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Abstract: Pillars are important structural elements that provide temporary or permanent support
in underground spaces. Unstable pillars can result in rock sloughing leading to roof collapse, and
they can also cause rock burst. Hence, the prediction of underground pillar stability is important.
This paper presents a novel application of Logistic Model Trees (LMT) to predict underground pillar
stability. Seven parameters—pillar width, pillar height, ratio of pillar width to height, uniaxial com-
pressive strength of rock, average pillar stress, underground depth, and Bord width—are employed to
construct LMTs for rock and coal pillars. The LogitBoost algorithm is applied to train on two data sets
of rock and coal pillar case histories. The two models are validated with (i) 10-fold cross-validation
and with (ii) another set of new case histories. Results suggest that the accuracy of the proposed LMT
is the highest among other common machine learning methods previously employed in the literature.
Moreover, a sensitivity analysis indicates that the average stress, p, and the ratio of pillar width to
height, r, are the most influential parameters for the proposed models.

Keywords: rock pillar; Logistic Model Trees (LMT); stability prediction; cross-validation

1. Introduction

Pillars are important structural elements in rock and coal underground mining since
they can provide temporary or permanent support for tunneling and mining work [1–3].
To maximize the extraction rate of mineral resources, dimensions (width and height) of
underground pillars must be confined to a certain range, which should still assure stability
and safe working conditions throughout the entire life of such projects [4]. Unstable pillars
can result in rock cracking, causing roof collapse, and they could even trigger rock bursts
when large amounts of accumulated elastic energy are released [3,5]. Increases of mining
depth can lead to more frequent pillar instability and failure events; it is therefore expected
that new design challenges must be addressed so that new methods to assess rock pillar
stability be discussed and developed.

The most common parameter in pillar design and stability estimation is the factor
of safety (FoS), which can be calculated as the ratio of pillar strength to applied pillar
stress. Two main methods —the tributary area theory, and numerical simulations—are
often employed for pillar stress calculation [3,6]; whereas several empirical methods have
been developed for pillar strength estimation, as listed in Table 1. Three basic ‘effects’
related with the ratio of pillar height to width—the linear shape effect, size effect, and
power shape effect—were summarized by Lunder [6]; similarly, Lunder [6] worked out an
empirical equation to assess pillar strength, considering confined and unconfined strength
and different ratios of pillar height to width. Similarly, Ahmad and Al-Shayea et al. [7]
proposed new coal pillar strength formulae that consider the interface friction between the
roof/floor and pillar, which also have a linear and power shape effect.
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Table 1. Typical empirical methods for estimating of pillar strength.

Reference Equation Form

Obert and Duvall [8] Ps = UCS (0.778 + 0.222(w/h)) Linear shape effect
Bieniawski and Van Heerden [9] Ps = UCS (0.64 + 0.34(w/h)) Linear shape effect

Hoek and Brown [10] σ1 = σ3 + ((mσcσ3) + (sσc))0.5 Hoek-Brown
Salamon and Munro [11] Ps = UCSw0.46/h0.64 Size effect

Bieniawski [12] Ps = UCSw0.16/h0.55 Size effect
Galvin and Hebblewhite et al. [13] Ps = UCSw0.50/h0.70 Size effect

Lunder [6] Ps = UCS (w/h)0.5 Power shape effect

Lunder [6]
Ps = 0.44UCS(0.68 + 0.52κ),

with κ = tan(cos−1((1−Cpav)/(1 + Cpav))) and Cpav

= 0.46 (log(w/h + 0.75))1.4/(w/h)
Confinement

Prassetyo and Irnawan et al. [14] Ps = 3.2 (0.14 + 0.86(w/h))
Ps = 2.7 (0.12 + 0.88(w/h)) Linear shape effect

Prassetyo and Irnawan et al. [14] Ps = 3.7 (w/h)0.9

Ps = 3.4 (w/h)0.8 Power shape effect

Notation: Ps, pillar strength (MPa); UCS, unconfined compressive strength of a cubic pillar specimen (MPa);
w, pillar width (m); h, pillar height (m); σ1, major principal stress (MPa); σ3, Minor principal stress (MPa); σc,
unconfined compressive strength of intact rock (MPa); m and s, empirically derived constants based on rock mass
quality of pillar material; κ, pillar confinement/friction factor; Cpav, average σ3/σ1 ratio across the mid-height
centerline of the pillar.

Theoretically, a rock or coal pillar is predicted as ‘stable’ when the value of FoS is
greater than 1; otherwise, it is considered ‘unstable’. However, such crisp boundaries are
often unreliable, as unstable pillars often occurs when the FoS value is above 1 (Lunder [6]),
and uncertainties in the ‘capacity’ (strength or resisting force) and ‘demand’ (stress or
disturbing force) of a pillar lead to the FoS being described as a statistical distribution.

