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Abstract: Introduction: Short-term exposures to air pollutants such as particulate matter (PM) have
been associated with increased risk for symptoms of acute respiratory infections (ARIs). Less well
understood is how long-term exposures to fine PM (PM2.5 ) might increase risk of ARIs and their
symptoms. This research uses georeferenced Demographic Health Survey (DHS) data from Kenya
(2014) along with a remote sensing based raster of PM2.5 concentrations to test associations between
PM2.5 exposure and ARI symptoms in children for up to 12 monthly lags. Methods: Predicted
PM2.5 concentrations were extracted from raster of monthly averages for latitude/longitude locations
of survey clusters. These data and other environmental and demographic data were used in a
logistic regression model of ARI symptoms within a distributed lag nonlinear modeling framework
(DLNM) to test lag associations of PM2.5 exposure with binary presence/absence of ARI symptoms
in the previous two weeks. Results: Out of 7036 children under five for whom data were available,
46.8% reported ARI symptoms in the previous two weeks. Exposure to PM2.5 within the same
month and as an average for the previous 12 months was 18.31 and 22.1 µg/m3, respectively, far
in excess of guidelines set by the World Health Organization. One-year average PM2.5 exposure
was higher for children who experienced ARI symptoms compared with children who did not (22.4
vs. 21.8 µg/m3, p < 0.0001.) Logistic regression models using the DLNM framework indicated that
while PM exposure was not significantly associated with ARI symptoms for early lags, exposure to
high concentrations of PM2.5 (90th percentile) was associated with elevated odds for ARI symptoms
along a gradient of lag exposure time even when controlling for age, sex, types of cooking fuels, and
precipitation. Conclusions: Long-term exposure to high concentrations of PM2.5 may increase risk for
acute respiratory problems in small children. However, more work should be carried out to increase
capacity to accurately measure air pollutants in emerging economies such as Kenya.

Keywords: air pollution; noncommunicable respiratory disease; asthma; chronic bronchitis

1. Introduction

Climate change and rapid urbanization are leading to ever-intensifying levels of expo-
sure to aerosol pollutants in Sub-Saharan Africa (SSA) [1]. Air pollutants, such as carbon
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monoxide (CO), sulfuric dioxide (SO2), ozone (O3), nitrogen dioxide (NO2), and particulate
matter (PM), exceed World Health Organization (WHO) guidelines in many areas of SSA [2].
Ambient pollutants may increase the burden of noncommunicable respiratory diseases,
such as asthma, chronic bronchitis, allergic rhinitis, and chronic pulmonary obstructive
disease (COPD), following patterns seen in developed countries. Indoor pollution expo-
sures, primarily through tobacco smoking or the use of biomass cooking fuels, have been
shown to impact health in low-income countries [3,4]. Biomass cooking fuels are associated
with acute respiratory infections (ARIs) [5], tuberculosis [6], COPD [7], and asthma [8,9].
Less well-understood are the associations between ambient (outdoor) air exposures to
pollutants, such as PM and respiratory health in SSA.

PM is the principal component of many indoor and outdoor pollution mixtures [10].
Exposure to PM with an aerodynamic diameter <2.5 microns (PM2.5), also known as
fine PM, has major implications for health [11]. PM2.5 penetrates not only the lungs’
gas exchange region, but can further penetrate into the circulatory system [12]. PM2.5
exposure is associated with airway inflammation, decline in lung function [13], incidence
and exacerbation of asthma and COPD, and increased susceptibility to infections [12].
Upon deposition on the surface of pulmonary bronchioli and alveoli, PM2.5 is internalized
into epithelial cells and macrophages and disrupts lung function by triggering a series of
processes, including apoptosis and autophagy [12]. The most visible symptoms of PM2.5
exposure are the result of the activation of the inflammasome and subsequent acute and
chronic responses (e.g., asthma) [12]. Persistent exposure to PM2.5 results in a chronic
inflammatory response, worsening lung tissue injury, exacerbation of respiratory disease,
and can potentially result in alveolar collapse [10].

In studies from industrialized countries, exposure to PM2.5 has been associated with
excess hospitalizations [14]. Long-term exposures to PM2.5 have also been associated with
increased incidence of chronic bronchitis [15], childhood asthma [16–18], and allergic rhini-
tis [19]. Cohort studies in Europe have shown that long-term exposures to NO and PM are
associated with rhinitis [20]. In South Korea, increased exposure to outdoor sources of PM2.5
components was associated with increased odds of both coughing and wheezing in asthmatic
children [21]. Children living in areas where the PM2.5 included components associated with
electronic waste recycling in China had an elevated risk of cough, compared with children
living in other areas in China [22]. Lagged concentrations of PM2.5 exposure in Japan were
associated with cough in asthmatic people, and even stronger associations were noted among
those without asthma, with indications of a dose–response relationship [23]. Moderate levels
of PM2.5 exposure were linked with increased risk of upper respiratory tract infections in
Poland [24]. PM2.5 concentrations measured by backpack monitors in the Bronx, New York
City, USA were associated with decreased lung function in schoolchildren [25].

Kenya is a rapidly expanding lower–middle-income economy in SSA. Although 70%
of the population lives in rural, undeveloped areas [26], large cities—such as Nairobi—are
densely populated and highly developed. Urban populations are exposed to high ambient
pollution levels, mostly from motor vehicles [27]. However, the entire Kenyan population
is exposed to PM2.5 levels greater than the 10 µg/m3 WHO guideline for healthy air [28,29].
A total of 19,000 annual deaths in Kenya are attributed to air pollution, with 5000 of these
thought to be due to ambient air pollution [29].

