand the different regional driving forces of CEs in China, we ac-
counted for the four major regions (East, Central, Western and Northeastern, Figure 5) [47].
On this basis, the driving factors of CEs change in different regions were analyzed (Figure 5).
CEs in the Eastern region increased the most (4.16 billion tons). The Western (2.66 billion
tons), the Central region (1.61 billion tons) and the Northeastern (0.52 billion tons) followed.
The fastest AAGR of CEs was the Western (6.71%), followed by the Eastern and Central
(6.60%), and the lowest AAGR was found in the Northeastern (3.36%) (Figure 5). The
implementation of China’s western development strategy and industrial transfer policy
has promoted the industrial and social economic development of the west, which has
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led to the transfer of low-end industries from the Eastern China to Western China [48,49].
Therefore, the Western region is in the downstream of the industrial chain, which leads to
high CEs. Northeastern China, as the historical heavy industry base in China, was highly
affected by the industrial transformation and upgrading in recent years, for example, the
transformation of resource-based cities [50]. Industrial transfer refers to the major changes
in the spatial distribution of industries, mainly due to the level of economic development
and factor endowments, which lead to the process of repositioning some industrial loca-
tions. China’s industrial transfer is mainly about switching backward and energy-intensive
industries to the central and western regions, while the eastern region of China focus on de-
veloping high-tech and high value-added industries [51]. Due to China’s industrial transfer
policy, China’s industrial layout and economic development have undergone significant
changes [52,53]. Accordingly, the economic growth rate in Northeastern China slowed
down, with the average economic growth rate in 2008–2015 decreased by 18.12% compared
with 1995–2008, which led to a significant reduction in the growth rate of heavy industry
CEs, and consequently led to a decrease in CEs (28.34%) [54,55]. From the result we con-
clude that China’s energy resources are concentrated in the central and western regions,
and the eastern coastal region is the most economically developed region and the largest
energy consumer in China. Therefore, industrial layout, energy endowment and economic
development policies jointly affect the regional energy consumption structure and carbon
emissions. Some studies have reported the influencing factors of carbon emissions from
energy consumption in different regions of China, they point out that technological level is
an important factor affecting the structure of regional energy consumption and determines
the differences in regional carbon emissions [56].

Figure 5. Four research areas in China and their corresponding CEs increments and growth rates from
1995 to 2019. The eastern part includes 11 provinces and municipalities directly under the Central
Government (Beijing, Tianjin, Shanghai, Hebei, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong,
Hainan, and Taiwan (lack of data). The central part includes six provincial administrative units in
Shanxi, Anhui, Jiangxi, Henan, Hubei and Hunan. The West includes 12 provinces, autonomous
regions and municipalities directly under the Central Government (Inner Mongolia Autonomous Re-
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gion, Guangxi Zhuang Autonomous Region, Chongqing City, Sichuan Province, Guizhou Province,
Yunnan Province, Tibet Autonomous Region, Shaanxi Province, Gansu Province, Qinghai Province,
Ningxia Hui Autonomous Region and Tibet Autonomous Region (lack of data).

4. Conclusions

Understanding and revealing the driving force of urban CEs change, as well as the
relationship between CEs and urban form, were important prerequisites for mitigating
global climate change and achieving the CEs reduction goals of the Chinese government.
In this study, a bottom-up accounting method was adopted to calculate urban energy
consumption CEs at provincial level in China. Landscape index (SPLIT, MESH, ED, TE)
was creatively applied to Spatial-LMDI decomposition analysis, then we further explored
the relationship between CEs and urban form. This study provided an effective reference
for reducing CEs and formulating energy-saving and CEs reduction policies. The results
of this study showed that during 2011–2019, China’s CEs increasing rate was slower than
GDP, and a relative decoupling relationship between CEs and GDP was found. In addition,
there were significant differences in the economic growth and growth rate of CEs among
provinces. Spatial-LMDI decomposition analysis shows that the main driving forces of CEs
change in five periods were different. The intensity effect, expansion effect and economic
effect had different impact on CEs increasement. UC, SPLIT and UInv were important
factors to restrain the growth of CEs. Moreover, the increment of CEs in Eastern China
was the largest, while the growth rate in Western China was the fastest. The Spatial-LMDI
decomposition analysis showed that UInv was the primary driving factor for the growth
of CEs, followed by PGDP and P. GI, SPLIT, UC were the three restraining forces to CEs
increase, with their unique contributions to the change of CEs among five periods. From
the analysis results, the LMDI method mainly focuses on the base and the reporting year,
while the interpretation of the annual changes during the study period is unclear. We will
explore the annual changes in following researches, after we get access to continuous time
series of spatial data.

The policy recommendations based on the above conclusions include the following
points: Firstly, the improvement of economic level and social affluence will inevitably
lead to the increase of energy consumption, therefore improving energy efficiency and
technology level are the ways to help improve the quality of economic development and
alleviate the rapid increase of CEs. Secondly, the expansion effect contributes to the increase
of CEs, while the aggregation helps to restrain the growth of CEs. Therefore, improving
the compactness of urban spatial distribution and controlling the unregulated expan-
sion of construction land are the proper policies to reduce CEs and save land resources.
Thirdly, investment intensity has a positive impact on the growth of CEs. Therefore, ra-
tional use of investment and improvement of investment efficiency and input–output
ratio should be adopted to reducing CEs. Meanwhile, the ecological environment and
improving the quality of economic development should be improved accordingly. The
Chinese government has taken positive actions for carbon emission reduction, includ-
ing: (1) Promote new urbanization, by transferring rural population to cities and towns,
while saving land resources and facilitating centralized energy supply. This is benefi-
cial to improve energy utilization efficiency and reduce the loss of energy supply [57];
(2) strive to achieve carbon neutrality goals, and put forward energy consumption regu-
lation requirements for provincial governments and industrial departments, such as the
dual energy consumption control requirements proposed by the Chinese government
(http://www.gov.cn/zhengce/2021-09/18/content_5638215.htm, accessed on 10 January
2021); (3) vigorously develop the information industry and provide policy support for
the development of the information industry [58]; and (4) develop and use clean energy,
promote electric vehicles, etc. [59]. In addition, the construction of smart cities is also
conducive to reducing carbon emissions and formulating policies on reduction of carbon
emissions. The improvement of regional collaborative innovation capabilities will also help
to improve economic efficiency and energy efficiency [60]. With the support from multiple

http://www.gov.cn/zhengce/2021-09/18/content_5638215.htm
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sensors and big data centers, smart cities can help decision makers rationally dispatch
energy and make decisions, thereby reducing energy consumption and carbon emissions.
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