Numerical simulation has also been employed to evaluate pillar stability. For instance,
York [15] and Mortazavi and Hassani et al. [16] employed FLAC2D to estimate the stability
of deep-level pillars considering pillar deformations under natural loading conditions. Li
and Li et al. [17] employed FLAC3D to obtain the minimum required thickness of crown
pillars under sea water pressure; and Martin and Maybee [18] conducted two-dimensional
finite element analyses using Hoek-Brown parameters for pillar strength. Similarly, the
finite element method and the discrete fracture network (DFN) approach were integrated
by Deng and Yue et al. [19] and Elmo and Stead [20] to study the failure of jointed pillars.
However, although such numerical methods are powerful tools to model pillar behavior,
they have limitations due to the complexity of the models involved and the need for
specific calibration.

Many machine learning algorithms have been applied to predict pillar stability. For
instance, Tawadrous and Katsabanis [21] employed Artificial Neural Networks (ANN).
Recio-Gordo and Jimenez [22] presented a probabilistic model based on the theory of
linear classifiers that can be used to make probabilistic predictions of pillar behavior
in longwall and retreat room and pillar mining. Zhou and Li et al. [2] employed Fisher
Discriminant Analysis (FDA) and Support Vector Machines (SVM), whereas Wattimena and
Kramadibrata et al. [23] and Wattimena [4] applied logistic regression algorithms. Ghasemi
and Ataei et al. [24] and Ghasemi and Ataei et al. [25] developed logistic regression and
fuzzy logic algorithms in room-and-pillar coal mines. Zhou and Li et al. [3] employed six
machine learning algorithms to evaluate the stability of a rock pillar, and Ghasemi and
Kalhori et al. [26] compared Decision Tree (J48) and SVM algorithms for hard rock pillar
stability assessment. Mohanto and Deb [27] developed a plastic damage index for assessing
rib pillar stability in underground metal mines using multi-variate regression and artificial
neural network techniques. Ahmad and Al-Shayea et al. [7] employed random trees and
C4.5 decision trees for underground pillar prediction, and Liang and Luo et al. [28] used
new GBDT, XGBoost, and LightGBM algorithms. Dai and Shan et al. [29] studied an
intelligent identification method for coal pillar stability in a fully mechanized caving face
of thick coal seams. With a combination of finite difference methods, neural networks, and
Monte Carlo simulation techniques, Li and Zhou et al. [30] studied underground mine hard
rock pillar stability.
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However, despite their reliable and accurate results, most algorithms are not easily
applicable in practice due to their complex training and modeling procedures, and to their
‘black box’ features. The model tree algorithm—which jointly uses decision trees and linear
regression methods–was proposed by Quinlan [31] to overcome such limitations. This
algorithm has been successfully applied to numerous geotechnical problems, such as UCS
and Young’s Modulus estimation [32] and hydraulic conductivity [33]. However, one of
the key obstacles to using tree algorithms for pillar stability evaluation is that outcomes
should be discrete values such as ‘stable’, ‘unstable’ or ‘failed’. Therefore, those discrete
targets must be transformed into continuous values, so that they can be trained using a
model tree algorithm for regression analysis.

We propose a Logistic Model Trees (LMT) method [34] to predict rock and coal pillar
stability. This algorithm has the advantage of dealing with the classification problem by
jointly using a tree model and a logistic regression algorithm, making it a rational choice
in classification and decision-making. One main application of the LMT in geotechnical
engineering has been landslide susceptibility prediction [35–37], but it has not yet been
applied to predict underground pillar stability.

The flowchart of this research is shown in Figure 1. The rest of this paper is or-
ganized as follows. Section 2 discusses two databases employed in this research, and
the selection of input parameters. The LMT method is briefly introduced in Section 3.
Section 4 discusses the performance and validation of proposed models, and risk and
feature importance analyses.
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Figure 1. Flowchart of pillar stability prediction based on Logistic Model Trees (LMT).

2. Database Description

We compiled two databases that include recorded rock and coal pillar stability events
from different types of underground mines. Database A was developed using observations
collected by Lunder [6]. It includes 178 case histories (60 stable, 50 unstable, and 68 failed
cases) that came from six hard rock mines in Canada, South Africa, and Sweden. Five main
parameters—pillar width, w; pillar height, h; ratio of pillar width to height, r; uniaxial
compressive strength of rock, UCS; and average pillar stress, p—that could affect rock pillar
stability were selected and analyzed.

Similarly, Database B was developed based on Van der Merwe [38] and Van der
Merwe [39], who provided information on 351 case histories of coal pillars (including
274 stable pillars and 77 failed cases) in South African coal mines. It originally contains
four parameters related to coal pillar stability analyses —underground depth, H; pillar
width, w; pillar height (mining height), h; bord width, B—so the ratio of pillar width to
height (r) has been computed to be employed as a parameter in this database.

Although there are other features that could affect the rock and coal pillar stability,
such as the geology structure conditions, water and gas contents, other stresses, and fracture
information from CT or SEM images [14,40–42], that information is not available for the
current pillar stability analysis. Since our models are trained using a limited number of
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data points are empirical methods, it is expected that their predictions are improved when
a more extensive data set and/or more features are employed. Thus, a better calibration of
model parameters, and more elaborate models could be established.

