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Abstract: Road traffic accidents are one of the world’s most serious problems, as they result in
numerous fatalities and injuries, as well as economic losses each year. Assessing the factors that
contribute to the severity of road traffic injuries has proven to be insightful. The findings may
contribute to a better understanding of and potential mitigation of the risk of serious injuries as-
sociated with crashes. While ensemble learning approaches are capable of establishing complex
and non-linear relationships between input risk variables and outcomes for the purpose of injury
severity prediction and classification, most of them share a critical limitation: their “black-box” nature.
To develop interpretable predictive models for road traffic injury severity, this paper proposes four
boosting-based ensemble learning models, namely a novel Natural Gradient Boosting, Adaptive
Gradient Boosting, Categorical Gradient Boosting, and Light Gradient Boosting Machine, and uses
a recently developed SHapley Additive exPlanations analysis to rank the risk variables and explain
the optimal model. Among four models, LightGBM achieved the highest classification accuracy
(73.63%), precision (72.61%), and recall (70.09%), F1-scores (70.81%), and AUC (0.71) when tested
on 2015–2019 Pakistan’s National Highway N-5 (Peshawar to Rahim Yar Khan Section) accident
data. By incorporating the SHapley Additive exPlanations approach, we were able to interpret the
model’s estimation results from both global and local perspectives. Following interpretation, it was
determined that the Month_of_Year, Cause_of_Accident, Driver_Age and Collision_Type all played
a significant role in the estimation process. According to the analysis, young drivers and pedestrians
struck by a trailer have a higher risk of suffering fatal injuries. The combination of trailers and
passenger vehicles, as well as driver at-fault, hitting pedestrians and rear-end collisions, significantly
increases the risk of fatal injuries. This study suggests that combining LightGBM and SHAP has the
potential to develop an interpretable model for predicting road traffic injury severity.

Keywords: traffic safety; road traffic injuries; boosting-based ensemble models; SHapley Additive
exPlanations

1. Introduction

Road traffic injuries (RTIs) are a leading cause of morbidity and death on a global
scale. Understanding the sequence of events preceding a road traffic injury is critical for
enhancing road safety and developing interventions that reduce the prevalence and severity
of road trauma. By 2030, RTIs are expected to overtake cancer as the sixth leading cause of

Int. J. Environ. Res. Public Health 2022, 19, 2925. https://doi.org/10.3390/ijerph19052925 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19052925
https://doi.org/10.3390/ijerph19052925
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0003-0756-6093
https://orcid.org/0000-0001-5396-6587
https://doi.org/10.3390/ijerph19052925
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19052925?type=check_update&version=2


Int. J. Environ. Res. Public Health 2022, 19, 2925 2 of 23

death worldwide [1]. Despite significant advances in traffic and transportation systems,
road safety continues to be a concern, with over 1.35 million people killed and another
50 million injured in road collisions each year. Automobile accidents killed 22,441 people
and injured 2.18 million people in 2015, according to the National Highway Traffic Safety
Administration [2], which collects road data for all 50 states in the United States. The total
number of fatal crashes in the United States increased to approximately 35,000 in 2016.
Additionally, according to the Washington Annual Collision Summary (WACS), the re-
gion experienced 117,053 crashes, including 499 fatal collisions, 36,531 injury collisions,
and 77,358 property-damage-only crashes, implying that a crash occurs every 4.5 min and
someone dies in a crash every 16 h [3].

Traffic accidents have resulted in enormous economic, physical, and emotional distress
for the families involved, as well as productivity losses for society as a whole. The World
Health Organization (WHO) [4] estimates that 74% of worldwide road traffic accidents
occur in low- and middle-income countries combined, making up 90% of the total global
number. In addition, a large proportion of the world’s population lives in countries with
a low or middle income. There are still 54% of the world’s total registered vehicles in
these countries and a large proportion in relation to the number of vehicles involved in
traffic accidents. The fact that death rates fell in high-income countries between 2000
and 2015, but rose in low-income countries, shows just how serious traffic issues are in
developing countries.

Rapid population growth in Asia’s developing countries, particularly in South Asia,
increased mobility, and increased motorized traffic on high-speed roads, all contribute to
the development of RTIs. Almost no day passes without a road traffic accident on their
national highways or motorways, resulting in an increasing number of injuries and fatalities
and significant economic losses [5–9]. As is the case in other developing countries, Pakistan
is increasingly confronted with serious road safety issues. Pakistan’s vehicle ownership
increased by 18.3% over the last two decades, owing to a 2% annual population increase
and a 3.3% increase in rapid urbanization [10]. In addition, air travel is out of reach for
the majority of the population, and the potential for inland water transportation has not
been fully realized. The excessive reliance on the roadway network has placed an undue
strain on the National Highways. The occurrence of road traffic accidents has a substantial
psychological and economic impact on both individuals and economies. It is very important
to figure out and measure the factors that cause accidents in order to improve proactive
highway design and accident frequency reduction.

Understanding the causes of road traffic fatalities and injuries has remained a priority,
and road safety analysis has advanced significantly over the years, particularly in develop-
ing methodologies for modelling the relationship between injury severity and risk factors,
gaining knowledge about the mechanism of accident occurrence, and developing safety
policies and countermeasures. Over the past several decades, efforts have been made to
comprehend the intrinsic relationship between collision frequency and risk variables, such
as road geometry, vehicle type, collision type, seasonal effect, traffic regulation, time of day,
driver characteristics, and environmental conditions. Numerous statistical models have
been used to estimate the severity of traffic accident injuries. In the past, injury severity
analysis and prediction have been dominated by statistical methods, such as the linear,
nonlinear, generalised linear model (GLM), Poisson regression model (PRM), ordered
probit model (OPM), mixed logit model (MLM), Bayesian ordered probit model (BOPM),
random parameters ordered probit model (RPOPM), and cellular automata (CA) model,
which were regarded as reasonable attempts at thoroughly formulating the relationship
between the number of predicting variables [11–25]. Modelling overall accidents may not
be as valuable as one might think in terms of creating safety countermeasures, as various
types of accidents are frequently linked to distinct sets of primary variables. By combining
all types of crashes, it may become more difficult to identify and precisely estimate the
impact of a risk factor on various types of crashes, as well as to devise suitable and cost-
effective safety mitigation strategies. Thus, one of the goals of this study is to determine
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how the varying effects of risk variables affect the severity of road traffic injuries using
advanced boosting-based ensemble models.