The association between ambient air pollution and health in Kenya is poorly un-
derstood. A recent review on studies that report ambient air pollutant concentrations in
Kenya identified 33 studies [28]. Of those that fit the selection criteria, 23 measured PM in
urban areas, with only two studies linking ambient exposure to either a health outcome
or exposure levels of specific population groups [27,30]. Furthermore, the bulk of studies
linking air pollution to a health outcome in Kenya have been conducted in rural areas,
focusing on indoor exposure and its association with health outcomes [31–36]. To our
knowledge, no study has focused on ambient exposure and its association with health
outcomes nationwide in Kenya.
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PM2.5 exposure in urban areas of Kenya has been associated with both morbidity
and mortality in children under five [30]. Children in urban areas with high levels of
ambient pollution were at significantly higher risk of cough, compared to those in less
polluted areas. There was also a non-significant, increased risk of respiratory-related deaths
in highly polluted areas [30]. A major complaint of residents in informal settlements
in Nairobi was cough, often diagnosed as ARI and bronchitis [37]. Children under five
in informal settlements of Nairobi had a four-times higher mortality burden than the
general population, in part due to pneumonia [38]. As Kenya’s motor vehicle fleet expands,
vehicular emissions will continue to rise, and pollution levels for population groups in
the vicinity of roads are already at dangerously high levels [27]. Kenya also has some of
the highest reported black carbon (BC) levels in the world [28]. Black carbon is a major
component of PM and is formed by the incomplete combustion of fossil fuels. With the
Kenyan vehicle fleet having fuel economy estimates 2–3 times worse than the vehicles’
country of origin, ambient air pollution is likely to worsen in the near future [28,39]. A
better understanding of the associations between health and ambient air pollution in Kenya
is therefore imperative to help with the development of mitigation measures and in the
strengthening of regulatory frameworks.

Short-term exposures to PM2.5 and other air pollutants are known to increase risk
for respiratory infections in children [40,41]. Although some research has suggested links
to the development of asthma and impaired lung function [42], less well known is how
long-term exposures to air pollutants, such as PM2.5, may raise risk for acute respiratory
infections in children. In this study, we used remote sensing (satellite) data estimates of
PM2.5 to assess the association with ARI symptoms in children under five in Kenya. The
aim of this study is to understand the relationship between estimated ambient pollution
levels and health outcomes and gain an understanding of the impact of the duration of
exposure on health outcomes. Our definition of ARI symptomatology was derived from
a question in DHS VII surveys: “When (NAME) had an illness with a cough, did he/she
breathe faster than usual with short rapid breaths or have difficulty breathing?”. Though
the outcome variable is subjective and likely the result of an interplay between several
environmental, household, and individual factors, it may be indicative of a continuum
of risk for the development of chronic conditions such as asthma. Physiologically, the
symptoms mentioned in the DHS questionnaire are often the result of the narrowing of
airway from the larynx to the bronchi [43]. In small children, these symptoms suggest
bronchiolitis, frequently caused by respiratory syncytial virus (RSV) [43]. Given the lack
of clinical diagnosis of ARI, we elected to define the outcome as “symptoms of ARI”. We
use this approach to ensure comparability with other literature on ARIs in SSA using DHS
data [44–46]. We also add to a growing number of studies using remote sensing data to
understand the impact of air pollution on human health [47–51].

Using cluster-based survey data with predictive, satellite-based rasters of predicted
PM2.5, this research tests three main hypotheses about exposure to PM2.5. First, children
who experience ARI symptoms will be exposed to higher levels of PM2.5 than children who
did not experience ARI symptoms. Second, ARI symptoms will be associated with factors
associated with indoor and outdoor air pollution; including household-level factors, such
as indoor cooking and smoking; and environmental factors, such as population density,
living in an urban vs. rural environment, and others. Third, the associations of PM2.5
and ARI symptoms will vary by exposure intensity and timing, even when controlling for
demographic, household, and environmental factors.

2. Materials and Methods
2.1. Individual Data

Sponsored by the United States Agency for International Development (USAID), the
Demographic and Health Surveys (DHS) Program regularly collects data on population,
health, HIV, and nutrition in over 90 countries. These data are deidentified and made
freely available to the public and to researchers to conduct demographic and public health
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analyses. This research uses the Kenya Demographic and Health and Multiple Indicator
Cluster Survey (EDS-MICS) of 2014 (DHS VII). The EDS-MICS is designed to collect
data on household characteristics, marriage, fertility, infant and child mortality, maternal
health, child health, nutrition, malaria, HIV, adult mortality, and characteristics of survey
respondents such as occupation, chronic disease, and education level [52]. The EDS-MICS
survey conducted sampling using a two-stage stratified, randomly drawn, national sample
based on census, district, and urban vs. rural. To protect individual privacy, locations
of homes are assigned randomly to clusters within the survey unit [53]. According to
documentation on the DHS website, urban clusters contain a minimum of 0 and a maximum
of 2 km of positional error, while rural clusters contain a minimum of 0 and a maximum of
5 km of positional error, with a further 1% of the rural clusters displaced a minimum of 0
and a maximum of 10 km.

In standard DHS surveys, all women 15–49 years of age are eligible to participate in
the survey. These women’s children from 0–5 years of age are then eligible for further data
collection, including specific questions on the health and nutritional status of the child
and measurements of biomarkers. Relevant to this research, mothers are asked questions
regarding the respiratory health of the child, specifically asking: “When (NAME) had an
illness with a cough, did he/she breathe faster than usual with short, rapid breaths or have
difficulty breathing?” Children whose mothers responded that children had these set of
symptoms were classified as having symptoms of ARI.

2.2. Air Pollution Data

Estimates of monthly PM2.5 concentrations were obtained from the Atmospheric
Composition Analysis Group (https://sites.wustl.edu/acag/, accessed on 15 December
2021). Estimates are determined from aerosol optical depth (AOD) using a physically-
based relationship between AOD and PM2.5. Daily AOD estimates are obtained from
the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging
Spectroradiometer (MISR) satellite instruments, and coincident aerosol vertical profiles
from the GEOS-Chem global chemical transport model, and transformed into grids of size
0.01 degrees square (approximately 1 km2 at the equator). These values are then calibrated
to on-the-ground observations, using using a geographically weighted regression (GWR).
The observations are then averaged to obtain monthly means. Full descriptions of the
methodology used to produce the PM2.5 rasters are available in the scholarly literature [54,55].