The boxplots of both databases are shown in Figures 2 and 3, and their statistical
features are listed in Tables 2 and 3; solid black spots in Figures 2 and 3 denote “outliers”.
The first and third quartiles are indicated using horizontal lines at the bottom and top of the
boxes, whereas the bold lines inside the boxes represent median values. Similarly, pillars
with ‘failed’, ‘stable’, and ‘unstable’ conditions are shown separately, and labelled using F,
S, and U, respectively.
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Table 2. Statistical values of features for case histories in Database A.

Parameter Available Missing Min Max Mean Standard Deviation

w (m) 162 16 1.9 45 10.16 8.76
h (m) 162 16 2.4 53 10.38 12.40

R 178 0 0.31 4.5 1.25 0.66
UCS (MPa) 178 0 70 316 155.99 61.73

p (MPa) 178 0 25 127.6 57.30 23.33

Table 3. Statistical values of features for case histories in Database B.

Parameter Available Missing Min Max Mean Standard Deviation

H (m) 351 0 13.22 254.45 83.11 44.59
w (m) 351 0 2.74 35 10.61 5.03
B (m) 351 0 3.69 10 6.09 0.61
h (m) 351 0 1.1 6.45 3.12 1.12

r 351 0 0.87 15.45 3.81 2.26
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Based on the review and analysis of common techniques to estimate pillar stability
using FoS, two categories of parameters were employed in our analyses. One category is
the “strength” related parameters: pillar width, w; pillar height or mining height, h; ratio
of pillar width to height, r; and uniaxial compressive strength of rock, UCS. The other
category includes parameters related to the applied “stress,” including average pillar stress,
p; underground depth, H; and bord width, B. With the availability of parameters for the
two databases, Models 1 (w, h, r, UCS and p) and 2 (w, h, H, B and r) were established. The
detailed analyses of these parameters are discussed in the following subsections.

2.1. Strength-Related Parameters

Pillar width w and pillar height h are two key geometrical parameters for stability
analysis. The empirical approaches (linear, power, or shape forms) in Table 1 all included
w, h, and r for pillar strength calculation. Zhou and Li et al. [2] employed w, h, r, and
UCS as inputs for FDA and SVM models; Wattimena and Kramadibrata et al. [23] and
Wattimena [4] used r as one of the parameters for regression analysis. Moreover, pillar
shape, as represented by the r parameter, could have an influence on increased strength [3].
Therefore, we consider pillar width w, pillar height h, the ratio r, and UCS as “strength”-
related parameters for Model 1. As Database B does not include UCS values, only w, h, and
r are employed for Model 2.

2.2. Stress-Related Parameters

The actual stress acting on a pillar may depend on multiple factors such as in situ
stresses, mining induced stress changes, geological features, shape and orientation of pillars,
spatial relationship between pillars and mine openings, and groundwater conditions [6].
The tributary area theory introduced by Bunting [43] calculates the average stress acting on
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a pillar by simply supposing that the pillar supports its “share” of applied load. Salamon
and Munro [11] proposed a more simplified equation:

p = γH
(

w + B
w

)2
(1)

where γ is the unit weight of the rock mass, H is underground depth, B is bord width
between pillars, and w is pillar width.

For Model 1, the average stress has been calculated using the tributary area theory
and two-dimensional or three-dimensional finite element modeling in the database, so that
it can be directly applied for prediction. For Model 2, H, B, and w are employed to compute
the stress condition for coal pillar stability.

Table 4 lists the selected parameters for each model, their corresponding data avail-
ability, and types. Theoretically, there may be additional indicators or parameters, such as
geological condition, pillar orientation, or mining methods, that could have an influence on
pillar stability; however, collecting these data is a major challenge and they have therefore
not been employed in this work.

Table 4. Parameter selection for each model.

Parameters Model 1 Model 2

Pillar width, w (m)
√ √

Pillar height, h (m)
√ √

Ratio of w to h, r
√ √

UCS (MPa)
√

Average pillar stress, p (MPa)
√

Underground depth, H (m)
√

Bord width, B (m)
√

3. Logistic Model Trees

Logistic regression is a simple prediction tool, with advantages such as stability, low
variance, and time-efficient training [44], but its prediction results are often biased. Decision
trees are another machine learning method for searching a less restricted space of candidate
models and capturing nonlinear patterns in a database; they exhibit low bias but high
variance and instability, and are hence prone to overfitting. Therefore, the Logistic Model
Trees (LMT) approach was proposed by Landwehr and Hall et al. [34]. It builds from the
Model Tree approach proposed by Quinlan [31] to deal with regression problems with the
joint use of linear regression and decision tree models, and is extended to classification
problems. A brief introduction to LMT is presented in this section, while a more detailed
description can be found in the seminal work of Landwehr and Hall et al. [34].

3.1. Tree Structure

A LMT includes a standard decision tree structure with logistic regression functions
generated at the leaves. It has a set of inner or non-terminal nodes N and a set of leaves or
terminal nodes T. Unlike a common decision tree or model tree, each leaf t of a LMT model
has correlative logistic regression (LR) functions, instead of having classification labels or
linear regression functions. For instance, suppose that the input vector X is (X1, X2) and
the output target is Y. The whole instance space is denoted as S, and such space can be
divided into several subspaces St. A simple input space split into seven subspaces is shown
in Figure 4. We can note that:

S = ∪
t∈T

St, St∩St′ = ∅ (2)
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3.2. Logistic Function

Unlike traditional forms of logistic regression, the LogitBoost algorithm for fitting
additive logistic regression models proposed by Friedman and Hastie et al. [45] is employed
here for model construction. The prediction probability is presented in Equation (3).