Traditional statistical approaches, while having rigor and well-defined functional
forms, frequently necessitate strict model assumptions about the relationship between
independent and dependent variables [26]. The model estimation outputs may be skewed
or incorrect if the assumptions are violated. Similarly, combining modern data sources
frequently produces complex data sets with a large number of dimensions that are difficult
to model using traditional statistical techniques. Machine learning methods, on the other
hand, are highly adaptable, require few or no prior assumptions about the data, and can
handle missing values, noise, and outliers [27]. In the field of traffic safety research,
machine learning techniques have received a lot of attention. It has become one of the
most widely used and fascinating tools for estimating the severity of injuries in road
traffic accidents [28–41]. Tree-based ensemble learning models have been used in a variety
of fields, including landslide susceptibility mapping [42], software bug prediction [43],
and bioinformatics [44].

While high predictive performance is desirable for machine learning models, it is more
critical to understand the underlying mechanism by which accidents occur, especially for
the purpose of developing accident prevention countermeasures. As a result, in a number
of machine learning-based traffic safety studies, sensitivity analysis was used to quantify
the effects of risk factors on the severity of injuries [45,46]. To summarise, two types of
sensitivity analysis exist: partial dependence plots (PDP) and local sensitivity analysis
(LSA) [47]. However, both the LSA and the PDP are concerned about the assumption of
independence. In practice, the assumption of independent risk variables may fail to hold
true, resulting in erroneous estimates of the safety effect.

To address this issue, several researchers used the Shapley Additive exPlanations
(SHAP) approach [48], which estimates the variable’ total, main, and interaction effects.
Hu et al. [49], for example, utilised SHAP to assess the outcomes of a convolutional neural
network (CNN) model in order to assess critical variables that affect the likelihood of crashes
at road intersections. The SHAP analysis was used to identify critical factors in E. coli
concentration data that could be used to predict beach water quality [50]. Parsa et al. [51]
used SHAP to investigate the effect of various variables on the occurrence of highway
accidents. Additionally, SHAP analysis is used to rank different variables in order to
identify failure modes in reinforced concrete columns [52].

In terms of data, the database’s quality and breakdown dictate the statistical and
machine learning approaches used and the reliability of the findings, which can assist
and guide policy makers in developing strategic plans and implementing initiatives to
strengthen traffic safety and thus make the roads safer. It should be noted that any approach
used is constrained by the database’s limitations. Nonetheless, there is a disparity among
countries, and even among local jurisdictions, in terms of data uniformity. For instance,
Casado-Sanz et al. [53] conducted an international comparison of various risk variables
compiled from international databases. Table 1 demonstrates an international comparison
of risk variables in major databases and guidelines of various countries (USA, Australia,
New Zealand, and databases, and EU directive requirements) and situates Pakistan within
the context of road traffic safety.

Table 1. International comparison of risk variables from databases and guidelines of various countries
with Pakistan.

Variables EU Directive USA Australia New Zealand Pakistan

Crash Location Precise as possible
location

Road name, GPS
coordinates

Road name, reference
point, distance,

direction

Road name, GPS
coordinates

District and
kilometer marker no.
starting from Karachi

city (00)
Crash Narrative No No Yes No No

Crash Sketch No No Yes, restricted access Yes No
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Table 1. Cont.

Variables EU Directive USA Australia New Zealand Pakistan

Crash Type Yes
Recorded in the

traffic units
Section

Yes Yes Yes

Collision Type Yes 8 descriptors Yes Yes Yes
Contributing

Circumstances No Environmental
circumstances Yes Yes Yes

Weather Conditions Yes 10 descriptors Yes 5 descriptors 3 descriptors
Lighting Condition Yes 7 descriptors Yes 7 descriptors 3 descriptors

Reported Crashes Not
specified All severities All injury severities All severities All severities

Definition Non-fatal
Injury Levels

Severe and
non-severe injuries

Suspected serious
injury, suspected

minor injury, possible
injury

Injured, admitted to
hospital injured,
required medical

treatment

Major and minor
injuries

Fatal injury, major
injury, minor injury,

and no injury

Contributing
Circumstances No 11 descriptors No Numerous causes Yes

Speed Limit Yes Yes Yes Yes No
Surface Conditions Yes 10 descriptors Yes 3 descriptors Yes

Road Curves No Yes Yes 4 descriptors Yes
Gradient No Yes No No No

Age Yes Date of birth Yes Yes Yes
Gender Yes Yes Yes Yes Yes

Nationality Yes No Foreign drivers’
identification

Foreign drivers’
identification No

Alcohol Level Yes Yes Yes Yes No
Drug Test Results No Yes Yes Yes No
Safety Equipment Yes Yes Yes Yes No

Curve Radius No Yes Yes Yes No
Curve Length No Yes Yes Yes No

In this study, we aim to address the underappreciated issue of model interpretability
for predicting injury severity by developing predictive and transparent booting-based
ensemble learning models. To accomplish this, we used and compared four boosting-based
ensemble learning models: Novel Natural Gradient Boosting (NGBoost) [54], Categorical
Boosting (CatBoost) [55], Light Gradient Boosting Machine (LightGBM) [56], and Adaptive
Boosting (AdaBoost) [57]. Additionally, we broadened our comparison by including
commonly used machine learning models in studies of traffic safety. We then used SHAP
to conduct variable importance analyses on the optimal model in order to predict the
most important risk variables for injury severity, assess their robustness, and dissect their
interactions with other risk variables. The SHAP yields significant findings that can be
used to guide the implementation of cost-effective traffic safety countermeasures.

The rest of this paper is organized as follows: The following section summarizes the
study’s methodology and data, followed by descriptions of the modelling processes, namely
NGBoost, CatBoost, LightGBM, and AdaBoost, as well as Shapley Additive exPlanations.
Section 3 discusses the findings and the optimal model interpretation. Finally, Section 4
summarizes the findings and makes additional research recommendations.

2. Methodology

The entire operational framework proposed in this study is depicted in Figure 1.
To begin with, the original accident dataset is preprocessed by eliminating redundant
and erroneous information. The ensemble learning models based on boosting are initially
developed on the basis of data partitioning into training, validation, and testing data
sets. The training data set is used to build the classification model, the validation data set
is used to fine-tune the hyperparameters of the models, and the test data set is used to
evaluate the models’ performance. Once the optimal model with the best performance is
identified, SHAP approach is utilized to establish additive attributes that are then employed
to determine the importance of variables for injury severity and the contributions of various
risk variables to each severity mode.