Since PM2.5 concentrations are known to be attenuated by rainfall [56,57], precipitation
data was extracted from the Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS), a 35+ year quasi-global rainfall dataset [58]. Solar activity has been shown to
have an impact on airborne PM2.5 concentrations [59]. To account for possible correlations
between PM2.5 and sunlight, a raster for average annual sunlight as measured by Global
Horizontal Irradiance (GHI) was obtained from the World Bank’s Global Solar Atlas version
2.0 [60]. Elevation can also impact PM2.5 concentrations due to lower air pressure [61].
Digital elevation model (DEM)-based raster data were obtained from DIVA-GIS [62]; see
Figure 1. All raster data were extracted at the latitude/longitude point of the survey cluster
associated with each respondent’s household. PM2.5 and precipitation data were extracted
at each cluster point for the month of and for each of the preceding 12 months to the survey
interview. To roughly assess possible confounding of remoteness and/or aridity with PM2.5
exposure and ARI symptoms, we calculated the Euclidean distance from the survey cluster
to the nearest road and river using freely available line shapefiles [62].

2.3. Statistical and Analytic Methods

First, we provide descriptive statistics for the sample, including variables for ARI
status, sex, age, and household wealth along with variables for indoor smoking and types
of cooking fuel to account for possible indoor air pollution exposures. We also include
urban and rural clusters as designated by the DHS survey. Next, we describe all exposure
variables including PM2.5, precipitation, GHI, population, elevation, and distance to roads,

https://sites.wustl.edu/acag/
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rivers, and lakes. To assess possible correlations between environmental variables and
PM2.5 levels, we produce a matrix of Pearson coefficients.

Figure 1. Visualizations of raster used in the analysis. (A) Average PM2.5 exposure across Kenya for
the study period. (B) Example of CHIRPS precipitation raster model using the rainy season month
of May 2014. (C) GHI from the World Bank Global Solar Atlas 2.0. (D) Gridded population of the
world raster.

To test our first hypotheses that children with ARI symptoms will be exposed to
higher levels of PM2.5 and that ARI symptoms will be associated with other household and
environmental factors, we produce univariate logistic regression models for each variable
considered. To account for possible within-cluster correlation of subjects, we include a
random effect for survey cluster. Next, we use those variables to create a full model of
ARI symptoms, including all variables in a single model. From there, we use a backward
selection procedure to generate a best model based on Akaike’s information criterion (AIC).
To test the hypothesis that ARI symptom risk will vary with PM2.5 by exposure intensity
and timing, we use logistic regression models in a distributed lag nonlinear modeling
(DLNM) framework. DLNMs offer a means to assess risk as a function of both timing
and intensity of exposure. DLNMs are based on the definition of a cross-basis, which
comprises two functions which describe exposure responses and the lag structure [63] and
have seen increased application in health-related research [64–69], including heat related
outcomes [70] and heat-related hospital admissions [71]. We created two logistic regression
models using the DLNM. First, we created a model including only the crossbasis of PM2.5
as a predictor. Next, we used the demographic, household, and environmental variables
from the optimal model chosen above to assess associations of lag exposure of PM2.5 with
ARI symptoms.

3. Results
3.1. Sample Characteristics

In total, there were 20,964 children 0–5 years of age included in the dataset. Among
these children, there were 7036 responses to the question “Did the child experience cough
followed by short, rapid breath in the past two weeks?”. A total of 3526 (50.1%) of the
children whose caregivers responded to the question were male. The average age of
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children was just slightly under two years. Nearly a third of children were from homes
in the lowest SES category. A total of 93% of homes used solid fuels such as wood and
charcoal for cooking. There were only 3350 responses to the question on smoking in
the home, among which it was reported that 85.8% of children lived in homes where no
one smokes. More than two thirds (68.2%) of children were from rural survey clusters.
Demographic results are presented in the first column of Table 1. Survey clusters were
spread in all areas of Kenya, including the urbanized Nairobi area; see Figure 2.

Table 1. Individual demographic and household characteristics for children include in the Kenya
DHS VII survey from 2014 for whom information on wheezing was available.

[ALL] NN = 7036

Wheezing: 7036
No wheezing 3744 (53.2%)
Wheezing 3292 (46.8%)

Sex: 7036
Female 3510 (49.9%)
Male 3526 (50.1%)

Current age of child (mean, std. dev.) 1.97 (1.37) 7036
Wealth index (1 = low SES, 5 = high SES): 7036

1 2174 (30.9%)
2 1624 (23.1%)
3 1272 (18.1%)
4 1085 (15.4%)
5 881 (12.5%)

Someone ever smokes in home: 3350
No 2874 (85.8%)
Yes 476 (14.2%)

Type of cooking fuel used: 7035
Solid fuel 6547 (93.1%)
Gas 470 (6.68%)
Electricity 11 (0.16%)
No food cooked in house 3 (0.04%)
Other 4 (0.06%)

Urban vs. Rural cluster: 7036
Rural 4800 (68.2%)
Urban 2236 (31.8%)

Figure 2. Locations of survey clusters including insets for the large urban area of Nairobi.
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3.2. Environmental Measures

Latitude and longitude coordinates of survey clusters were available for 6994 (99.4%)
of the children in the dataset. Mean PM2.5 exposures were 18.31, 22.94, and 22.1 µg/m3 for
the month the child’s caregiver was surveyed, the month of the calendar year previous
to the survey, and as a mean of the 12 calendar months prior to and including the survey
month, respectively. The lowest exposures were 2, 2.3, and 10.75 µg/m3 for the month of
the survey, the same month in the year previous, and as a mean for the year, respectively.
The maximum exposures were 46.8, 66.8, and 34.49 µg/m3 for the month of the survey,
the same month in the year previous, and as a mean for the year, respectively. Population
densities ranged from extremely sparsely populated northern areas to densely populated
areas of Nairobi and its environs. The distance of clusters to the nearest river or road
ranged from 3.5 km to more than 25 km away in the most remote areas. Average monthly
precipitation was nearly 95 mm for all time periods presented, but ranged from almost
no precipitation to 334 mm in a single month and 194 mm as an average for the year. See
Table 2 for full results.