Pr(G = j|X = x ) =
eFj(x)

J
∑

k=1
eFk(x)

(3)
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where G is the output, J are the class labels, X are the inputs, and Fj (x) are the functions to
be trained in the leaves of the tree by the LMT, as:

Fj(x) =
M

∑
m=1

fmj(x) = α
j
0 + ∑

s∈st

α
j
s · s (4)

where m is the number of iterations, fmj are the functions of input variables, α are the
intercepts and coefficients of the linear function, and s are the variables of the subset St at
the leaf t.

3.3. LMT Training

A LMT can be established with the following steps: initial tree growing, tree splitting
and stopping, and tree pruning. In this section, the basic idea is introduced; the reader is
referred to Landwehr and Hall et al. [34] for detailed information.

The M5P method commonly employed for tree growing can build a standard tree
first; then, a logistic regression model can be obtained at every node [32,46]. As this
approach merely trains the model using case histories at each node in isolation, without
considering the surrounding tree structure, another approach—one that can incrementally
refine logistic model fit at high levels—is employed, so that the LogitBoost algorithm can
iteratively change Fj (x) to increase the fit in a natural way [34]. The function fmj is added
to Fj by altering one of the coefficients in the function or bringing in another variable (see
Equation (4)).

Therefore, first, a LR tree is built in the root using proper iteration numbers determined
by cross-validation in the initial growing process. Next, using the C4.5 splitting law [31] to
raise the purity of the classification variable, the tree begins to grow by resembling advisable
subsets (t) from database (S) to the children nodes. In the children nodes, the logistic
regression functions are built by running the LogitBoost algorithm with the consideration
of logistic model, weights, and probability estimate performed in the last iteration at the
parent node. Then, another splitting process is performed. Considering reliable model
fitting, the tree will stop splitting when a node has less than 15 cases. After the tree is built,
the tree pruning method is employed to trade off tree size and to reduce model complexity,
while still maintaining predictive accuracy. After different pruning scheme experiments,
Landwehr and Hall et al. [34] employed the CAERT pruning method [47] to make pruning
decisions considering training error and model complexity. Following these three steps,
logistic model trees can be established.

4. Results and Discussion
4.1. Development of LMT Models for Pillar Stability Prediction

We employed the WEKA (Waikato Environment for Knowledge Analysis) [48] soft-
ware to build models using the two databases collected. Since some case histories in
Database A are incomplete (see Table 2), 153 case histories—55 stable cases, 34 unstable
cases, and 64 failed cases—were employed as the training set, and nine case histories not
used for training were randomly selected for validation. For Database B, 266 stable cases
and 73 failed cases were employed as the training set and 12 case histories were selected
for the validation work.

The ratio of stable to failed case numbers in the training set of Model 2 is about 3.64,
indicating that the distribution of those two classes requires a cost-sensitive approach to
overcome this ‘lack of balance’ problem [49,50]. Therefore, we consider the cost during
the training process of Model 2. The cost-sensitive classifier is matched with the LMT
algorithm using WEKA. As Model 2 is a binary prediction problem, a 2 × 2 cost matrix,
shown in Table 5, is utilized during the training step. The value of C (F|S) is set to 4, so
that false positive cases are four times more likely than false negative cases.
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Table 5. Cost matrix of pillar stability prediction with Model 2.

Predicted

Stability Failure

0 1 Stability Actual
4 0 Failure

During tree model training, each terminal node (or leaf) is trained and updated using
logistic regression models (see Section 3). Considering predictive performance, easily
applicable tree structures, and the total number of training case histories, the minimum
number of instances were set to 15 and 40 for Models 1 and 2, respectively. The trees
produced using LMT are demonstrated in Figures 6 and 7. Model 1 contains eight logistic
functions (LMs), whereas Model 2 includes ten LMs. The detailed expressions are listed in
Tables 6 and 7.
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Figure 6. Structure of a logistic model tree for Model 1.

As the variance inflation factor (VIF) can measure the correlation and strength of cor-
relation between the variables in a regression model, we used R programing (car package)
for the calculation of the VIF value; the results are as follows.

VIF > 10 indicates a potential multicollinearity problem in the dataset [35]. All the VIF
values in Table 8 are smaller than 10, which is acceptable for regression analysis.

It should be noted that some functions in Table 6; Table 7 do not include all the
parameters selected. For instance, the LM3 function for unstable pillars in Table 6 does
not consider UCS. In the LMT training step, the simple logistic method is employed [34].
The aim of the simple logistic method is to control the parameter numbers, and to keep
the model as simple and easy as possible. Therefore, new parameters are added, step
by step, to improve the performance of each function at each node in the tree during
training (see Section 3). This can also avoid the problem of model significance in the logistic
regression, especially in the multiple logistic functions that build a full logistic model with
all parameters. However, only some of the functions have less parameters than selected,
indicating that most of our selected parameters affect predictive performance.
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Table 6. Logistic functions for Model 1.