Int. J. Environ. Res. Public Health 2022, 19, 2925 5 of 23

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW  5  of  23 
 

 

used to fine‐tune the hyperparameters of the models, and the test data set is used to eval‐

uate the models’ performance. Once the optimal model with the best performance is iden‐

tified, SHAP approach is utilized to establish additive attributes that are then employed 

to determine the importance of variables for injury severity and the contributions of vari‐

ous risk variables to each severity mode. 

 

Figure 1. Framework of boosting‐based ensemble  learning models and SHAP analysis for model 

interpretation. 

2.1. Study Route 

The data for this study come from the records of traffic accidents that occurred on 

urban and rural segments of National Highway N‐5 (Peshawar to Rahim Yar Khan) be‐

tween 2015 and 2019. The N‐5 is a two‐lane divided two‐way highway that connects Tork‐

ham in Pakistan’s Khyber Pakhtunkhwa province to Karachi in Sindh province, connect‐

ing major cities along its alignment as illustrated in Figure 2. It is Pakistan’s longest high‐

way, measuring  1819  km  (1310 miles)  in  length,  and passes  through  three provinces: 

Sindh, Punjab, and Khyber Pakhtunkhwa. It is a major arterial connecting the north and 

south of the country and carries the most of the country’s traffic. Most heavy vehicles use 

this route to transport freight from Karachi’s seaport to upcountry cities. The maximum 

speed  limit  for  light  transport  vehicles  (LTV), which  includes  passenger  cars,  pickup 

trucks,  and  vans,  ais  100  kilometres  per  hour.  The maximum  speed  limit  for  heavy 

transport vehicles, which includes buses, trucks, and trailers, is 90 kilometres per hour. 

Figure 1. Framework of boosting-based ensemble learning models and SHAP analysis for model
interpretation.

2.1. Study Route

The data for this study come from the records of traffic accidents that occurred on
urban and rural segments of National Highway N-5 (Peshawar to Rahim Yar Khan) between
2015 and 2019. The N-5 is a two-lane divided two-way highway that connects Torkham
in Pakistan’s Khyber Pakhtunkhwa province to Karachi in Sindh province, connecting
major cities along its alignment as illustrated in Figure 2. It is Pakistan’s longest highway,
measuring 1819 km (1310 miles) in length, and passes through three provinces: Sindh,
Punjab, and Khyber Pakhtunkhwa. It is a major arterial connecting the north and south of
the country and carries the most of the country’s traffic. Most heavy vehicles use this route
to transport freight from Karachi’s seaport to upcountry cities. The maximum speed limit
for light transport vehicles (LTV), which includes passenger cars, pickup trucks, and vans,
ais 100 km per hour. The maximum speed limit for heavy transport vehicles, which includes
buses, trucks, and trailers, is 90 km per hour.
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2.2. Data Description

Pakistan’s National Highways and Motorway Police (NH & MP) are tasked with
ensuring the safety and security of the country’s highways and motorways. It also keeps
track of road traffic crashes by filling out a crash investigation form at the crash scene
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as soon as one occurs. The NH & MP utilizes a four-page crash form called “Microcom-
puter Accident Analysis Proforma” (MAAP) for the purpose of recording crash minutiae.
The MAAP tracks each accident on National Highway N-5 using a set of twenty-two dis-
tinct variables pertaining to the environment, the crash, the roadway, the vehicle, and the
drivers. Similarly, MAAP depicts injury severity levels according to four categories: fatal
injury, major injury, minor injury, and no injury (property damage only (PDO)). In our
study, we classified PDO, minor, and major injuries as “non-fatal injuries”, and the rest as
“fatal injuries” as part of a binary classification problem. Table 2 below summarizes these
variables with their description and occurrence frequencies.

Table 2. Description of variables in the National Highway N-5 accidents dataset.

Type of Variable Variable Description Marginal Frequency
(%)

Injury
Severity Injury Severity Category Fatal/Non-Fatal 38.09/61.91

Vehicle
Specific

Type_of_Vehicle
Rickshaw/Motorcycle/Bicycle/
Car/Pickup/Minibus/Bus/Truck/
Dumper/Trailer/Tractor

5.34/6.78/10.77/
12.69/3.50/9.19/8.48/
20.08/4.43/16.44/2.30

Vehicle_Age
(years) 0–10/11–20/21–30/31–40/41+ 32.01/36.49/15.30/9.30/6.90

Number_of_Vehicles
(Number of vehicles in crash) Single/Multiple 33.46/66.54

Driver
Specific

Driver Gender Female/Male 0.001/99.99

Driver_Age
(Years)

18–25/26–30/31–35/36–40/41–45/
46–50/51–55/55+

18.18/16.83/14.90/14.58/
13.62/10.92/5.84/5.14

Driving_License No/Yes 46.52/53.48

Environment
Specific

Lighting_Condition Daylight/Night with Road Lights/Night
without Road Lights 69.11/5.33/25.56

Weather_Condition Sunny/Cloudy/Rainy 89.85/3.59/6.56

Visibility_Condition Clear/Fog/Smog 96.41/3.08/0.50

Temporal
Specific

Month_of_Year

January/February/March/
April/May/June/July/August/
September/October/November/
December

5.65/6.29/10.08/8.73/5.27/
6.87/14.96/10.08/13.17/
6.10/7.32/5.46

Day_of_Week Monday/Tuesday/Wednesday/
Thursday/Friday/Saturday/Sunday

10.76/12.67/14.52/13.51/16.87/
16.82/14.85

Time_of_Day

12:00:00 a.m.–3:59:59 a.m./4:00:00
a.m.–7:59:59 a.m./8:00:00 a.m.–11:59:59
p.m./12:00:00 p.m.–3:59:59 p.m./4:00:00
p.m.–7:59:59 p.m./8:00:00 p.m.–11:59:59
p.m.