Table 2. Summary statistics of estimated PM2.5 and other environmental variables in Kenyan house-
holds during 2014.

Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max

PM2.5 (µg/m3) (exposure in month of survey) 6994 18.31 9.47 2 10.7 24.3 46.8
PM2.5 (µg/m3) (12 months previous) 6994 22.94 12.94 2.3 13.4 28.4 66.8
PM2.5 (µg/m3) (one year average) 6994 22.1 4.84 10.75 18.37 25.93 34.49
Population (ppl within 5 km) 6933 1238.5 3270.49 0.15 155.48 843.01 30,644.39
Distance to road (km) 6994 3.24 3.99 0.01 0.71 4.26 41.99
Distance to river (km) 6994 3.62 3.5 0 1.11 4.79 26.97
Elevation (meters) 6972 1371.96 653.29 3 1121.25 1843 3248
Global horizontal irradiance (yearly average) 6994 5.8 0.31 4.68 5.54 6.02 6.67
Precipitation (mm) (month of survey) 6874 96.76 83.98 0 23.91 149.35 422.5
Precipitation (mm) (12 months previous) 6941 85.98 69.17 0 23.74 138.34 334.07
Precipitation (mm) (one year average) 6941 93.05 41.75 1.35 58.42 123.43 194.07

PM2.5 measures were highly correlated with precipitation. The Pearson correlation
between yearly averages of PM2.5 and yearly average of precipitation was 0.70. GHI was
correlated weakly with same month PM2.5 exposures (r = 0.28). Elevation was also weakly
correlated with PM2.5 exposures (r = 0.4). See Table 3 for the full correlation matrix.

Table 3. Correlation matrix of continuous environmental variables.

PM2.5 (month of survey) 1
PM2.5 (12 months previous) 0.62 1

PM2.5 (one year average) 0.77 0.69 1
Population (1 km) 0.10 0.05 0.15 1

Distance to road (km) −0.12 −0.14 −0.18 −0.14 1
Distance to river (km) −0.09 −0.07 −0.12 0.01 0.08 1

Elevation (meters) 0.40 0.39 0.50 0.07 −0.07 −0.14 1
GHI (yearly average) 0.28 0.28 0.29 −0.15 0.01 −0.05 0.08 1

Precipitation (month of survey) 0.53 0.39 0.57 0.07 −0.15 −0.09 0.26 0.27 1
Precipitation (12 months previous) 0.61 0.36 0.49 0.03 −0.13 −0.11 0.40 0.31 0.68 1

Precipitation (one year average) 0.70 0.55 0.72 0.12 −0.18 −0.11 0.39 0.25 0.79 0.78 1
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3.3. Univariate Associations of Demographic and Environmental Variables with ARI Symptoms

Children who reported ARI symptoms had significantly higher exposure to PM2.5 in
the survey month (18.9 vs. 17.8 µg/m3, p < 0.001), in the same month in the previous year
(23.3 vs. 22.6 µg/m3, p = 0.036), and as an average over 12 months (22.4 vs. 21.8 µg/m3,
p < 0.001). The odds of experiencing ARI symptoms were higher for males than females
(odds ratio (OR) 1.13 95% confidence interval (CI) [1.04; 1.28], p = 0.007). Children who
reported ARI symptoms were slightly younger than those who did not (1.91 years vs.
2.03 years, p = 0.008). Among SES groups, the odds of having ARI symptoms compared
with the lowest SES group were only significantly different for households in the highest
SES category (OR 0.78 95% CI [0.64; 0.94], p = 0.010). Although data on smoking in the
home were only available for a subset of the children’s caregivers surveyed, we found no
association between smoking in the home and ARI symptoms (OR 0.99 95% CI [0.82; 1.21]
p = 0.949). Use of gas-based cooking fuels was protective against ARI symptoms compared
with using biomass fuels (OR 0.70 95% CI [0.56; 0.88], p = 0.002). We found no association
of other types of cooking fuels and ARI symptoms, but the number of responses was too
small to perform a reliable statistical test. Children in urban clusters were less likely to
have ARI symptoms than children in rural clusters (OR 0.87 95% CI [0.75; 0.96], p = 0.039).
We found no association of population density and distance from the survey cluster to the
nearest road or river with ARI symptoms. However, elevation, GHI, and precipitation were
significantly associated with ARI symptoms. See Table 4 for full results.

Table 4. Bivariate associations of all predictors with wheezing. Means and standard deviations are
presented for continuous variables. Counts and percentages are presented for categorical variables.
Odds ratios and p-values are present for both bivariate logistic regression models with and without a
random effect for survey cluster.

No ARI ARI No Random Effect Random Effect
N = 3744 N = 3292 OR [95% CI] p OR [95% CI]

PM2.5 (month of survey) 17.80 (9.21) 18.89 (9.72) 1.012 [1.007, 1.017] <0.001 1.013 [1.006, 1.020] <0.001
PM2.5 (12 months previous) 22.63 (12.60) 23.28 (13.30) 1.004 [1.000, 1.008] 0.036 1.004 [0.999, 1.009] 0.16
PM2.5 (one year average) 21.83 (4.72) 22.41 (4.95) 1.025 [1.015, 1.035] <0.001 1.026 [1.012, 1.040] <0.001
Sex:

Female 1923 (51.36%) 1587 (48.21%) Ref. Ref.
Male 1821 (48.64%) 1705 (51.79%) 1.135 [1.033, 1.246] 0.008 1.153 [1.040, 1.278] 0.007

Current age of child 2.03 (1.37) 1.91 (1.37) 0.940 [0.909, 0.973] <0.001 0.931 [0.897, 0.967] <0.001
Wealth index:

1 (low SES) 1150 (30.72%) 1024 (31.11%)
2 836 (22.33%) 788 (23.94%) 1.059 [0.931, 1.204] 0.386 1.015 [0.872, 1.181] 0.849
3 650 (17.36%) 622 (18.89%) 1.075 [0.936, 1.234] 0.308 1.006 [0.853, 1.187] 0.94
4 589 (15.73%) 496 (15.07%) 0.946 [0.817, 1.095] 0.454 0.934 [0.784, 1.112] 0.444
5 (high SES) 519 (13.86%) 362 (11.00%) 0.783 [0.668, 0.918] 0.002 0.776 [0.640, 0.942] 0.01

Someone smokes in home:
No smoke 1529 (85.75%) 1345 (85.83%)
Smoke 254 (14.25%) 222 (14.17%) 0.994 [0.818, 1.207] 0.948 0.999 [0.801, 1.246] 0.993

Type of cooking fuel used:
Solid fuel 3442 (91.96%) 3105 (94.32%)
Gas 289 (7.72%) 181 (5.50%) 0.694 [0.573, 0.841] <0.001 0.702 [0.559, 0.882] 0.002
Electricity 8 (0.21%) 3 (0.09%) 0.416 [0.110, 1.568] 0.195 0.405 [0.094, 1.751] 0.226
No food cooked in house 1 (0.03%) 2 (0.06%) 2.217 [0.201, 24.463] 0.516 2.906 [0.199, 42.484] 0.436
Other 3 (0.08%) 1 (0.03%) 0.370 [0.038, 3.554] 0.389 0.312 [0.026, 3.679] 0.355

Urban vs. Rural cluster:
Rural 2501 (66.80%) 2299 (69.84%)
Urban 1243 (33.20%) 993 (30.16%) 0.869 [0.786, 0.961] 0.006 0.866 [0.755, 0.993] 0.039

Population (1 km) 1004.97 (3211.75) 915.98 (2745.62) 1.000 [1.000, 1.000] 0.217 1.000 [1.000, 1.000] 0.33
Distance to road (km) 3.32 (4.04) 3.15 (3.92) 0.989 [0.978, 1.001] 0.078 0.992 [0.976, 1.008] 0.329
Distance to river (km) 3.63 (3.49) 3.61 (3.51) 0.998 [0.985, 1.012] 0.817 1.001 [0.982, 1.020] 0.935
Elevation (meters) 1389.66 (655.78) 1351.89 (649.97) 1.000 [1.000, 1.000] 0.016 1.000 [1.000, 1.000] 0.064
GHI (yearly average) 5.79 (0.33) 5.81 (0.30) 1.212 [1.042, 1.408] 0.012 1.282 [1.043, 1.577] 0.018
Precip (month of survey) 90.80 (80.19) 103.51 (87.61) 1.002 [1.001, 1.002] <0.001 1.002 [1.001, 1.003] <0.001
Precip (12 months previous) 81.45 (66.95) 91.09 (71.26) 1.002 [1.001, 1.003] <0.001 1.002 [1.001, 1.003] <0.001
Precip (one year average) 89.63 (39.61) 96.91 (43.72) 1.004 [1.003, 1.005] <0.001 1.004 [1.003, 1.006] <0.001
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3.4. Multivariate Model of ARI Symptoms

Very few households reported using types of cooking fuel other than gas or biomass
fuels. We collapsed “electric”, “no food cooked in the house”, and “other” into a single
“other” category. To maximize the dataset, we imputed missing values, imputing the mean
value for numerical variables and a randomly selected category for categorical variables.
We left out the variable on indoor smoking due to a large amount of missing data and
since its omission did not impact the results (not shown). During our exploration, we
found that since the survey cluster was the point used to extract the exposure variables,
the mixed models invariably failed to converge. Given this problem, our finding that the
parameter estimates from the bivariate models did not change significantly for nearly all
of the variables (see Table 4) and since caterpillar plots of the random effect of survey
cluster were not suggestive that a random effect was needed, we opted for fixed effects
models for the analysis moving forward. We created a “full model” which included all
available variables. From there, we used a backwards selection procedure to select a “best
model” based on AIC. Results are shown in Table 5. The “best model” included variables
for PM2.5 exposures (12 months previous and one year average), age, sex, type of cooking
fuel, distance to lake, elevation, and the one-year average of precipitation.

Table 5. Full model including all covariates of interest. Final multivariate model was selected using
backwards selection based on AIC. To account for missing observations, means were imputed for
continuous variables. Random imputation was used for missing values in categorical variables.
Poorly represented categories for cooking fuel were collapsed into a single category.

Dependent Variable

ARI
Full Model Best Model (AIC)

PM2.5 (exposure in month of survey) 1.002 *** (0.993, 1.011)
PM2.5 (12 months previous) 0.994 *** (0.989, 1.000) 0.995 *** (0.990, 1.000)
PM2.5 (one year average) 1.023 *** (1.002, 1.043) 1.024 *** (1.006, 1.041)
Sex:

Female Ref. Ref.
Male 1.131 *** (1.036, 1.226) 1.131 *** (1.036, 1.226)

Current age of child 0.942 *** (0.907, 0.977) 0.942 *** (0.907, 0.976)
Wealth index (1 = low SES, 5 = high SES):

1 Ref.
2 0.989 (0.848, 1.130)
3 1.019 (0.866, 1.172)
4 0.963 (0.798, 1.128)
5 0.916 (0.711, 1.122)

Type of cooking fuel used:
Solid fuel (biomass)
Gas 0.840 *** (0.594, 1.085) 0.809 *** (0.612, 1.006)
Other 0.587 (0.000, 1.598) 0.572 (0.000, 1.579)

Urban vs. Rural cluster:
Rural Ref.
Urban 0.933 *** (0.807, 1.059)