No. Stability
Condition Regression Models

LM1
S F1 = −0.91 + 0.06w − 0.02h + 1.61r + 0.03UCS − 0.12p
U F2 = 3.03 − 0.06w + 0.04h + 0.14r − 0.07p
F F3 = 10.15 − 0.01w + 0.01h − 18.09r − 0.03UCS + 0.25p

LM2
S F1 = −0.29 + 0.07w − 0.21h + 0.07r + 0.06UCS − 0.39p
U F2 = 97.07 − 1.26w − 0.02h − 7.19r − 1.55p
F F3 = −93.43 + 1.18w + 0.07h + 4.74r − 0.04UCS + 1.63p

LM3
S F1 = 18.93 + 0.12w − 0.28h − r + 0.06UCS − 0.47p
U F2 = 5.39 − 0.01w − 0.03h − 3.02r
F F3 = −3.66 − 0.07w + 0.1h + 1.07r − 0.02UCS + 0.09p

LM4
S F1 =17.65 + 0.29w − 0.42h − 3.21r + 0.06UCS − 0.4p
U F2 = −1.05 − 0.05h − 2.34r + 0.08p
F F3 = 46.91 − 0.45w + 0.15h − 35.86r − 0.06UCS − 0.26p

LM5
S F1 = 8.22 + 0.21w − 0.35h − 2.3r + 0.06UCS − 0.47p
U F2 = −59.67 − 0.13w − 0.08h − 17.17r +0.11UCS + 0.64p
F F3 = 63.53 − 0.04w + 0.15h + 15.07r − 0.14UCS − 0.57p

LM6
S F1 = −3.59 + 0.03w − 0.15h + 0.93r + 0.06UCS − 0.33p
U F2 = −8.93 − 0.03w − 0.06h − 1.58r − 0.03p
F F3 = 12.17 − 0.03w + 0.11h − 1.06r − 0.03UCS + 0.11p

LM7
S F1 = −27.03 + 0.26w − 0.02h + 9.89r + 0.12UCS − 0.18p
U F2 = 352.78 − 0.2w + 0.02h − 0.89r − 0.03UCS − 6.35p
F F3 = 15.48 − 0.17w − 0.01h − 5.85r − 0.08UCS + 0.13p

LM8
S F1 = 10.24 − 0.29w − 12.14h + 6.82r + 0.2UCS − 0.25p
U F2 = 20.3 + 1.02w + 0.02h + 15.21r − 0.15UCS − 0.29p
F F3 = 42.74 − 0.77w − 0.01h − 48.27r + 0.02UCS + 0.51p
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Table 7. Logistic functions for Model 2.

No. Stability
Condition Regression Models

LM1
S F1 = −8.58 − 0.03H + 1.22w + 0.102B − 0.11h + 0.51r
F F2 = −F1

LM2
S F1 = 498.57 −0.04w − 101.31B + 0.59h + 0.32r
F F2 = −F1

LM3
S F1 = 2.1 − 0.03H + 0.59w − B + 0.59h + 0.63r
F F2 = −F1

LM4
S F1 = −6.11 − 0.01H + 0.03w + 0.02B − 0.11h + 0.16r
F F2 = −F1

LM5
S F1 = 5.75 − 0.02H + 0.15B + 0.09h + 0.2r
F F2 = −F1

LM6
S F1 = −8.04 + 0.01H + 0.01w + 1.15B + 0.16h + 0.11r
F F2 = −F1

LM7
S F1 = −6.01 − 0.02w − 0.19B + 0.2h + 0.19r
F F2 = −F1

LM8
S F1 = 3.41 − 0.04w + 0.32B + 0.16h + 0.2r
F F2 = −F1

LM9
S F1 = −7.2 − 0.02H + 0.12w + 0.15B + 0.03h + 0.27r
F F2 = −F1

LM10
S F1 = 3.4 − 0.01H + 0.09w+ 0.12B + 0.53r
F F2 = −F1

Table 8. The VIF values for parameters in Models 1 and 2.

Parameters Model 1 Model 2

Pillar width, w (m) 5.57 4.81
Pillar height, h (m) 6.62 2.94

Ratio of w to h, r 2.27 6.71
UCS (MPa) 1.33

Average pillar stress, p (MPa) 1.40
Underground depth, H (m) 2.71

Bord width, B (m) 1.14

4.2. Model Performance and Validation
4.2.1. Confusion Matrices

Three classes (stable, unstable, and failed) are predicted for case histories in Model 1,
and two classes (stable and failed) for Model 2. Using all the LMs trained in Models 1 and
2, the confusion matrices that show predictive results are presented in Tables 9 and 10.

Table 9. Confusion matrix of rock pillar prediction with Model 1.

Predicted

Stable Unstable Failed

53 2 0 Stable Actual
4 29 1 Unstable
1 1 62 Failed



Int. J. Environ. Res. Public Health 2022, 19, 2136 12 of 19

Table 10. Confusion matrix of coal pillar prediction with Model 2.