8.97/14.41/23.09/21.13/
21.02/11.38

Type_of_Day Weekday/Weekend 68.22/31.78

Roadway
Specific

Alignment
Straight/Horizontal Curve/Vertical
Curve/Both Horizontal and Vertical
Curves

84.36/5.66/4.43/5.55

Presence_of_Shoulder No/Yes 2.63/97.37

Surface_Condition Dry/Wet 92.49/7.51

Pavement_Roughness Smooth/Rough/Potholes 94.23/2.52/3.25

Road_Type Urban/Rural 52.86/47.14
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Table 2. Cont.

Type of Variable Variable Description Marginal Frequency
(%)

Presence_of_Median No/Yes 3.64/96.36

Work_Zone No/Yes 98.64/1.35

Crash
Specific

Collision_Type

Head on Collision/Rear End
Collision/Side Collision/Rollover/
Skidding/Hit Obstacle on Road/Hit
Pedestrian/Hit Animal/Run off
Roadway/Hitting Nearby Trees/Fell
off Bridge

5.21/43.55/19.17/12.44/
3.08/4.88/10.31/0.28/
0.78/0.11/0.17

Cause_of_Accident

Bicycle Rider at-Fault/Wrong Side
Overtaking/Pedestrian at-Fault/Pavement
Distress/Driver at-Fault/Dozing at the
Wheel/Over Speeding/Motorcycle Rider
at-Fault/Low Visibility/Mechanical Fault
of Vehicle/Sight Obstruction/Slippery
Road/Vehicle out of Control/Other

0.56/1.46/7.29/1.51/56.331.40/
3.87/3.14/0.39/7.74/
1.79/2.35/0.90/2.35/8.91

2.3. Boosting-Based Ensemble Learning Classification Models for Injury Severity

In this research, we have employed four advanced boosting-based ensemble learning
models, that is, novel Natural Gradient Boosting (NGBoost), Categorical Boosting (Cat-
Boost), Light Gradient Boosting Machine (LightGBM) and Adaptive Boosting (AdaBoost)
to accurately predict injury severity using various risk variables. Below, we explain these
four boosting-based ensemble models.

2.3.1. Natural Gradient Boosting (NGBoost)

NGBoost is a supervised natural gradient descent (NGD)-based boosting algorithm
that was recently developed [54]. It can be used for classification as well as probabilistic
regression [58]. It is composed of three fundamental components: a base learner, a para-
metric probability distribution, and a scoring rule. The conceptual framework of NGBoost
is illustrated in Figure 3.
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In Figure 3, χinp denotes the given input risk variables, ek is the base learner (Deci-
sion Tree), k is the boosting iteration, τ is the predicted target, and θ denotes the target
distribution parameters. The NGBoost model creates a conditional probability distribution
function

{
Pθ

(
τ
∣∣χinp

)}
of each predicted output in the range of 0 to 1. The higher the value

of the aforementioned function, the more likely it is to correctly predict the data class,
and vice versa. The framework made use of boosting to construct a series of decision trees
(DTs) with minimal loss during model training. In other words, each DT learned from
the preceding tree and improved the next tree in order to enhance the performance of the
model. Additionally, it should be noted that this is the first paper, to our knowledge, that
discusses the use of the NGBoost model for predicting the severity of road traffic injuries.
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2.3.2. Categorical Boosting (CatBoost)

The CatBoost is a novel version of the gradient-boosting decision tree algorithm. It has
strong learning capabilities for dealing with extremely nonlinear data [55]. The Gradient
Boosting Decision Tree (GBDT) algorithm combines numerous decision trees to create
a high-accuracy model, and the progress can be expressed as Equation (1):

y(x) =
T

∑
t=1

ft(x, θt) (1)

where x denotes the variable vector, T denotes the number of trees, θt(t = 1, 2, . . . , T)
denotes a learned parameter, and ft(x, θt) denotes the learned decision trees that are
learned. Given a set of training samples D ={(xk, yk)}

n
1 , where n denotes the total number

of samples in training data, xk(k = 1, 2, . . . , n) is the sample data points, and yk indicates
true sample label. In order to learn the model in Equation (1), the Equation (2) objective
function is required to be minimized:

O( ft) =
n

∑
i=1

L(yk, yk) +
T

∑
t=1

Ω( ft) (2)

where yk denotes the predicted sample label, L represent the loss function, which is actually
the difference between yk and yk, and Ω represent the regular function, which is employed
to penalize the complexity of ft. It is defined as Equation (3):

Ω = αq+
1
2

β‖ω‖2 (3)

where α denotes a penalty parameter, which controls the number of leaf nodes q, β represent
the regularization parameter, and ω represents the weight coefficient. Let ζ represent the
loss function negative gradient, then the objective function is minimized in the direction of
ζ is given by Equation (4):

ζ = −
[

∂L(yk, yk)

∂yk

]
(4)

By and large, conventional GBDT algorithms exhibit prediction offset, impairing the
model’s generalization ability. CatBoost was proposed with two major enhancements
to address this shortcoming [59]: (1) the ordered boosting technique was used to obtain
an unbiased gradient estimation and minimise the prediction offset; (2) the oblivious
tree technique has been used to improve the model’s reliability and prediction speed.
Additionally, to improve the strategy’s handling of categorical variables, the greedy target-
based statistics strategy was strengthened by incorporating prior terms into the CatBoost
algorithm, which is composed of three major steps: (1) all sample datasets are ordered
randomly; (2) similar samples are chosen and the average label for similar samples is
calculated; and (3) the variables in each sample are digitised by adding the prior term and
its associated weight coefficients. The strategy for optimising greedy target-based statistics
is expressed in Equation (5):

xi
k =

n
∑

j=1

{
xi

j= xi
k

}
.yi+aP

n
∑

j=1

{
xi

j= xi
k

}
+a

(5)

where xi
k denotes the kth sample’s ith category variable, xi

k denotes the corresponding
variable, P denotes the increased prior value, and a denotes the weight coefficient a > 0.
Prior values can be used to effectively reduce noise introduced by low-frequency variables
and avoid the over-fitting phenomenon.
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2.3.3. Light Gradient Boosting Machine (LightGBM)