Population (1 km) 1.000 *** (1.000, 1.000)
Distance to road (km) 0.993 *** (0.980, 1.007)
Distance to lake (km) 1.003 *** (1.001, 1.004) 1.003 *** (1.001, 1.004)
Distance to river (km) 1.004 *** (0.990, 1.018)
Elevation (meters) 1.000 *** (1.000, 1.000) 1.000 *** (1.000, 1.000)
Global horizontal irradiance (yearly average) 1.010 (0.837, 1.183)
Precipitation (month of survey) 1.000 *** (0.999, 1.001)
Precipitation (12 months previous) 1.000 *** (0.999, 1.001)
Precipitation (one year average) 1.004 *** (1.002, 1.007) 1.005 *** (1.003, 1.006)
Constant 0.533 (0.000, 1.528) 0.539 *** (0.260, 0.818)

Observations 6940 6940
Log Likelihood −4726.647 −4729.214
Akaike Inf. Crit. 9497.294 9478.428

Note: *** p < 0.01.
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3.5. Lag Associations of PM2.5 Exposure and ARI Symptoms

For the crossbasis of PM2.5 and precipitation, we used natural cubic splines for both the
exposure and lag space. Degrees of freedom for each were set by testing multiple parameter
combinations in a model including only the crossbasis, settling on the combination which
yielded the lowest AIC. The parameter setting chosen was three degrees of freedom for both
lag and exposure splines. We created two logistic regression models to test the association of
PM2.5 and ARI symptoms. The first model included only the crossbasis for PM2.5 exposures
up to lag 12 months. For the second model, we included all of the terms from the “best”
multivariate model from before, but instead of including a static term for precipitation, we
included the crossbasis for precipitation.

Figure 3 shows the odds of having ARI symptoms across the exposure range of PM2.5
and during the 12 months preceding the survey interview. For both models, we found
similar patterns of exposure intensity and ARI symptoms across the lag space, though the
the odds of ARI were, on average, higher in the model including demographic, household,
and environmental variables. When examining the “slices” of exposure intensity with
specific lags, we found that in the first model, there was a protective range of low exposures
to PM2.5 during short lags. However, following lag 4, increased exposure to PM2.5 was
positively associated with the odds of ARI symptoms increased along the range of exposures
of PM2.5 and over the lag space, even when controlling for lag exposures of precipitation.
Figure 4 shows the odds of having ARI symptoms across the range of PM2.5 exposures for
lags 0, 1, 4, 6, 10, and 12. The relationship of PM2.5 and ARI symptoms was insignificant at
higher exposure levels for earlier lags, although ARI symptoms were negatively associated
with lower exposures. However, as lags increased, the association of exposure with ARI
symptoms fell into patterns resembling a dose–response relationship with increasing
exposures associated with increased odds of ARI symptoms. When accounting for age, sex,
types of cooking fuels used, distance to lake, and lag exposures to precipitation, we found
that the relationship of exposure to PM2.5 and ARI symptoms disappeared at short lags but
fell into the same positive association for lag 4 and after that were seen in the models using
only the single crossbasis for PM2.5; see Figure 5.

Figure 3. Three-dimensional plots of lag associations up to cumulative 12 months of PM2.5 exposure
with odds ratios of symptoms of ARI. Plot (a) is of a model that includes only the crossbasis for PM2.5.
Plot (b) is of the same model but with the additional crossbasis of precipitation and confounders for
sex, age, distance to lake, and type of cooking fuel used.
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Figure 4. Lag-specific odds ratios of ARI with up to cumulative 12 months of exposure to PM2.5,
including no other confounders in the model.
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Figure 5. Lag-specific odds ratios of ARI with up to cumulative 12 months of exposure to PM2.5,
including confounders for sex, age, distance from nearest lake, type of cooking fuel, and crossbassis
for precipitation in the model.
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4. Discussion

Among this representative sample of children under age five in Kenya during 2014,
our analyses suggest that longer-term exposure to PM2.5 is higher among children who
experienced ARI symptoms in the prior two weeks than among children who did not
experience ARI symptoms in the same period. This result supports our first hypothesis
that PM exposure will vary between these two groups. Relevant to our second hypothesis,
we have shown that ARI symptoms are associated with demographic, household, and
environmental variables. For example, we have also shown that ARI symptoms in this
sample were associated with the choice of cooking fuel. Households that use gas-based
fuels were significantly less likely to report childhood ARI symptoms, which confirmed
part of our second hypothesis. This result agrees with a wide body of literature indicating
that the risk of respiratory illness in Africa is high in homes which rely on the burning of
biomass for cooking and/or heat [72]. On the other hand, we did not see an association of
indoor smoking with ARI symptoms. This could partly be explained by the incomplete
nature of the data. The lack of an association might also be explained by the fact that
smoking prevalence and frequency are relatively low in Kenya, particularly among female
caregivers [73].

Regarding our third hypothesis, that ARI will be determined by PM2.5 exposure
intensity and timing, we found evidence to suggest that long-term exposure to PM2.5 in
children increases the odds of ARI symptoms. Specifically, we found that exposures as
far as one year prior were associated with higher odds of ARI symptoms and that odds
were highest among the most intense exposures. This result held even when accounting
for sunlight and seasonal exposures to precipitation. This association might suggest
an increased biological susceptibility to infection in children who have been exposed
continuously to high concentrations of PM2.5 in the long term.

PM2.5 has been associated with an increased susceptibility to bacterial infections [74].
The first mechanism by which PM2.5 exposure may increase susceptibility to infection is by
the promotion of bacterial adhesion to epithelial cells by the upregulation of the expression
of the intercellular adhesion molecule-1 (ICAM-1, a glycoprotein on the cell surface) [74,75].
Increased pathogen adherence coupled with an impairment of the bronchial mucocilary
system would result in decreased bacterial clearance, allowing pathogen buildup [74].
Another possible mechanism is the impact of PM2.5 exposure on the respiratory microbiome.
In healthy individuals, the lower respiratory tract is typically sterile, while the upper
respiratory tract has a bacterial flora that is part of the host’s natural defenses [74]. The
normal flora of the upper respiratory tract provides a biological barrier against foreign
matter and pathogens by a physical-space-occupying effect, nutritional competition, and
the secretion of bactericidal substances [74,76–78]. PM2.5 exposure in rats has been shown
to cause a decrease in indigenous flora and increase the abundance of potential pathogens,
increasing susceptibility to respiratory infections [79]. The demonstrated lag that we and
others have found between PM2.5 exposure and the onset of symptoms could be indicative
of the period of time necessary for PM2.5 exposure to result in a buildup of pathogens and
for a chronic immune response to occur. Furthermore, in infants and young children, these
mechanisms are occurring against the background of the maturation of both the respiratory
and immune systems. These mechanisms could have immediate and long-term effects in
both later childhood and in adulthood.