Predicted without cost matrix

Stable Failed

258 8 Stable Actual
15 58 Failed

Predicted with cost matrix

Stable Failed

251 15 Stable Actual
9 64 Failed

Many metrics can be employed to assess the predictive results of classification prob-
lems. We employed accuracy and Cohen’s Kappa values for the evaluation herein. For a
confusion matrix with n rows and columns, i is the row counter, j is the column counter,
and m is the element in the matrix. The accuracy can be computed as [51]:

Ac =


n
∑

i=1
mii

n
∑

i,j=1
mij

× 100% (5)

The Cohen’s Kappa coefficient can also be employed to assess predictive performance.
However, it can only be employed on binary prediction results, so only Model 2 is evaluated
by this metric. It is a robust measure of the proportion of cases classified correctly after the
probability of chance agreement has been considered and removed [52]. The expression
is [53]:

κ =
Ac− pe

1− pe
(6)

where Ac is the accuracy value obtained in Equation (5), and Pe is the hypothetical proba-
bility of chance agreement, defined as Equation (7).

pe =

n
∑

i=1
mi+ ·m+i(
n
∑

i,j=1
mij

)2 (7)

where mi+ and m + i are the sum of elements in the i-th row and i-th column of the confusion
matrix. The results of κ reflect the agreement condition of the results, with a complete
agreement corresponding to a value of 1 and no agreement corresponding to less than 1.

The accuracy for Model 1 was equal to 94.1%, showing a satisfying predictive perfor-
mance. For Model 2, accuracies for the training results with and without cost matrix were
92.9% and 93.1%, respectively, which conform to Kappa coefficients of 0.80 and 0.79. Both
metrics indicate that the predictive results are reliable and acceptable.

4.2.2. Cross-Validation

A 10-fold cross-validation procedure was adopted to validate Models 1 and 2 and to
further examine their predictive results. For 10-fold cross-validation, each database was
randomly sorted into 10 datasets; then, for each dataset, the remaining nine datasets were
used to train the model, and the initially selected set was used for pillar stability evaluation
with the trained LR models and to examine their performance using the observations
within the set. The process was then repeated for all the ten sets. Results are listed in
Tables 11 and 12, revealing that the average accuracy values for Models 1 and 2 are 79.1%
and 80.5%, respectively.
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Table 11. Confusion matrices of Model 1 by 10-fold cross-validation.

Validation Group Accuracy
Predicted Confusion Matrices

Stable Unstable Failed Actual

No.1 56.3% 3 2 0 Stable
2 0 2 Unstable
0 1 6 Failed

No.2 93.8% 5 0 0 Stable
0 3 1 Unstable
0 0 7 Failed

No.3 87.5% 4 1 0 Stable
0 4 0 Unstable
1 0 6 Failed

No.4 86.7% 5 0 0 Stable
0 1 2 Unstable
0 0 7 Failed

No.5 80% 5 1 0 Stable
0 1 2 Unstable
0 0 6 Failed

No.6 80% 4 1 1 Stable
1 2 0 Unstable
0 0 6 Failed

No.7 73.3% 6 0 0 Stable
1 1 1 Unstable
1 1 4 Failed

No.8 73.3% 5 1 0 Stable
1 0 2 Unstable
0 0 6 Failed

No.9 86.7% 6 0 0 Stable
0 2 1 Unstable
0 1 5 Failed

No.10 73.3% 5 0 0 Stable
2 1 1 Unstable
0 1 5 Failed

Average 79.1%

4.2.3. Validation through New Cases

Validation of model performance can also be conducted using new case histories.
Therefore, another nine and twelve case histories (for Models 1 and 2, respectively) that
were not employed for training work were used for validation. Their observed pillar
stability conditions, as well as the predictive results obtained with functions in the tree
models, are reported in Tables 13 and 14, where one can observe that our proposed tree
models performed very well for most cases. For Model 1, all the case histories are well
predicted. For Model 2, only three cases out of 12 are wrongly predicted. The test results
confirm that the two proposed logistic tree models can reliably predict new case histories.
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Table 12. Confusion matrices of Model 2 by 10-fold cross-validation.

Validation Group Accuracy

Confusion Matrices

Predicted

Stable Failed Actual

No.1 85.3% 23 4 Stable
1 6 Failed

No.2 58.8% 17 10 Stable
4 3 Failed

No.3 79.4% 22 5 Stable
2 5 Failed

No.4 85.3% 22 5 Stable
0 7 Failed

No.5 94.1% 25 2 Stable
0 7 Failed

No.6 91.2% 25 2 Stable
1 6 Failed

No.7 76.5% 21 5 Stable
3 5 Failed

No.8 76.5% 21 5 Stable
3 5 Failed

No.9 82.3% 22 4 Stable
2 6 Failed

No.10 75.6% 19 7 Stable
1 6 Failed

Average 80.5%

Table 13. Predicted results of nine new cases with Model 1.