LightGBM is a variation of the gradient boosting decision tree (GBDT) created by
Microsoft and Peking University researchers [56] to overcome the efficiency and scalability
challenges associated with GBDT when used to solve problems with high-dimensional
input variables and huge data sets. Because it is based on decision tree algorithms, it splits
the tree leaf-wise, whereas other boosting methods divide the tree level-wise. When grow-
ing on the same leaf, the leaf-wise method reduces loss more than the level-wise strategy,
resulting in much higher classification accuracy than any of the known boosting algo-
rithms. Tree development is shown in Figure 4 for both LightGBM and severe gradient
boosting. LightGBM employs two novel techniques: exclusive feature bundling (EFB) and
gradient-based one-side sampling (GOSS).
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Suppose a dataset with {x1, x2, . . . , xn} and {y1, y2, . . . , yn} as independent and de-
pendent variables, respectively. The sum of the outputs of a set of decision tree models
(et(x)) is the predicted value of GBDT (Γ(x)), as given by Equation (6):

Γ(x) =
T

∑
t=1

et(x) (6)

The number of decision trees is T. Finding an approximation function Γ̂ that minimizes
the loss function Φ(y, Γ(x)) is required to fit a GBDT model, as shown in Equation (7):

Γ̂ = argmin
Γ

Ey,SΦ(y, Γ(x)) (7)

Rather than using information gain to split the internal nodes of each tree as the tradi-
tional GBDT does, LightGBM splits the internal nodes using the GOSS method. Specifically,
samples with higher absolute gradient values (i.e., top α× 100%) are chosen as subset A,
whereas samples with lower absolute gradient values are chosen at random to form subset
B (i.e., β× 100%). As a result, the samples are divided based on the variance gain Vj(d) on
A∪ B as Equation (8):

Vj(d) =
1
n


(

∑xi∈A1
gi +

1−α
β ∑xi∈B1

gi

)2

nj
1(d)

+

(
∑xi∈Ar gi +

1−α
β ∑xi∈Br gi

)2

nj
r(d)

 (8)
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where,A1 =
{

xi ∈ A : xij ≤ d
}

, Ar =
{

xi ∈ A : xij > d
}

, B1 =
{

xi ∈ B : xij ≤ d
}

,
Br =

{
xi ∈ B : xij > d

}
.

In each iteration, gi illustrates the negative gradient of the loss function for light GBM
outputs. Apart from GOSS sampling, LightGBM employs the EFB technique to expedite
the training process without compromising classification accuracy. Numerous applications
incorporate mutually exclusive features of high-dimensional and sparse input (i.e., these
features cannot be non-zero). EFB has the ability to combine these features into a single
feature bundle. This algorithm can be used to make feature histograms from both these
feature bundles and individual features.

In summary, LightGBM is a novel approach to ensemble learning that utilises GOSS
to partition internal nodes based on variance gain and EFB to reduce the dimension of
input variables. Additionally, as a decision tree-based model, LightGBM is resistant to
multicollinearity. As a result, it is easy to add correlated independent variables to the
LightGBM model.

2.3.4. Adaptive Boosting (AdaBoost)

The AdaBoost algorithm’s basic idea is to make classifications by combining a series
of weak learners using a weighted majority vote (or sum). It updates the data on a regular
basis, taking into account the misclassifications of previous weak learners. This algorithm’s
basic steps can be summarised as follows [57].

Given a set of training data D ={(xk, yk)}
n
1 , where n denotes the total number of data

points in training data, xk(k = 1, 2, . . . , n) is the kth data point, and yk indicates true data
point label. A strong classifier E(x) is generated by the following steps:

• Initially, all the data points are assigned some equal weights W i.e.,:

W1
k =

1
n

• For iterations j = 1, 2, . . . , J, Train weak learner using distribution W j, Get weak hy-

pothesis ej and Select ej with low weighted error i.e., ξ j= Prk∼Wj

[
ej (x k)

jyk

]
. Choose

∆j = 1
2 ln
(

1−ξ j

ξ j

)
.

• Update, k = 1, 2, . . . , n to obtain W j+1
k as Equation (9):

W j+1
k =

W j
k exp

(
−∆jykej(x k

))
Zj (9)

where Zj is a normalization factor (chosen such that W j+1
k will be a distribution).

• After learning process and weight optimization, the final strong classifier is obtained
(Equation (10)), which is based on a linear combination of all the weak classifiers:

E(x)= sign

(
J

∑
j=1

∆jhj(x)

)
(10)

2.4. Hyperparameter Tuning

Tuning hyperparameters is an essential step in the training of boosting-based ensemble
learning models. This helps to improve the model’s generalization performance, avoid over-
fitting, and reduce the complexity of the models. In this study, the classification accuracy
of the model is used as a performance metric to perform tuning of hyperparameters.
There are several hyperparameter tuning techniques, such as GridSearch, Random Search,
and Bayesian Optimization [60]. The GridSearch and Random Search CV techniques
iteratively traverse the entire space of available hyperparameter values without regard to
previous results and thus become time-consuming for large parameter spaces.
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In contrast, when deciding which hyperparameter set to evaluate next, Bayesian
optimization considers previous evaluations. By making informed parameter combinations,
it is able to focus on those areas of the parameter space that it believes will yield the most
promising validation scores. This method usually requires fewer iterations to arrive at the
best set of hyperparameter values [61,62]. The HyperOpt, which is an open-source Python
library for Bayesian Optimization, was used in this research to tune the hyperparameters
of four boosting-based ensemble learning models.

2.5. Model Evaluation

The confusion matrix (contingency table) and its associated parameters (classification
accuracy, precision, recall, and F1-score), as well as the area under the receiver operating
characteristic (ROC) curve, are used in this study to evaluate and select the optimal en-
semble model. The confusion matrix enables us to assess the performance of an ensemble
model. In the confusion matrix, the predicted class instances are represented by a column,
the actual class instances by a row, and the accurate prediction by the diagonal [63]. Figure 5
illustrates the confusion matrix, which can be used to calculate a variety of metrics.
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The true positives (TP) and true negatives (TN) are correctly classified. A false positive
(FP) occurs when an outcome is incorrectly classified as yes or positive when it is actually
no or negative. When a positive result is incorrectly classified as negative, it is referred to
as a false negative (FN). The TPR quantifies the proportion of positives correctly identified,
whereas the FPR quantifies the proportion of negatives incorrectly classified as positives.
Precision is a metric that indicates the accuracy of a classification algorithm. The precision
is low, indicating a high number of FP. Recall is used to determine the completeness of
a classification algorithm. A low recall indicates the presence of a large number of FN.