Associations of long-term exposures and respiratory infections are less well under-
stood, particularly in children. A 2013 review of particulate air pollution and acute respira-
tory infections [80] identified a handful of studies. One study suggested that associations
between longer pollutant exposures (averaging periods of 45 days) and childhood bron-
chitis were stronger than associations with short-term exposures [81]. Chronic exposure
to PM2.5 has also been associated with increased risk for infant bronchiolitis compared
with short-term exposures [82]. It has also been demonstrated that increased and chronic
exposure to PM2.5 from nearby traffic sources was significantly associated with increased
odds of serious colds in children and was weakly associated with ARI symptoms [83]. In
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China, high concentrations of coarse PM (10–2.5) were a strong predictor of district-specific
prevalence for respiratory health problems including wheezing and cough [84]. Children
with long-term exposure to air pollutants in industrial Polish cities also had impaired lung
development and reduced lung function compared with children from cleaner areas [13].
All the above findings coupled with our results reinforce that the effects of long-term
exposures need to be better understood, particularly the association between exposures
and different outcome variables such as ARIs.

The interpretation of associations should also consider that our outcome variable is
a subjective set of symptoms and is not doctor-confirmed. As mentioned previously, this
symptomatology is often the result of RSV infection. There have been documented associa-
tions between PM2.5 levels and RSV infections, with a study from Poland reporting positive
associations between PM2.5 and RSV hospitalizations, while a study from China found a
significant correlation of 0.446 between PM2.5 levels and the RSV infection rate [85,86]. A
potential mechanism for the observed associations may be the suppression of local immunity
by PM2.5 exposure, resulting in increased susceptibility, a longer disease, and more severe
disease course, further exacerbating the oxidative stress and inflammation caused by PM2.5
exposure[85]. The observed lag effects between exposure and symptom presentation may be
reflective of the interplay between RSV infection, ambient pollution, and the development of
chronic phenotypes.

ARI phenotypes in childhood have also been used to predict lung function later in life
given that repeated bronchiolitis may progress to asthma [87–89]. ARI phenotypes may also
be indicative of the irritant nature of chemical pollutants on the immature respiratory sys-
tem leading to both reversible and irreversible bronchial outcomes [87]. Furthermore, the
duration of exposure to irritants may determine the progression of ARI phenotypes, with
different patterns of associations between air pollution and ARI outcomes in children [90].
For example, it was found that children exposed to high levels of traffic-associated pol-
lutants at birth were twice as likely to experience persistent wheezing at age seven [91].
However, a longer duration of exposure to high levels of traffic-associated pollutants begin-
ning early in life was the only time period associated with the development of asthma [91].
The duration of exposure necessary for the development for ARI phenotypes may explain
our findings that significant associations between PM2.5 levels and ARI symptoms are only
present after a minimum of 4 months of exposure, possibly indicative that a cumulative
threshold of exposure is necessary for symptoms to manifest. In a recent analysis of the
association between ambient air pollution and respiratory health using satellite data and
DHS surveys from 31 countries, no association between short-term PM2.5 exposure and res-
piratory health was found [92]. The authors used prior-month averages and evaluated two
outcomes: the presence of a cough, and acute lower respiratory infection (ALRI), defined as
the presence of both a cough and wheezing [92]. The lack of short-term associations, similar
to our findings, reinforces the need for both more accurate ambient pollution measures as
an exposure and better pathophysiological characterization of the outcome variables.

Assessing links between air pollution and health is complicated by the difficulty of
properly measuring air pollution exposures. Exposure monitors are one way of assessing
ambient exposures, but these are limited by the number and placement. The gridded
dataset used for this study is built on satellite-based retrieval of aerosol optical depth
and output from a chemical transport model (CTM). Ground-based monitors are used to
understand factors that drive large-scale bias in satellite- and CTM-based estimates. The
information they provide are interpreted in a way that can be applied over a large area.
In the case of Kenya, only a handful of candidate monitors were available for use in the
calibration for this model [93], but the predictions from the model itself are not simply
locally determined. Full descriptions of the methodology used to produce the PM2.5 rasters
are available in the literature [54,55]. A limitation, however, is the inability of the exposure
raster to adequately capture localized processes which contribute to ambient PM2.5 levels,
such as the burning of biomass fuels for cooking and/or heating. It has been suggested
that grass-roots-level data collection is required to adequately assess associations between
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exposure and outcomes between, for example, rural and urban areas or even within urban
areas themselves [94].

We found that ARI symptoms were more common in children in rural clusters than in
urban clusters in the crude analyses. Several explanations are possible. First, subjects in
urban and rural areas might respond differently to the question as a result of translation
during the interview, differences in understanding what the question might imply, or
due to differences in how subjects respond to surveys of this type. It is also possible that
living conditions differ between the two contexts and the patterns of indoor exposures
to pollutants might play an important role in the development of respiratory problems.
Salient, nearly all (99%) households in rural areas reported using biomass cooking fuels,
indicating a near daily exposure to air pollutants in and around the home. This could
partly explain why the urban/rural variable was dropped from the model chosen through
backward selection. More work should be undertaken to disentangle the source and effects
of indoor and outdoor exposures to air pollutants.