No. h (m) w (m) r UCS (MPa) p (MPa) Observed Predicted Results

1 3 3 1 210 44.1 S S
2 6.1 5.5 1.1 210 26.2 S S
3 12 8 1.5 215 28 S S
4 5.7 3.8 1.5 94 47 U U
5 6.3 3.8 1.66 94 48 U U
6 5.3 3.8 1.39 94 48 U U
7 4.6 3.8 1.21 94 63 F F
8 4.6 3.8 1.21 94 54 F F
9 3.5 3.8 0.92 94 55 F F

Table 14. Predicted results of twelve new cases with Model 2.

No. H (m) w (m) B (m) h (m) r Observed Predicted Results

1 219.46 21.73 5.58 3.17 6.85 S S
2 114 17.37 5.49 1.98 8.77 S S
3 106.68 12.19 6.1 4.27 2.85 S S
4 198.12 17.16 5.7 2.83 6.06 S S
5 76.2 7.62 6.1 4.57 1.67 S S
6 182.88 15.85 5.49 4.88 3.25 S F
7 182.88 16.92 5.94 2.44 6.93 S S
8 91.44 12.19 6.1 1.52 8.02 S S
9 19 6 6 3 2.00 F S
10 21.3 4 8.2 4.6 0.87 F F
11 22 3.5 6.5 1.6 2.19 F F
12 23 6 6 2.9 2.07 F S
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4.3. Comparison

To further assess our proposed Models 1 and 2, the results of several machine learning
methods that have been studied in the literature, and of some other techniques that have
not yet been employed for pillar stability prediction, are compared with the results of
our models.

Table 15 compares prediction results for Model 1. It should be noted that although
all the models proposed in the literature achieved good predictions with different input
parameters, our proposed model has superior predictive performance. We can also note
that the random forests shows the optimal predictive performance among all techniques
(Techniques No. 6 to No. 12 are trained by WEKA); however, its cross-validation result is
lower than the model proposed in this research. In other words, our proposed Model 1 has
better predictive performance in both the training and cross-validation stages.

Table 15. Comparison of Model 1 with other ML techniques reported in previous works and trained
by WEKA.

No. Techniques Input Parameter Case
Histories Accuracy Values Average Accuracy

(10-Fold CV) References

1 Logistic regression r, p/UCS 178 79.2% NA Wattimena [4]
2 J48 (decision tree) r, p/UCS 178 84.8% NA Ghasemi and Kalhori et al. [19]
3 SVM r, p/UCS 178 82.0% NA Ghasemi and Kalhori et al. [19]
4 SVM h, w, UCS, Ps, p 177 84.3% NA Zhou and Li et al. [3]
5 ANN r, UCS, p 177 80.3% NA Zhou and Li et al. [3]
6 Logistic regression h, w, r, UCS, p 153 81.0% 75.8% NA
7 SVM h, w, r, UCS, p 153 73.4% 69.3% NA
8 ANN h, w, r, UCS, p 153 89.5% 80.4% NA
9 Naïve Bayes h, w, r, UCS, p 153 60.1% 55.6% NA

10 Random forests h, w, r, UCS, p 153 100% 76.5% NA
11 J48 (decision trees) h, w, r, UCS, p 153 92.8% 73.2% NA
12 Logistic model trees h, w, r, UCS, p 153 94.1% 79.1% NA

No machine learning techniques have been yet presented in the literature to predict
coal pillar stability based on Database B. Therefore, for the assessment of Model 2, we
merely compared several popular machine learning techniques trained by WEKA. The
results are listed in Table 16. Note that fandom forests, decision trees and our proposed LMT
show better predictive performance than the other methods considered; however, when
compared to the other two algorithms (random forest and decision trees), our proposed
model has the advantage that it can also be utilized for probabilistic risk analyses (discussed
in the next section).

Table 16. Comparison of the proposed Model 2 with other ML techniques computed by WEKA.

No. Techniques Input Parameter Case Histories Accuracy Values
Average
Accuracy

(10-Fold CV)

1 Logistic regression H, w, B, h, r 339 76.1% 74.0%
2 SVM H, w, B, h, r 339 64.9% 62.2%
3 ANN H, w, B, h, r 339 81.7% 77.0%
4 Naïve Bayes H, w, B, h, r 339 59.9% 59.6%
5 Random forests H, w, B, h, r 339 99.1% 85.8%
6 J48 (decision trees) H, w, B, h, r 339 92.9% 80.8%
7 Logistic model trees H, w, B, h, r 339 92.9% 80.5%

In addition, the main advantage of the proposed Models 1 and 2 is that they illustrate
an explicit class probability using input parameters, which can be easily employed to
predict the stability and potential risk of pillars using simple calculation by engineers.
(The developed MATLAB “m-files” are provided in the Supplementary Material File S1).
However, in the “black box” nature of other machine learning techniques, the training and
predicting procedures can only be accomplished using other tools such as WEKA, R, or
MATLAB. Therefore, they cannot be easily applied for quick forecast directly. For instance,
the random forests algorithm may predict pillar stability more accurately, but it does not
provide any equations that can be used for such evaluation.
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4.4. Risk Analysis