Equations (11)–(15) show the expression for calculating performance metrics. The
expression for calculating TPR, on the other hand, is the same as for recall in Equation (13):

Accuracy =
TP + TN

TP + FN + TN + FP
(11)

Precision =
TP

TP + FP
(12)

Recall or TPR =
TP

TP + FN
(13)

F1− Score =
TP

TP+ 1
2 (FP + FN)

(14)

FPR =
FP

FP + TN
(15)

To gain a better understanding of how well a model performed, an area under the re-
ceiver operating characteristic (AUC-ROC) curve is also used [64]. Although the confusion
matrix provides a detailed analysis of the model’s performance based on predictions for
each category, the AUC is sometimes preferred because it presents a comparison based on
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a single value. The TPR is plotted against the FPT to create the ROC. AUC values range
from 0 (completely incorrect) to 1 (perfectly correct).

2.6. Model Interpretation

Lundberg and Lee [48] proposed SHAP (SHapley Additive exPlanations) as a new
method for interpreting machine learning black-box models. This is a framework for esti-
mating each variable’s contribution. It is based on local explanations and game theory [65].

If xi,j is the jth variable of the ith sample, SHAPi is the model’s predicted contribution
value for the ith sample, and SHAPbase is the model’s baseline, i.e., the average value of the
target variable for all samples in the model, then the SHAP value satisfies Equation (16):

SHAPi = SHAPbase + shap(xi,1) + shap(xi,2), . . . , shap(xi,m) (16)

where shap(xi,j) is the SHAP value of xi,j and m is the dimension of the variables,

and shap(x i,j

)
can be thought of as the value of the jth variable in the ith sample’s contribu-

tion to the final predicted value y. When shap(x i,j

)
is greater than zero, it means that this

variable has a positive impact on the predicted value. If shap(x i,j) < 0 is true, the variable
has a negative impact on the predicted value. The SHAP value has the advantage of
reflecting not only the influence of the variable, but also their positive and negative effects.
The SHAP value possesses three properties: local accuracy, absence, and consistency.

• Local accuracy is defined as the sum of all variable contributions equal to the model’s
output. This property fulfills a fundamental requirement of the additive explanatory
framework, given by Equation (17):

shap(x) = SHAPbase +
m

∑
i=1

shapj×Λj (17)

where shapj represents the SHAP value corresponding to variable j, Λj is an indicator
function that takes the value 1 when the variable appears, and 0 otherwise.

• Absence i.e., the contribution of missing variable is zero. Not that a characteristic value
in the structured data is empty, but that a characteristic is not observed in the sample,
that is,

Λi = 0, ⇒ SHAPi= 0

• Consistency, i.e., if the model structure alters but the degree to which a particular
variable influences the output increases or remains constant, the contribution of that
variable to the whole will also enhance or remain constant.

Finally, the model mapped by the sigmoid function with SHAPi predicts the probabil-
ity of the ith sample is given by Equation (18):

pi =
1

1 + e−(SHAPi)
(18)

where pi < 0.5, then the sample classification is equal to 0, otherwise it is 1. Based on
this SHAP framework, this paper explains optimal models among the four boosting-based
ensemble models in terms of injury severity.

3. Results

In this study, four boosting-based ensemble learning models are used to predict road
traffic accident injury severity. Python 3.6, a free and open-source programming language,
was used for this purpose. To train the models, we used the Python packages NGBoost,
CatBoost, LightGBM, and AdaBoost, as well as the Scikit-learn library. To begin with,
National Highway N-5 accident data were obtained from the National Highway and
Motorway Police. For model development, we partitioned the National Highway N-5



Int. J. Environ. Res. Public Health 2022, 19, 2925 13 of 23

accident data into the following three subsets: 20% of the data was used for testing and
withheld for model performance evaluation, while the remaining 80% was divided into
training and validation subsets. The training data set was used to develop the models,
and the validation data set was used to estimate the model’s performance while tuning
its hyperparameters. Table 3 shows the optimal hyperparameters for four boosting-based
models, obtained via Bayesian Optimization.

Table 3. Hyperparameters tuning of boosting-based ensemble models.

Algorithm Evaluation Metric Hyperparameters Range Optimal Values

CatBoost
Classification

accuracy

n_estimators (100, 5000) 11,600
max_depth (0, 10) 5

learning_rate (0.001, 0.5) 0.002

LightGBM Classification
accuracy

n_estimators (100, 5000) 3300
learning_rate (0.001, 0.5) 0.042
max_depth (0, 10) 6
lambda_l1 (1 × 10−8, 10) 0.52
lambda_l2 (1 × 10−8, 10) 0.2

NGBoost
Classification

accuracy

learning_rate (0.001, 0.50) 0.01
n_estimators (100, 5000) 600
Max_depth (0, 10) 4

AdaBoost
Classification

accuracy
n_estimators (100–5000) 800

Learning_rate (0.01, 1) 0.5

3.1. Performance Assessment

Four performance indicators are used to assess the developed boosting-based ensem-
ble models: classification accuracy, recall, precision, and F1-score. These indicators are
deduced from a confusion matrix generated for binary classification problems (Figure 6).
Additionally, we focused on the area under the receiver operating characteristic curve as
an evaluation metric, as it is an aggregate measure. We conducted a performance compari-
son of the estimation results for testing dataset using the confusion matrix (Table 4) and
the area under the receiver operating characteristic curve. The results of boosting-based
ensemble learning models are also compared with existing models (Artificial Neural Net-
work [66] and Logit Model [67]) that have been widely used in the analysis of road traffic
injury severity.

Classification accuracy, precision, recall, F1-score, and AUC-ROC values for the Cat-
Boost model were 67.34%, 67.32%, 55.87%, 51.28%, and 0.683, respectively, using the testing
dataset. The classification accuracy, precision, recall, F1-score, and AUC-ROC values for
the LightGBM model were 73.63%, 72.61%, 70.09%, 70.81%, and 0.713, respectively, using
the testing dataset. The novel NGBoost model, which was used for the first time in the
prediction and classification of road traffic injury severity, achieved classification accuracy
(61.37%), precision (61.33%), recall (54.71%), F1-score (49.04%), and AUC-ROC (0.588),
respectively. Similarly, AdaBoost model achieved classification accuracy (66.87%), precision
(61.21%), recall (59.17%), F1-score (60.11%), and AUC-ROC (0.619), respectively. Comparing
the performance of the models based on the confusion matrix with their corresponding
matrices in Table 4 and AUC-ROC revealed that the Light GBM method provided the
optimal estimation performance.
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Table 4. Comparison of prediction performance of various models.