Another major impediment to understanding the associations between air pollution
and human health in SSA is a lack of national air monitor networks. Though the PM2.5
raster we used is calibrated based on local monitor data, the relatively low availability of
such data might compromise data accuracy [28]. Further, data on the location and number
of PM2.5 monitors used to calibrate the estimates of exposure in the gridded datasets were
unavailable at the time of writing. Lacking this information, we were not able to assess the
uncertainty of the exposure data used. Future studies should assess respiratory outcomes
in children using personal air pollution measurement devices as has been attempted in a
study in Ghana [95].

Similar to Kenya, African economies are expanding and urbanizing at an unprece-
dented rate. Increased access to monetary resources will mean that the number of gasoline-
powered vehicles will expand, and the slow pace of adoption and the expense of renewable
energy technologies might mean that Africa will depend on them moving forward. This
suggests that research into exposures to PM2.5 and other pollutants with respiratory disease
will become ever more salient in the coming years. Recent findings from the Cooking
and Pneumonia Study (CAPS) in Malawi, which found that exposure to biomass fuel
smoke may be less harmful than exposure to traffic-related air pollution, highlight the
complexity of exposure profiles and the need for systemic mitigation measures reducing
both ambient and indoor exposures [96]. As such, the development of new tools to assess
ambient air pollution exposures that meet Africa’s unique contextual challenges will also
be needed. With existing and new tools, researchers should work to determine the links
between air pollution exposures and respiratory health given Africa’s specific set of existing
health profiles.

Author Contributions: Conceptualization, P.S.L.; methodology, P.S.L.; software, P.S.L. and C.S.C.;
validation, P.S.L.; formal analysis, P.S.L.; investigation, P.S.L. and L.E.; resources, P.S.L.; data curation,
P.S.L.; writing—original draft preparation, P.S.L. and L.E.; writing—review and editing, P.S.L., L.E.,
M.S.O., M.C.L., B.E.G., and S.J.; visualization, P.S.L. and M.C.L.; supervision, M.S.O. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was conducted with funding from the University of Michigan Institute for
Global Biological Change, the Center for Global Health Equity, University of Michigan, grant P30
ES017885 from the U.S. National Institute of Environmental Health Sciences and grant T42-OH-008455
from the U.S. National Institute for Occupational Safety and Health.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data used in this research are available from the DHS website and
through other public sources.

Acknowledgments: We thank Carina Gronlund at the University of Michigan for her advice and
assistance in the conception of this paper.



Int. J. Environ. Res. Public Health 2022, 19, 2525 16 of 20

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
ARI Acute respiratory infection
BC Black carbon
CI Confidence interval
DHS Demographic health survey
DLNM Distributed lag nonlinear models
MODIS Moderate Resolution Imaging Spectroradiometer
MISR Multiangle Imaging Spectroradiometer
NOx Nitrous oxide
OR Odds ratio
RSV Respiratory syncytial virus
SO Sulfuric oxide
O3 Ozone
SSA Sub-Saharan Africa
USAID United States Agency for International Development

References
1. Abera, A.; Friberg, J.; Isaxon, C.; Jerrett, M.; Malmqvist, E.; Sjöström, C.; Taj, T.; Vargas, A.M. Air quality in Africa: Public health

implications. Annu. Rev. Public Health 2021, 42, 193–210.
2. Agbo, K.E.; Walgraeve, C.; Eze, J.I.; Ugwoke, P.E.; Ukoha, P.O.; Van Langenhove, H. A review on ambient and indoor air pollution

status in Africa. Atmos. Pollut. Res. 2021, 12, 243–260. [CrossRef]
3. Emmelin, A.; Wall, S. Indoor air pollution: A poverty-related cause of mortality among the children of the world. Chest 2007,

132, 1615–1623. [CrossRef] [PubMed]
4. Kurmi, O.P.; Lam, K.B.H.; Ayres, J.G. Indoor air pollution and the lung in low- and medium-income countries. Eur. Respir. J.

2012, 40, 239–254. [CrossRef]
5. Masekela, R.; Vanker, A. Lung health in children in Sub-Saharan Africa: Addressing the need for cleaner air. Int. J. Environ. Res.

Public Health 2020, 17, 6178. [CrossRef]
6. Jafta, N.; Jeena, P.M.; Barregard, L.; Naidoo, R.N. Association of childhood pulmonary tuberculosis with exposure to indoor air

pollution: A case control study. BMC Public Health 2019, 19, 275. [CrossRef]
7. Pathak, U.; Gupta, N.C.; Suri, J.C. Risk of COPD due to indoor air pollution from biomass cooking fuel: A systematic review and

meta-analysis. Int. J. Environ. Health Res. 2020, 30, 75–88. [CrossRef]
8. Olaniyan, T.; Dalvie, M.A.; Röösli, M.; Naidoo, R.; Künzli, N.; de Hoogh, K.; Parker, B.; Leaner, J.; Jeebhay, M. Asthma-related

outcomes associated with indoor air pollutants among schoolchildren from four informal settlements in two municipalities in the
Western Cape Province of South Africa. Indoor Air 2019, 29, 89–100. [CrossRef]

9. Thacher, J.D.; Emmelin, A.; Madaki, A.J.; Thacher, T.D. Biomass fuel use and the risk of asthma in Nigerian children. Respir. Med.
2013, 107, 1845–1851. [CrossRef]

10. Lee, Y.G.; Lee, P.H.; Choi, S.M.; An, M.H.; Jang, A.S. Effects of air pollutants on airway diseases. Int. J. Environ. Res. Public Health
2021, 18, 9905. [CrossRef]

11. Gehring, U.; Beelen, R.; Eeftens, M.; Hoek, G.; de Hoogh, K.; de Jongste, J.C.; Keuken, M.; Koppelman, G.H.; Meliefste, K.;
Oldenwening, M.; et al. Particulate Matter Composition and Respiratory Health: The PIAMA Birth Cohort Study. Epidemiology
2015, 26, 300–309. [CrossRef] [PubMed]

12. Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ.
Saf. 2016, 128, 67–74. [CrossRef] [PubMed]
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