We use two case histories in Table 13; Table 14 to present an application of the pro-
posed Models 1 and 2 for risk analyses. The group of typical input data for Case 1 is as
follows: w = 3.5 m, h = 3.8 m, r = 0.92, UCS = 94 MPa, and p = 55 MPa; for Case 2, we have
H = 106.68 m, w = 12.19 m, B = 6.1 m, and h = 4.27 m. Then, given the tree structures from
Figures 3 and 4, we employ the proper functions to calculate the probability of failure (PoF).
For instance, as the value of p for Case 1 is 55 MPa, we take the right branch of the tree for
Model 1, and then we check the r value. With the r value being equal to 0.92, we turn to
the left branch and compare the p value again; then the final function (LM2) for this case is
decided by the UCS value of 94 MPa. According to the LM2 equations in Table 5, we first
calculate function values (FS, FU, and FF); then, using Equation (3), the probability of rock
pillar stability can be expressed by Equation (11):

Fs = –0.29 + 0.07w− 0.21h + 0.07r + 0.06UCS− 0.39p (8)

FU = 97.07− 1.26w− 0.02h− 7.19r− 1.55p (9)

FF = −93.43 + 1.18w + 0.07h + 4.74r− 0.04UCS + 1.63p (10)

PS =
eFS

eFS + eFU + eFF
, PU =

eFU

eFS + eFU + eFF
, PF =

eFF

eFS + eFU + eFF
(11)

Finally, we can obtain the results: Ps = 0, PU = 37.8%, and PF = 62.2%, which implies
that this case has a PoF equals to 62.2%. For Case 2 of Model 2, the function (LM6) in Table 6
can be used to calculate the PoF using the same method. Results show that the probability
of a stable coal pillar for Case 2 is 91.1%, which also agrees with the actual conditions. Such
probability results can be incorporated into risk analyses with the corresponding failure
cost assessment later.

4.5. Feature Importance Analyses

In the training process of Models 1 and 2, information gain measures the separation of
the training cases according to their target classification by a given attribute. It is employed
to select among the candidate features during the tree growing procedure. We suppose that
a case history is (x, y) = (x1, x2, x3,..., xk, y) and xk is the k-th attribute of that case with the
corresponding class label y. The expected information gain is the change in information
entropy H from an initial state to a state that takes some information, computed as [54]:

G(S, k) = H(S)− ∑
t∈value(k)

|St|
|S| H(St) (12)

where S denotes the training data set and St is the subset of S for which feature k has value
of t (St = {x ∈ S|xk = t}).

In the tree model training, before determining the feature in the root node, all the
information gains provided by different features are calculated and compared, and the
most influential feature is chosen as the root node in the tree structure. The other features in
the nodes of the decision tree appear in descending order of importance [32,55]. Compared
to other machine learning techniques, for which extra analyses are required to analyze
sensitivity, the LMT decides the most influential feature during the tree growing process.
Therefore, the average stress p is the most significant parameter in the pillar stability
prediction for Model 1, followed by the ratio of pillar width to height r. Similarly, the most
critical parameter for Model 2 is also r, followed by the excavation depth H. Both importance
analyses show that pillar stability is largely influenced by the applied stress, ratio of width
to height, and depth, thus agreeing with the empirical observations mentioned earlier in
this paper.
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5. Conclusions

A novel application of Logistic Model Trees (LMT) for instability assessment of under-
ground pillars is presented. Tree structures and the corresponding functions are employed
to assess the stability of pillars, given information on several features—including pillar
width, pillar height, ratio of pillar width to height, uniaxial compressive strength of rock,
average pillar stress, underground depth, and bord width—based on which predictions
are conducted. The LMT is learned by LogitBoost, using two sets of case histories from the
databases that we compiled from the literature. Results show that both Models 1 and 2 can
accurately predict the stability of rock and coal pillars.

The trained tree models were validated using the original databases and 10-fold
cross-validation. In addition, nine and twelve new cases—not previously employed for
training—were used to further validate the models proposed. Moreover, predictions of
several other machine learning methods were also compared with our proposed models.
Results showed that the accuracies of the proposed tree models are among the highest and
that they are probably adequate for mine site applications. In addition, results suggest
that the LMT technique can offer useful information about the probability of pillar failure
during underground excavation, so it can be utilized for risk analyses of pillar stability.

Furthermore, feature importance analyses were conducted to appraise the most in-
fluential input features for pillar stability. The average pillar stress p was found as the
most influential parameter for Model 1, with other factors such as r and UCS also having a
critical influence on predictions. For Model 2, r showed the highest effect on the output,
followed by H and w. It is expected that these results can lead mine engineers to focus their
efforts towards those crucial identified factors.

As the dataset employed for LMT learning and training was limited, it is expected that
its predictive capacity could be increased if more case histories are collected. In addition,
there are a few minor influencing parameters such as pore-water pressure, gas and water
contents of the rocks, etc., which are neglected in this study due to the unavailability of data,
and could have been among the selected parameters. More importantly, the application of
the proposed models should be within the range of selected parameters.

Finally, the main advantage of LMT compared to other related algorithms commonly
employed for pillar stability estimation is that it can be trained easily (even with more
input parameters) and that its tree structure, with a LR function in each leaf, explicitly
demonstrates the relationship between the inputs and predictive outputs. In addition, it
is expected that, with its intuitive features and easy implementation, the LMT can also be
employed to solve other geotechnical problems in the future.
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