Performance
Metrics

Proposed Boosting-Based Ensemble Models Existing Models for Road
Traffic Injury Severity

CatBoost LightGBM NGBoost AdaBoost ANN
[66]

Logit Model
[67]

Accuracy (%) 67.34 73.63 61.13 66.87 62.17 60.47
Precision (%) 67.32 72.61 61.33 61.21 62.37 88.71
Recall (%) 55.87 70.09 54.71 59.17 60.60 63.10
F1—Score (%) 51.28 70.81 49.04 60.11 50.81 50.81
AUC 0.684 0.713 0.588 0.619 0.601 0.533

3.2. The Framework of Model Interpretation for Variable
3.2.1. Global Variable Interpretation

Numerous methods exist for determining the relative importance of variables. Certain
tree-based models, such as random forest, assign variable importance automatically, and the
assignment scheme has effects on the results [68]. However, variable significance is not
synonymous with variable contribution. Variable importance indicates which variable
has the most significant impact on a model’s performance. Beyond identifying influential
variables, the variable contributions provide an intuitive explanation for the considered
output (fatal or non-fatal injuries). Two analyses are conducted in this study to determine
the importance of each variable and its contribution to model estimation: the model-based
variable importance approach and the SHAP summary plot approach.

The significance of each variable in the LightGBM model was first assessed. The Light-
GBM model’s trees are built following the steps outlined in Section 2.3.3. Let us consider
the variable set x1, x2, . . . , xm. The variable importance score FimpSci is then calculated as
Equation (19) based on the number of times each ith variable is used to split the training
data across all trees:

FimpSci = { s|s = W ixi}, (19)

where Wi represents the weight of each variable, and xi represents the ith variable in
variable set. Figure 7a shows the best variable importance score of the National Highway
N-5 accidents data variable used by the LightGBM algorithm. However, the result does not
indicate how much each variable contributes to the likelihood of fatal injuries.
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The SHAP summary assessment was implemented to allow for a more comprehensive
model analysis. From the SHAP summary plot, we estimated a quantitative value that
aggregated the Shapely values and expressed the model contributions of variables (see
Figure 7b). The vertical axis is used to arrange the input variables in ascending order of
their influence, beginning with the most influential variable. The horizontal axis represents
the SHAP value, and the color scale indicates the variable’s significance level; blue to
pinkish-red indicates low to high significance. The greater the number of data points within
a given range of SHAP values, the stronger the correlation between the input variable and
injury severity.

As per SHAP analysis, the most important input variable in determining the in-
jury severity is Month_of_Year, which is ranked first in the Summary Plots, followed
by Cause_of_Accident, Driver_Age and Collision_Type. The significant variables are al-
most consistent with the variable importance obtained by the LightGBM-based model
importance approach. However, the order is different due to a difference in the evalua-
tion procedure. It is revealed that data from older drivers have negative SHAP values,
which become more negative as the driver’s age increases. It confirms that drivers under
the age of 30 are more likely to encounter fatal injuries. The results are consistent with past
literature [69–71]. When comparing the months of winter to the months of spring and sum-
mer (March, June, and July), the variable Month_of_Year reveals that the majority of fatal
injuries happen in the spring and summer (March, June, and July). The Cause_of_Accident,
such as road surface distress, low visibility, and wrong side overtaking, are less likely to
cause fatal injuries compared to bicycle rider at-fault and driver at-fault. The head-on
collisions, hitting animal on road result in non-fatal injuries with SHAP values near zero or
negative compared to rear-end collision, rollover and hitting obstacle on road that results
in fatal injuries. Similarly, trailers and passenger cars are more prone to serious accidents.

3.2.2. Local Variable Interpretation

The SHAP explanatory force plot is shown in Figure 8 for two cases chosen at random
from the actual estimate findings. On the graph, the base value (0.5181) represents the
mean of the optimal LightGBM model estimations for the training data set. If the model’s
output value is greater than the base value, fatal injuries occur (i.e., a lower value than
the base value). When the output of the model is greater than the base value, non-fatal
injuries occur (that is, a higher value than the base value). The blue arrows indicate the
magnitude of the effect of input variables that increase the likelihood of fatal injuries
(increased possibility of death in accidents). The effect of input variables on the occurrence
of fatal injuries is indicated by red arrows (increased possibility of no death in accidents).
The area occupied by variables in each arrow indicates the extent to which that variable
has an effect. Consider two examples of estimated values from the training dataset that the
LightGBM model correctly classified. One instance has an estimated value that is greater
than the base value, while another has an estimated value that is less than the base value.

Figure 8a depicts a situation in which the estimated value (0.020) is less than the
base value (0.5181). In this instance, the three variables that could potentially contribute
to the fatal injuries are Driver_Age and Collision_Type. In particular, the significantly
higher Driver_Age = 7 index compared to other low indexes reflects the higher expected
occurrence of non-fatal injuries. Similarly, the Collision_Type = 7 index (Hit Pedestrian)
reflects a higher probability of fatal injuries. Similarly, the SHAP explanatory force plot
is shown in Figure 8b for another randomly selected and correctly classified instance in
which the estimated value (0.800) is greater than the base value (0.5181). It demonstrates
that both the month of the year and the cause of the accident played a role in predicting
non-fatal injuries. To be more specific, the Month_of_Year = 9 index (September) and the
Cause_of_Accident = 3 index (Tire burst) reflect a lower number of fatal injuries. However,
Collision_Type = 4 index (rollover) are more prone to the occurrence of fatal injuries.
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3.2.3. Variable Interaction Analysis

The SHAP interaction plots were analysed to determine how the input variables used
to estimate the optimal LightGBM model interacted in terms of their contributions (see
Figure 9). The interaction analysis examined trends in Month_of_Year, Cause_of_Accident,
Driver_Age, Collision_Type and Vehicle_Type. Nonetheless, other variable interactions
could be evaluated as well. In Figure 9a, the scatter plots of the red and blue points illustrate
the fluctuation in the Collision_Type and Collision_Type SHAP values. The SHAP value
for Collision_Type is greater when Collision_Type = Hit Pedestrian, and the pattern is
consistent throughout the year. This is self-evident, as the majority of locations along
National Highway N-5 lack designated pedestrian crossings, increasing the likelihood that
pedestrians will be struck by vehicles when they recklessly cross the road. In the majority
of cases, jaywalking results in deadly injuries.

Young drivers are more likely to sustain fatal injuries than older drivers. However,
drivers over the age of 50 are more likely to be involved in non-fatal crashes (Figure 9b).
Young drivers are more prone to be distracted by various activities, such as ringing cell
phones, texting, using a GPS device and listening to music, and these activities are con-
nected with decreased driving performance, increased driver reaction times, decreased
vehicle control, and an increased chance of a crash. Additionally, older drivers have more
experience and are more likely to have non-fatal injuries. There is a possibility that young
drivers are more prone to fatal injuries because they engage in risky behaviour, such as
over speeding and not obeying traffic signals and signs. Sometimes, they cannot perceive
the potential hazards in the surroundings and choose incorrect behaviour.

The scatter plot of Vehicle_Type and the SHAP value for Vehicle_Type are shown
in Figure 9c. It demonstrates that the majority of Vehicle_Type = Trailers and Passenger
Cars are more likely to result in fatal injuries as a result of rear-end crashes, rollovers,
or hitting pedestrians. The trailer’s involvement in the majority of fatal injuries could
be explained by the fact that National Highway N-5 is used for long-haul journeys by
large trailers transporting goods from Karachi’s seaport to the countryside. Speed limit
violations, braking failure, overloading, and driver distraction due to inattention or dozing
can all contribute to trailer rollover accidents. Surprisingly, as indicated by the lower
SHAP value, motorcycle accidents due to skidding result in non-fatal injuries. Surprisingly,
the age group 26–30 is more likely to suffer fatal injuries while driving heavy vehicles
compared to driving light vehicles (Figure 9d), consistent with a previous study [72].
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The SHAP value for Month_of_Year = July is relatively high in the graph, showing
that the majority of serious accidents with fatal injuries for heavier vehicles, such as trucks,
trailers, and tractors, occur during July (Figure 9e). This result is also in line with past
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literature [73,74], which also highlighted that summer is more prone to crashes due to more
vehicles traveling. However, in Pakistan this could be because National Highway N-5 is
a major arterial that traverses through the Punjab region of Pakistan, which is known for its
foggy winters, heavy monsoon precipitation, and sweltering summers. July has a maximum
temperature of about 45 ◦C and sometimes reaches 50 ◦C. Increased tire pressures may
result in a tire burst during July’s severe heat. The monsoon season’s torrential downpours
in July may contribute to severe injuries due to wet pavements that reduce a heavy vehicle’s
traction and manoeuvrability. Similarly, with Month_of_Year = September, the SHAP value
is relatively low. Additionally, one can also note that truck, trailer, and tractor accidents
on National Highway N-5 are nearly evenly distributed throughout the year in compared
other Vehicle_Type.

Additionally, Figure 9f provides valuable insight into the involvement of Vehicle_Type
in accidents and the causes of those accidents. When Bicycle Rider at-Fault and Driver
at-Fault (such as wrong side overtake, traffic signal violation etc.) of trailers and passenger
cars are more likely to be involved in fatal collisions The reason for this might be that
bicycle riders in Pakistan do not wear helmets and often ride in the wrong direction due to
the absence of bicycle-specific traffic control regulations.

4. Conclusions

In this research, boosting-based ensemble learning models were used in conjunction
with SHAP analysis to identify critical risk variables and quantify their effects on the
severity of road traffic accident injuries using the National Highway N-5 accident dataset
(2015–2019). Accurate models typically capture a complete picture of the underlying rela-
tionship between injury severity and risk factors. In this research, LightGBM outperforms
CatBoost, novel NGBoost, AdaBoost as well as widely used ANN and logit model in
terms of predictive classification accuracy, precision, recall, F1-Score, and AUC. The newly
introduced LightGBM model provides another viable option for modelling injury severity.

The lack of transparency and interpretability of machine learning models is frequently
chastised. This has an effect on the widespread acceptance of models for modelling in
traffic and transportation safety, although these models are more flexible and frequently
more accurate than traditional predictive methods. To address the interpretability issue
associated with LightGBM, the SHAP analysis was used to estimate its output in order to
identify significant risk variables and quantify their impact on injury severity. The SHAP
analysis’s results can be used to rank a risk variable’s overall significance. More importantly,
they can be used to investigate both the individual effects of risk variables (e.g., how
specific impacts may fluctuate in response to changes in the risk variable’s value) and their
interaction effects.

The analysis revealed that the top four important variables that are more likely to affect
injury severity are Month_of_Year, Cause_of_Accident, Driver_Age and Collision_Type.
However, Type_of_Day and Work_Zone variables have the most negligible impact on the
injury severity. Young drivers are more likely than older drivers to sustain fatal injuries.
Improved young driver education programs, stricter driving requirements, stricter driving
tests, and equipping parents with sufficient knowledge to train and educate drivers could
all contribute to a reduction in the overall fatal crash rate. The month of July accounts for
a large number of fatal injuries, while September accounts for a greater number of non-fatal
injuries. The rainy season in the Punjab region, in addition to the high temperatures of
July, may account for tire bursts and skidding, probably due to a reduction in tire-to-wet
pavement friction. Extra care in driving is required during the rainy days of the monsoon
(July to September) with low vehicle speed and care for runoff. It has also been observed
that weekend crashes are more likely to cause fatal injuries. This finding may be due to
the high traffic volume on National Highway N-5. People mostly travel to their nearby
hometowns or villages on weekends, causing heavy congestion. In addition, people also
travel to Sunday markets on weekends. In some cases, heavy vehicles, such as trailers,
are involved in fatal crashes when drivers are drowsy at the wheel or, in some cases, crashes
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with bicycles. There is a need to provide bicycle-specific traffic regulations on National
Highway N-5. Moreover, helmet usage should be made compulsory.

The strategy outlined in this paper can be used to conduct a large-scale analysis of traf-
fic accidents and serves as a useful tool for policymakers and researchers engaged in traffic
safety. This paper discussed only injury severity as determined by boosting ensemble in
conjunction with SHAP analysis. Additional research could be conducted by using various
other machine learning techniques with various additional risk factors. Additionally, future
research could expand the dataset to increase its accuracy, and data-balancing techniques,
such as SMOTE and ADAYSN, could be introduced to treat imbalanced data.
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